Chaos, Solitons and Fractals 26 (2005) 1363–1375 www.elsevier.com/locate/chaos

On the Painleve´ integrability, periodic wave solutions and soliton solutions of generalized coupled higher-order nonlinear Schro¨dinger equations Gui-qiong Xu a

a,*

, Zhi-bin Li

b

Department of Information Management, College of International Business and Management, Shanghai University, Shanghai 201800, China b Department of Computer Science, East China Normal University, Shanghai 200062, China Accepted 31 March 2005

Abstract It is proven that generalized coupled higher-order nonlinear Schro¨dinger equations possess the Painleve´ property for two particular choices of parameters, using the Weiss–Tabor–Carnevale method and KruskalÕs simplification. Abundant families of periodic wave solutions are obtained by using the Jacobi elliptic function expansion method with the assistance of symbolic manipulation system, Maple. It is also shown that these solutions exactly degenerate to bright soliton, dark soliton and mixed dark and bright soliton solutions with physical interests. Ó 2005 Elsevier Ltd. All rights reserved.

1. Introduction The nonlinear Schro¨dinger (NLS) equation, which describes the time evolution of a slowly varying envelope, has many applications in various branches of physics. In deriving the NLS equation, higher-order terms have been neglected under appropriate physical assumptions. With the recent developments in optical technology, higher-order corrections to the NLS equation have become necessary and important. One of the higher-order NLS equations is iU t þ U zz þ bjU j2 U  ikU zzz þ cjU j2 U z þ dðjU j2 Þz U ¼ 0; which models the dynamics of a nonlinear pulse envelope in a fiber [1]. The last term proportional to d becomes important for short-pulse propagation over long distances. To describe two pulses co-propagating in optical fibers, we need to consider a two-component generalization of the single-component propagation equation [2–5]. For this purpose, we consider a generalized coupled higher-order nonlinear Schro¨dinger (GCHNLS) equations iU t þ U zz þ 2ðjU j2 þ jV j2 ÞU  ik½b1 U zzz þ b2 ðjU j2 þ jV j2 ÞU z þ b3 ðjU j2 þ jV j2 Þz U  ¼ 0; iV t þ V zz þ 2ðjU j2 þ jV j2 ÞV  ik½b1 V zzz þ b2 ðjU j2 þ jV j2 ÞV z þ b3 ðjU j2 þ jV j2 Þz V  ¼ 0; *

Corresponding author. E-mail addresses: xugq@staff.shu.edu.cn, [email protected] (G. Xu).

0960-0779/$ - see front matter Ó 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.chaos.2005.04.007

ð1Þ

1364

G. Xu, Z. Li / Chaos, Solitons and Fractals 26 (2005) 1363–1375

which was derived by Tasgal and Potasek to describe the effects of birefringence on pulse propagation in the femtosecond region [6]. For b1 = 0, Eq. (1) reduces to the coupled hybrid nonlinear Schro¨dinger equations, and these have been derived by Hisakado et al. from the Maxwell equations [7]. In this paper, we study the GCHNLS equations by means of the Painleve´ analysis. Similar attempts have been performed for coupled NLS equations without higher-order terms [8,9]. Recently, Vinoj and Kuriakose [10] have proved the Painleve´ property for the integrable case of Eq. (1), where b1 = 1, b2 = 6 and b3 = 3. Moreover, we study the periodic wave solutions, the bright and dark soliton solutions of Eq. (1), which have not been considered before. These solutions can explain many physical phenomena such as the birefringence property, soliton trapping and daughter wave (‘‘shadow’’) formation in optical fibers. The paper is arranged as follows: In Section 2, we perform the Painleve´ analysis of Eq. (1). It is proven that Eq. (1) possesses the Painleve´ property for two particular choices of parameters. In Section 3, we derive a series of periodic wave solutions, bright and dark soliton solutions of Eq. (1) by using the Jacobi elliptic function expansion method. Section 4 is allotted for conclusions.

2. GCHNLS equations: P-property and integrable choice The integrable classes of coupled NLS equations intrigue researchers for the past few decades due to their rich variety of solutions. The Painleve´ analysis is one of the powerful methods for identifying the integrable properties of nonlinear partial differential equations. In this section, we apply the Painleve´ test for integrability to Eq. (1), using the so-called WTC-Kruskal algorithm of singularity analysis [11–13]. To apply the Painleve´ analysis, we express U = a, U* = b, V = c, V* = d (where the asterisk represents the complex conjugate). By applying these new variables, Eq. (1) becomes iat þ azz þ 2ðab þ cdÞa  ik½b1 azzz þ b2 ðab þ cdÞaz þ b3 ðab þ cdÞz a ¼ 0;  ibt þ bzz þ 2ðab þ cdÞb þ ik½b1 bzzz þ b2 ðab þ cdÞbz þ b3 ðab þ cdÞz b ¼ 0; ict þ czz þ 2ðab þ cdÞc  ik½b1 czzz þ b2 ðab þ cdÞcz þ b3 ðab þ cdÞz c ¼ 0;

ð2Þ

 id t þ d zz þ 2ðab þ cdÞd þ ik½b1 d zzz þ b2 ðab þ cdÞd z þ b3 ðab þ cdÞz d ¼ 0; pffiffiffiffiffiffiffi where i ¼ 1, k 5 0. Eq. (2) is said to possess the Painleve´ property if its solutions are ‘‘single-valued’’ about arbitrary noncharacteristic, movable singularity manifolds. In other words, all solutions of Eq. (2) can be expressed as Laurent series, aðz; tÞ ¼ cðz; tÞ ¼

1 X

aj /ðz; tÞðjþa1 Þ ;

bðz; tÞ ¼

1 X

j¼0

j¼0

1 X

1 X

cj /ðz; tÞðjþa3 Þ ;

dðz; tÞ ¼

j¼0

bj /ðz; tÞðjþa2 Þ ; ð3Þ d j /ðz; tÞðjþa4 Þ

j¼0

with a sufficient number of arbitrary functions among aj, bj, cj, dj in addition to /. Moreover, the leading order ak (k = 1, . . . , 4) should be negative integers. In order to make the calculations simpler, we adopt KruskalÕs ansatz / (z, t) = z + w(t). Substituting aðz; tÞ ¼ a0 /a1 ;

bðz; tÞ ¼ b0 /a2 ;

cðz; tÞ ¼ c0 /a3 ;

dðz; tÞ ¼ d 0 /a4

into (2) and balancing the dominant terms, we find that a1 ¼ a2 ¼ a3 ¼ a4 ¼ 1;

a0 b0 þ c0 d 0 ¼ 

6b1 . b2 þ 2b3

In order to find the resonances that are the powers at which the arbitrary coefficients enter into Laurent series (3), we substitute aðz; tÞ ¼ a0 /a1 þ aj /a1 þj ; a3

cðz; tÞ ¼ c0 / þ cj /

a3 þj

;

bðz; tÞ ¼ b0 /a2 þ bj /a2 þj ; dðz; tÞ ¼ d 0 /a4 þ d j /a4 þj

G. Xu, Z. Li / Chaos, Solitons and Fractals 26 (2005) 1363–1375

1365

into (2) and only retain its most singular terms. Detailed calculations give the following resonance equation:  3 5b þ 22b3 ¼ 0; b41 j3 ðj þ 1Þðj  3Þðj  4Þ j2  6j þ 2 b2 þ 2b3 and so the resonance values are pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 6  36  4ð5b2 þ 22b3 Þ=ðb2 þ 2b3 Þ j ¼ 0; 0; 0; 1; 3; 4; 2

ðoccurring three timesÞ.

As usual, the resonance j = 1 corresponds to the arbitrariness of the singular manifold /(z, t) = 0. Furthermore, the Painleve´ property of Eq. (2) indicates that the other resonances must be nonnegative integers. This requirement leads to the following two possibilities: Case 1: b2 ¼ 2b3 ; Case 2: b3 ¼ 0;

j ¼ 1; 0; 0; 0; 2; 2; 2; 3; 4; 4; 4; 4 j ¼ 1; 0; 0; 0; 1; 1; 1; 3; 4; 5; 5; 5.

Let us first consider Case 1. In order to check the existence of a sufficient number of arbitrary functions at the resonance values, the truncated Laurent expansions 4 4 X X aðz; tÞ ¼ aj /ðz; tÞðj1Þ ; bðz; tÞ ¼ bj /ðz; tÞðj1Þ ; cðz; tÞ ¼

j¼0

j¼0

4 X

4 X

cj /ðz; tÞðj1Þ ;

dðz; tÞ ¼

j¼0

d j /ðz; tÞðj1Þ

j¼0

are substituted into Eq. (2). From the coefficients of (/4, /4, /4, /4), we get 3b a0 b0 þ c0 d 0 ¼  1 . 2b3

ð4Þ

This shows that any three coefficients among a0, b0, c0, d0 are arbitrary constants which correspond to the resonances j = 0, 0, 0. Collecting the coefficients of (/3, /3, /3, /3), the values of a1, b1, c1, and d1 are obtained explicitly: c1 ¼

ic0 ð2b3  3b1 Þ ; 3kb3 b1

a1 ¼

ið6b3 b1  9b21 þ 4c0 d 0 b23  6b1 c0 d 0 b3 Þ . 6b0 b1 kb23

d1 ¼

id 0 ð2b3  3b1 Þ ; 3kb3 b1

b1 ¼

ib0 ð2b3  3b1 Þ ; 3kb3 b1

Collecting the coefficients of (/2, /2, /2, /2), we obtain    d a2 ¼ 3b0 wðtÞ kb23 b1 þ 6k2 b2 b33 b1 c0 d 0  6k2 b33 b0 c0 d 2 b1  6k2 b33 b0 c2 d 0 b1 þ 18b0 b21 dt  ð6k2 b33 b20 b1 Þ; þ 4b0 b23  18b0 b3 b1 þ 9k2 b2 b23 b21

ð5Þ

ð6Þ

where b2, c2, d2 are arbitrary functions which correspond to j = 2, 2, 2. Proceeding further to the coefficients of (/1, /1, /1, /1), we obtain the resonance condition at j = 3 which is not satisfied identically     d R  6b1 ðb3  3b1 Þ 18k2 b2 b23 b21 þ 18b0 b21  12k2 b33 b0 c0 d 2 b1 þ 3b0 wðtÞ kb23 b1  18b0 b3 b1 dt  2 3 2 ðb3 d 0 Þ ¼ 0. ð7Þ þ12k b2 b3 b1 c0 d 0 þ 4b0 b3 Since b0, c0, d0, b2 and w(t) are arbitrary functions, from (7) we have two possibilities: either b1 = 0 or b3  3b1 = 0. In the case of b2 = 2b3 and b1 = 0, Eq. (2) fails the Painleve´ test in the leading order analysis. In the other case of b2 = 2b3 and b3 = 3b1, the coefficients a0, b0, c0, d0, a1, b1, c1, d1, a2 of Laurent series (3) are given by (4)–(6). Furthermore,

1366

G. Xu, Z. Li / Chaos, Solitons and Fractals 26 (2005) 1363–1375

 d a3 ¼  i 6kb2 b1 c20 d 0  18ik2 c3 d 0 b21 b0 c0  6kb1 b0 c20 d 2 þ c0 b0 wðtÞ  9ik2 c3 b21 b0 dt  ð18k2 b21 c0 b20 Þ; þ3c0 kb2 b1 þ 3c2 kb1 b0 b3 ¼ d3 ¼

ið6c0 b0 ðdtd wðtÞÞkb1  2c0 b0 þ 27ik3 c3 b31 b0  9c0 k2 b2 b21  9c2 k2 b21 b0 Þ 27k3 c0 b31

;

ið6ðdtd wðtÞÞkb1 c0 d 0  2c0 d 0 þ 27ik3 c3 d 0 b31  9k2 b21 c2 d 0  9k2 b21 c0 d 2 Þ 27k3 c0 b31

;

and c3 is an arbitrary function which corresponds to the resonance at j = 3. Substituting the values of a1, b1, c1, d1, a2, a3, b3, d3 into the coefficients of (/0, /0, /0, /0) leads to four identities. This indicates that a4, b4, c4, d4 are arbitrary functions which correspond to the resonances at j = 4, 4, 4, 4. As Laurent series (3) admits the sufficient number of arbitrary functions, it is concluded that Eq. (2) possesses the Painleve´ property if b2 = 2b3, b3 = 3b1. In a similar way, for Case 2, the truncated Laurent expansions aðz; tÞ ¼

5 X

aj /ðz; tÞðj1Þ ;

bðz; tÞ ¼

j¼0

cðz; tÞ ¼

5 X

5 X

bj /ðz; tÞðj1Þ ;

j¼0

cj /ðz; tÞ

ðj1Þ

j¼0

;

dðz; tÞ ¼

5 X

d j /ðz; tÞðj1Þ

j¼0

are substituted into Eq. (2). Then from the coefficients of (/4, /4, /4, /4), we get a0 b0 þ c0 d 0 ¼ 

6b1 . b2

This shows that any three coefficients among a0, b0, c0, d0 are arbitrary functions which correspond to the resonances j = 0, 0, 0. Collecting the coefficients of (/3, /3, /3, /3), we get the compatibility condition at resonance j = 1, namely, R  4ðb2  6b1 Þb0 ¼ 0.

ð8Þ

Since b0 is an arbitrary function, (8) implies that b2 = 6b1 is a necessary condition for (2) to have the Painleve´ property. Under the parameter constraints b3 = 0 and b2 = 6b1, the leading order analysis gives a0 ¼ 

1 þ c0 d 0 ; b0

a1 ¼

d 0 c1 b0  c0 d 1 b0 þ b1 þ b1 c0 d 0 ; b20

where b0, c0, d0, b1, c1, d1 are arbitrary functions. From the coefficients of (/2, /2, /2, /2)–(/1, /1, /1, /1), one can obtain a b1, c1, d1, b3, b4, b5, c5, d5 as arbitrary functions. As Laurent series (3) admits the sufficient number of arbitrary functions, it is concluded that Eq. (2) possesses the Painleve´ property if b3 = 0 and b2 = 6b1. In summary, from the above analysis, it is shown that Eq. (2) possesses the Painleve´ property for two cases: b2 = 2b3, b3 = 3b1 and b2 = 6b1, b3 = 0. It is obvious that these two cases just correspond to the coupled Hirota equation and Sasa–Satsuma equation, respectively. Therefore, the coupled Hirota equation and Sasa–Satsuma equation pass the Painleve´ test for integrability. 3. Periodic wave solutions in terms of the Jacobi elliptic function There are many methods for finding exact solutions of NPDEs such as the inverse scattering method [14], Ba¨cklund transformation [15], Darboux transformation [16], Hirota bilinear method [17], homogeneous balance method [18], mixing exponent method [19], tanh function method [20], Jacobi elliptic function method [21,22]. Among these methods, the Jacobi elliptic function method provides a straightforward and effective algorithm to obtain periodic wave solutions for a large of nonlinear equations. Recently, much research work has been concentrated on the various extensions and applications of the Jacobi elliptic function method [23,24]. Here we will apply this method to construct periodic wave solutions and one-soliton solutions of Eq. (1).

G. Xu, Z. Li / Chaos, Solitons and Fractals 26 (2005) 1363–1375

1367

The travelling wave solutions of Eq. (1) can be obtained by converting it into a set of ordinary differential equations (ODEs). This can be done by inserting U ¼ eih1 uðnÞ;

V ¼ eih2 vðnÞ;

n ¼ kðz  c1 tÞ;

hj ¼ pj z þ qj t

ðj ¼ 1; 2Þ

ð9Þ

into Eq. (1). The real and imaginary parts of the resulting complex ODEs of u(n) and v(n), respectively, read ð2 þ kp1 b2 Þðu3 þ uv2 Þ  ðq1 þ p21 þ kp31 b1 Þu þ ðk 2 þ 3k 2 p1 b1 kÞu00 ¼ 0; ð2 þ kp2 b2 Þðv3 þ vu2 Þ  ðq2 þ p22 þ kp32 b2 Þv þ ðk 2 þ 3k 2 p2 b1 kÞv00 ¼ 0; ð2kp1  kc1 þ 3kp21 b1 kÞu0  k 3 kb1 u000  kkb2 ðu2 u0 þ u0 v2 Þ  2kkb3 ðu2 u0 þ uvv0 Þ ¼ 0;

ð10Þ

ð2kp2  kc1 þ 3kp22 b1 kÞv0  k 3 kb1 v000  kkb2 ðu2 v0 þ v0 v2 Þ  2kkb3 ðv2 v0 þ uvu0 Þ ¼ 0; where

0

= d/dn, and k, c1, pj, qj (j = 1, 2) are constants to be determined later.

3.1. Jacobi cosine function solutions First we seek the periodic wave solutions of (10) in the following form: uðnÞ ¼

M X

aj cnj ðn; rÞ;

vðnÞ ¼

j¼0

N X

bj cnj ðn; rÞ;

ð11Þ

j¼0

where r is a modulus (0 < r < 1), aj (j = 0, . . . , M), bj (j = 0, . . . , N) are undetermined constants, M, N are positive integers to be determined. By balancing the highest-order linear terms with the nonlinear terms in Eq. (10), we get M = N = 1. Then expression (11) becomes u ¼ a0 þ a1 cnðn; rÞ;

v ¼ b0 þ b1 cnðn; rÞ;

ð12Þ

where a1 5 0, b1 5 0. With the aid of Maple, substituting (12) into Eq. (10) and equating the coefficients of cn(n, r)j(dn(n, r)sn(n, r))k (k = 0, 1, j = 0, . . . , 3) to zero, one obtains an over-determined system which includes 14 algebraic equations with respect to the unknowns a0, a1, b0, b1, p1, p2, q1, q2, k, c1 (for the sake of conciseness, the algebraic system is not listed here). Solving the over-determined algebraic equations, we get four classes of solutions, namely, qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2b þ b2 ; ðIÞ p1 ¼ p2 ¼ 0; a0 ¼ b0 ¼ 0; a1 ¼  k 2 r2  b21 ; q1 ¼ q2 ¼ k 2 ð2r2  1Þ; b1 ¼ 3 6 2 2 kk ð2b3 þ b2 Þð1  2r Þ c1 ¼ ; ð13Þ 6 where k and b1 are arbitrary constants. 2 ; kb2

8 b ; b1 ¼ 2 ; b3 ¼ 0; 2 2 6 3k b2 sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 6 ; a1 ¼ l1 rkb2 kb0 6c1 kb2 þ 12 þ k2 b22 k 2 ð2r2  1Þ sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi k2 b22 k 2 ð2r2  1Þ þ 6k2 b22 b20 þ 12 þ 6kb2 c1 b0 b1 b1 ¼ l2 rk ; ; a0 ¼  a1 6c1 kb2 þ 12 þ k2 b22 k 2 ð2r2  1Þ

ðIIÞ p1 ¼ p2 ¼

q1 ¼ q2 ¼ 

where l1 = ± 1, l2 = ± 1, k, c1 and b0 are arbitrary constants. ðIIIÞ b1 ¼

b2 ; 6

b3 ¼ 0;

p1 ¼ 

4 þ kb2 p2 ; kb2

a0 ¼ b0 ¼ 0;

a1 ¼ 

ð14Þ

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi r2 k 2  b21 ;

12r2 p2 þ 3r2 kp22 b2 þ kb2 k 2 r2 ð1  2r2 Þ ; 6r2 3 3 2 2 2 2 r2 k b2 p32 þ 6r2 k p22 b2  32r2 þ 3k b2 k 2 r2 ð1  2r2 Þðkb2 p2 þ 2Þ q1 ¼ ; 6r2 k2 b22

c1 ¼

q2 ¼ 

kb2 p32 r2 þ 6k 2 r2 þ 6p22 r2  12r4 k 2 þ 3kk 2 r2 b2 p2 ð1  2r2 Þ ; 6r2

where k, p2 and b1 are arbitrary constants.

ð15Þ

1368

G. Xu, Z. Li / Chaos, Solitons and Fractals 26 (2005) 1363–1375

12k 2 b21 k2 b23 ð2r2  1Þ þ 12b1 b2  b22  36b21 þ 4b23 ðIVÞ c1 ¼  ; 12b1 kb23 b þ 2b3  6b1 ; a0 ¼ b0 ¼ 0; p1 ¼ p2 ¼  2 6kb1 b3 q1 ¼ q2 ¼

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2b b2  6b1 r2 k 2 þ b2 b21 a1 ¼   3 1 ; b2 þ 2b3

b32  16b33  216b31 þ ð36b1  6b2 Þð2b23 þ 3b1 b2 þ 18k 2 b21 k2 b23 ð2r2  1ÞÞ ; 216k2 b21 b33

ð16Þ

where k and b1 are arbitrary constants. Therefore, from (9), (12)–(16), we obtain four sets of new periodic wave solutions of Eq. (1), namely,   qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi   kk 2 ð2b3 þ b2 Þð1  2r2 Þt 2 2 ; r eik ð2r 1Þt ; U 1 ¼  k 2 r2  b21 cn k z  6     kk 2 ð2b3 þ b2 Þð1  2r2 Þt 2 2 ; r eik ð2r 1Þt ; V 1 ¼ b1 cn k z  6 where b1, k are arbitrary constants, and b1 = (2b3 + b2)/6. sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 l k2 b22 k 2 ð2r2  1Þ þ 6k2 b22 b20 þ 12 þ 6kb2 c1 1 U 2 ¼ 4 l2 b2 k 6  3  sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2z  8t i kb 2 2 6 2 3k b 2 cnðkðz  c1 tÞ; rÞ5e ; þrkl1 b2 kb0 6c1 kb2 þ 12 þ k2 b22 k 2 ð2r2  1Þ   sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi " # 2z  8t 2 2 2 2 2 2 i kb 2 k b2 k ð2r  1Þ þ 6k b2 b0 þ 12 þ 6kb2 c1 2 3k2 b2 2 ; cnðkðz  c1 tÞ; rÞ e V 2 ¼ b0 þ rkl2 6c1 kb2 þ 12 þ k2 b22 k 2 ð2r2  1Þ where b0, k, c1 are arbitrary constants, and l1 = ± 1, l2 = ± 1, b1 = b2/6, b3 = 0.   qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi   4þkb2 p2 2 2 2 4   2 2 2 i  zþq t 12r p þ 3r kp b þ kb k r  2kb k r 1 kb 2 2 2 2 2 2 U 3 ¼  r2 k 2  b21 cn k z  ; t ;r e 6r2     12r2 p2 þ 3r2 kp22 b2 þ kb2 k 2 r2  2kb2 k 2 r4 t ; r eiðp2 zþq2 tÞ ; V 3 ¼ b1 cn k z  6r2 where k, b1, p2 are arbitrary constants, b1 = b2/6, b3 = 0, q1, q2 are determined by Eq. (15). sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2b b2  6b1 r2 k 2 þ b2 b21 cnðkðz  c1 tÞ; rÞeiðp2 zþq2 tÞ ; U4 ¼   3 1 b2 þ 2b3 V 4 ¼ b1 cnðkðz  c1 tÞ; rÞeiðp2 zþq2 tÞ ; where k, b1 are arbitrary constants, and p2, q2, c1 are determined by Eq. (16). Remarks. In particular when r ! 1, from the solutions (U1, V1)–(U4, V4) we get four sets of bright–bright one-soliton solutions as follows: U1

1

V1

1

   qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi kk 2 ð2b3 þ b2 Þt 2 k 2  b21 sech k z þ eik t ; 6    kk 2 ð2b3 þ b2 Þt 2 ¼ b1 sech k z þ eik t ; 6 ¼

where b1, k are arbitrary constants, and b1 = (2b3 + b2)/6.

G. Xu, Z. Li / Chaos, Solitons and Fractals 26 (2005) 1363–1375

1369

 sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 3  sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2z  8t 2 2 2 2 2 2 i kb 2 2 l k b2 k þ 6k b2 b0 þ 12 þ 6kb2 c1 6 2 3k b 2 þ kl1 b2 kb0 U 2 1 ¼ 4 1 ; sechðkðz  c1 tÞÞ5e l2 b2 k 6 6c1 kb2 þ 12 þ k2 b22 k 2   sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi " # 2z  8t 2 2 2 2 i kb 2 2 k b2 ðk þ 6b0 Þ þ 12 þ 6kb2 c1 2 3k b 2 sechðkðz  c1 tÞÞ e V 2 1 ¼ b0 þ kl2 ; 6c1 kb2 þ 12 þ k2 b22 k 2 2

where b0, k, c1 are arbitrary constants, and l1 = ±1, l2 = ±1, b1 = b2/6, b3 = 0.      4þkb2 p2 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi i  kb zþq1 t 12p2 þ 3kp22 b2  kb2 k 2 2 2 2 U 3 1 ¼  k  b1 sech k z  t e ; 6     12p2 þ 3kp22 b2  kb2 k 2 t eiðp2 zþq2 tÞ ; V 3 1 ¼ b1 sech k z  6 where k, b1, p2 are arbitrary constants, b1 = b2/6, b3 = 0, and q1, q2 are determined by Eq. (15) when r = 1. sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2b b2  6b1 k 2 þ b2 b21 U4 1 ¼   3 1 sechðkðz  c1 tÞÞeiðp2 zþq2 tÞ ; b2 þ 2b3 V4

1

¼ b1 sechðkðz  c1 tÞÞeiðp2 zþq2 tÞ ;

where k, b1 are arbitrary constants, and p2, q2, c1 are determined by Eq. (16) when r = 1. The plots of the solutions (U4, V4), (U4_1, V4_1) are shown in Figs. 1 and 2 for the parametric choice b1 = 1, b2 = 6, b3 = 3. Eq. (1) includes many important nonlinear models. When b1:b2:b3 = 1:6:0, Eq. (1) reduces to the coupled Hirota equations; while b1:b2:b3 = 1:6:3, Eq. (1) becomes the Sasa–Satsuma equations. Thus (U2, V2), (U3, V3), (U2_1, V2_1),

plot of |U4|

plot of |V4|

0.4 0.2 0 –3

0.4 0 –3 –2

–2 –1 z 0

–1

4 2

1

0 –2

2

z

4

0 1

t

0 t

–2

2

–4

3

2 –4

3

Fig. 1. Doubly periodic wave profile of solution (U4, V4) for k = 2, k = 1.5, b1 = 0.4, r = 0.5.

plot of | U4_1 |

plot of | V4_1 |

0.4 0.2 0 –2

–2 –1 0 –1

1

0 t

1 2

2

z

0.4 –3

0.2

–2 –1

0 –2

0 –1

1

0 t

2

1 2

3

Fig. 2. Bright–bright one-soliton profile of solution (U4_1, V4_1) for k = 2, k = 1.5, b1 = 0.4.

z

1370

G. Xu, Z. Li / Chaos, Solitons and Fractals 26 (2005) 1363–1375

(U3_1, V3_1) are just the solutions of the coupled Hirota equations, (U4, V4) and (U4_1, V4_1) are the solutions of GCHNLS Eq. (1). If one takes b1:b2:b3 = 1:6:3, (U4, V4) and (U4_1, V4_1) are the solutions of the Sasa–Satsuma equations. In addition, (U1, V1) and (U1_1, V1_1) are the solutions of Eq. (1) under the condition b1 = (2b3 + b2)/6. 3.2. Jacobi sine function solutions Next we seek the periodic wave solutions in terms of the Jacobi sine function, uðnÞ ¼ a0 þ a1 snðn; rÞ;

vðnÞ ¼ b0 þ b1 snðn; rÞ;

ð17Þ

where a1 5 0, b1 5 0. Inserting (17) into Eq. (10) and equating the coefficients of snj(n, r)cni(n, m)dni(n, m) (i = 0,1; j = 0, . . . , 3) to zero, one obtains a system which includes 14 algebraic equations (for simplicity, the algebraic system is not listed here). Solving this obtained system, we get another four sets of periodic wave solutions of Eq. (1). U 5 ¼ a1 snðkðz  c1 tÞ; rÞeiðp1 zþq1 tÞ ; sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 6b k 2 r2 þ b2 a21 þ 2b3 a21 V5 ¼  1 snðkðz  c1 tÞ; rÞeiðp1 zþq1 tÞ ; b2 þ 2b3 where k, c1, a1 are arbitrary constants, and p1 ¼ q1 ¼

ð6b1  b2 Þ2 þ 12k 2 b21 k2 b23 ð1 þ r2 Þ  4b23 ; 12kb1 b23   b32  16b33  216b31 þ ð6b2  36b1 Þ 18ð1 þ r2 Þk2 k 2 b21 b23  2b23  3b1 b2 6b1  b2  2b3 ; 6b1 kb3

c1 ¼

216b21 k2 b33

.

ð18Þ

  qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi   k 2 kð1 þ r2 Þðb2 þ 2b3 Þt 2 2 2 2 2 U 6 ¼  b1 þ k r isn k z  ; r eik ð1þr Þt ; 6     k 2 kð1 þ r2 Þðb2 þ 2b3 Þt 2 2 ; r eik ð1þr Þt ; V 6 ¼ b1 sn k z  6 where b1 = (2b3 + b2)/6, and k, b1 are arbitrary constants.   qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi   12p1 þ ð1 þ r2 Þkb2 k 2 þ 3kb2 p21 t ; r eiðp1 zþq1 tÞ ; U 7 ¼  b21 þ k 2 r2 isn k z  6       4þkb2 p1 i  kb zþq2 t 12p1 þ ð1 þ r2 Þkb2 k 2 þ 3kb2 p21 2 ; t ;r e V 7 ¼ b1 sn k z  6 where b1 = b2/6, b3 = 0, k, p1, b1 are arbitrary constants, and q1, q2 are given by 3k 2 ð1 þ r2 Þð2 þ kb2 p1 Þ þ p21 ð6 þ p1 kb2 Þ ; 6 2 2 2 2 2 3k k b2 ð1 þ r2 Þð2 þ kb2 p1 Þ þ k b2 p21 ð6 þ p1 kb2 Þ  32 q2 ¼ . 6k2 b22

q1 ¼ 

ð19Þ

 

2i z þ 4t qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi kb2 3k2 b2 2 U 8 ¼ a0  b21 þ k 2 r2 isnðkðz  c1 tÞ; rÞ e ;   q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffi 2 3 V 8 ¼ 4

a0

b21 þ k 2 r2 i b1

2i

þ b1 snðkðz  c1 tÞ; rÞ5e

z þ 4t kb2 3k2 b2 2

;

where b1 = b2/6, b3 = 0, k, a0, b1 are arbitrary constants, and c1 is defined by c1 ¼

ð1 þ r2 Þk2 b22 k 2 b21 þ 6k2 b22 k 2 r2 a20  12b21 . 6kb2 b21

G. Xu, Z. Li / Chaos, Solitons and Fractals 26 (2005) 1363–1375

1371

Remark 1. When r ! 1, one can obtain four sets of dark–dark one-soliton solutions from (U5, V5)–(U8, V8). The first one is U5

1

V5

1

¼ a1 tanhðkðz  c1 tÞÞeiðp1 zþq1 tÞ ; sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 6b k 2 þ b2 a21 þ 2b3 a21 ¼  1 tanhðkðz  c1 tÞÞeiðp1 zþq1 tÞ ; b2 þ 2b3

where p1, q1, c1 are determined by (18) when r = 1. Fig. 3 shows the U and V components of the periodic wave solution (U5, V5) and Fig. 4 shows the U and V components of the one-soliton solution (U5_1, V5_1) for the parametric choice b1 = b3 = 2, b2 = 6.    qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi k 2 kðb2 þ 2b3 Þt 2 2 2 e2ik t ; U 6 1 ¼  b1 þ k i tanh k z  3    k 2 kðb2 þ 2b3 Þt 2 V 6 1 ¼ b1 tanh k z  e2ik t ; 3 where b1 = (2b3 + b2)/6.    qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 12p1 þ 2kb2 k 2 þ 3kb2 p21 t eiðp1 zþq1 tÞ ; U 7 1 ¼  b21 þ k 2 i tanh k z  6      4þkb2 p1 2 i  kb zþq2 t 12p1 þ 2kb2 k þ 3kb2 p21 2 ; t e V 7 1 ¼ b1 tanh k z  6 where b1 = b2/6, b3 = 0, and q1, q2 are determined by (19) when r = 1.

plot of | U5 |

plot of | V5 |

0.4 0.2 0

0.2 0 –4

–10

–4

–5

–2 t

0

0

5

2

–10 –5

–2

z

t

4

0

0

10

5

2 4

15

z

10 15

Fig. 3. Plot of doubly periodic wave solution (U5, V5) for k = r = a1 = 0.5, k = 0.8.

plot of | U5_1 |

plot of | V5_1 |

0.4 0.2

0.2 –4

–10 –5

–2 t 0

0 5

2 4

10 15

z

–4

–10 –5

–2 t 0

0 5

2 4

10 15

Fig. 4. Plot of dark–dark one-soliton solution (U5_1, V5_1) for k = a1 = 0.5, k = 0.8.

z

1372

G. Xu, Z. Li / Chaos, Solitons and Fractals 26 (2005) 1363–1375

U8

1

 

2i z þ 4t qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi kb2 3k2 b2 2 ¼ a0  b21 þ k 2 i tanhðkðz  c1 tÞÞ e ; 2

V8

1

¼ 4

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi a0 b21 þ k 2 i b1

3

 2i

þ b1 tanhðkðz  c1 tÞÞ5e

where b1 = b2/6, b3 = 0, and c1 ¼

k2 b22 k 2 b21 þ3k2 b22 k 2 a20 6b21 3kb2 b21



z 4t kb2 þ3k2 b2 2

;

.

Remark 2. The dn-function expansion method for finding periodic wave solutions was proposed recently by Fu et al. [22]; it essentially involves pffiffi seeking a solution in the form of a polynomial in dn function. In fact, the Jacobi transformation dnðn; rÞ ¼ cnð rn; 1=rÞ implies that any solution found by the dn-function method may be transformed into an equivalent one found by the cn-function method. For Eq. (1), the dn-function solutions can be derived from the solutions (Uj, Vj) (j = 1, . . . , 4). In this way, we naturally present a more general ansatz, which reads uðnÞ ¼ a0 þ

M X

sni1 ðn; rÞ½ai snðn; rÞ þ d i cnðn; rÞ;

i¼1

vðnÞ ¼ b0 þ

M X

ð20Þ sn

i1

ðn; rÞ½bi snðn; rÞ þ fi cnðn; rÞ;

i¼1

and another eight sets of solutions are then obtained. Now, we only list two sets of solutions: sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi   6b1 2b2 i 3kb zþq1 t 3b1 r2 k 2  b2 f12 b 2 1 ; snðkðz  c1 tÞ; rÞe U9 ¼   b2   V 9 ¼ f1 cnðkðz  c1 tÞ; rÞe

i

6b1 2b2 zþq2 t 3kb2 b1

;

with b3 = b2/2, and q1, q2, c1 are given by c1 ¼

b1 k 2 k2 b22 ð1 þ r2 Þ þ 12b1  k2 b32 f12  4b2 ; b22 k

q1 ¼ 

9k2 b1 b22 ð6b1  b2 Þð3k 2 b1 þ 3b1 r2 k 2  2b2 f12 Þ þ 4b32 þ 216b31  108b21 b2 ; 27k2 b32 b21

q2 ¼ 

9k2 b1 b22 ð6b1  b2 Þð3k 2 b1  2b2 f12 Þ þ 4b32 þ 216b31  108b21 b2 . 27k2 b32 b21

plot of | U9 |

plot of | V9 |

2 1 0 –3

2 –2

1 –1 z

0

0 1

2

–1 3

–2

ð21Þ

t

2 1 0 –3

2 –2

1 –1 z

0

0 1

2

–1 3

–2

Fig. 5. Doubly periodic wave profile of solution (U9, V9) for k = 2, f1 = 2.5, r = k = 0.5.

t

G. Xu, Z. Li / Chaos, Solitons and Fractals 26 (2005) 1363–1375

1373

plot of | V9_1 |

plot of | U9_1 |

2.5 2

2

1.5

1 0 –3

2 –2

1 –1 z

1

3

–3

t

–1

2

2

0

0

0

1 0.5 1 –2

0

–1 z

–2

0

1

2

–1

t

3 –2

Fig. 6. Dark–bright one-soliton profile of solution (U9_1, V9_1) for k = 2, f1 = 2.5, k = 0.5.

When r ! 1, (U9, V9) degenerates to a set of dark–bright one-soliton solutions, sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi   6b1 2b2 i 3kb zþq1 t 3b1 k 2  b2 f12 2 b1 ; U9 1 ¼   tanhðkðz  c1 tÞÞe b2   V9

i

1

¼ f1 sechðkðz  c1 tÞÞe

6b1 2b2 3kb2 b1 zþq2 t

;

with b3 = b2/2, and q1, q2, c1 are determined by (21) when r = 1. The plots of (U9, V9), (U9_1, V9_1) are shown in Figs. 5 and 6 for the parametric choice b1 = 1, b2 = 2. sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi   3b1 2b3 i 3kb zþq1 t 3b1 r2 k 2 þ 2b3 b21 3 b1 ; U 10 ¼  cnðkðz  c1 tÞ; rÞe 2b3   i

V 10 ¼ b1 snðkðz  c1 tÞ; rÞe

3b1 2b3 3kb3 b1 zþq2 t

;

with b2 = 2b3, and q1, q2, c1 are given by c1 ¼ 

b1 k 2 k2 b23 ð2r2  1Þ þ 2b21 k2 b33 þ 2b3  3b1 ; kb23

q1 ¼

9k2 b1 b23 ð3b1  b3 Þð6b1 k 2 r2  3b1 k 2 þ 4b3 b21 Þ þ 27b21 b3  27b31  4b33 ; 27k2 b33 b21

q2 ¼

9k2 b1 b23 ð3b1  b3 Þð3b1 k 2 r2  3b1 k 2 þ 4b3 b21 Þ þ 27b21 b3  27b31  4b33 . 27k2 b33 b21

plot of | U10 |

ð22Þ

plot of | V10 |

1.5 1 0.5 0 2

1 3

0.5 1 t

0 –1 –2

–3

–2

–1

0

1 z

2

3

2

0 2

1 0

1

–1

0 t

–2

–1 –2

–3

Fig. 7. Plot of doubly periodic wave solution (U10, V10) for k = 2,b1 = 1,r = k = 0.5.

z

1374

G. Xu, Z. Li / Chaos, Solitons and Fractals 26 (2005) 1363–1375 plot of | U10_1 |

plot of | V10_1 |

1.5 1 0.5 0 2

1 3

0.5 1 t

0 –1 –2

–3

–2

–1

1

0 z

2

3

2

0 2

1 0

1

–1

0 t

z

–2

–1 –2

–3

Fig. 8. Plot of bright–dark one-soliton solution (U10_1, V10_1) for k = 2, b1 = 1, k = 0.5.

When r ! 1, (U10, V10) degenerates to a set of bright–dark one-soliton solutions, sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi   3b1 2b3 i 3kb zþq1 t 3b1 k 2 þ 2b3 b21 3 b1 ; U 10 1 ¼  sechðkðz  c1 tÞÞe 2b3   V 10

i

1

¼ b1 tanhðkðz  c1 tÞÞe

3b1 2b3 zþq2 t 3kb3 b1

;

with b2 = 2b3, and q1, q2, c1 are determined by (22) when r = 1. The plots of the solutions (U10, V10), (U10_1, V10_1) are shown in Figs. 7 and 8 for the parametric choice b1 = b3 = 1.

4. Conclusions In this work, we have considered a set of generalized coupled NLS equations with higher-order linear and nonlinear dispersion terms included. Through the Painleve´ analysis, the GCHNLS equations is found to possess the Painleve´ property for two particular choices of parameters. Using Jacobi elliptic functions, ten sets of new periodic wave solutions are obtained. The periodic wave solutions of two Painleve´ integrable equations including the coupled Hirota equation and Sasa–Satsuma equations, are derived at the same time. These periodic wave solutions exactly degenerate to the well-known bright–bright, bright–dark, dark–bright and dark–dark one-soliton solutions with physical interests.

Acknowledgments This work has been supported by the State Key Programme of Basic Research of China (Grant No. 2004CB318000) and the Research Fund for the Doctoral Program of Higher Education of China (Grant No. G20020269003).

References [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13]

Abdullaev F, Darmanyan S, Khabibullaev P. Optical solitons. Berlin: Springer-Verlag; 1993. Hisakado M, Wadati M. J Phys Soc Jpn 1994;63:3962. Chen Y, Atai J. Optics Commun 1998;50:381. Porubov AV, Parker DF. Wave Motion 1999;29:97. Sakovich SYu, Tsuchida T. J Phys A: Math Gen 2000;33:7217. Tasgal RS, Potasek MJ. J Math Phys 1992;33:1208. Hisakado M, Iizuka T, Wadati M. J Phys Soc Jpn 1994;63:2887. Sahadevan R, Tamizhmani KM, Lakshmanan M. J Phys A: Math Gen 1986;19:1783. Park QH, Shin HJ. Phys Rev E 1999;59:2373. Vinoj MN, Kuriakose VC. Phys Rev E 2000;62:8719. Weiss J, Tabor M, Carnevale G. J Math Phys 1983;24:522. Jimbo M, Kruskal MD, Miwa T. Phys Lett A 1982;92:59. Xu GQ, Li ZB. Comput Phys Commun 2004;161:65.

G. Xu, Z. Li / Chaos, Solitons and Fractals 26 (2005) 1363–1375

1375

[14] Ablowitz MJ, Clarkson PA. Solitons, nonlinear evolution equations and inverse scattering. Cambridge: Cambridge University Press; 1991. [15] Wadati M. J Phys Soc Jpn 1975;38:673; Wadati M. J Phys Soc Jpn 1975;38:681; Wadati M, Sanuku H, Knono K. Prog Theor Phys 1975;53:419; Knono K, Wadati M. Prog Theor Phys 1975;53:1652. [16] Matveev VA, Salle MA. Darboux transformations and solitons. Berlin: Spinger-Verlag; 1991. [17] Hirota R. Phys Rev Lett 1971;27:1192; Hirota R, Satsuma J. Phys Lett A 1981;85:407. [18] Li ZB, Wang ML. J Phys A: Math Gen 1993;26:6027; Wang ML. Phys Lett A 1995;199:169; Xu GQ, Li ZB. Acta Phys Sin 2003;52:1848 [in Chinese]. [19] Hereman W, Takaoka M. J Phys A: Math Gen 1990;23:4805; Xu GQ, Li ZB. Acta Phys Sin 2002;51:1424 [in Chinese]. [20] Malfliet W. Am J Phys 1992;60:650; Fan EG. Phys Lett A 2000;277:212; Yao RX, Li ZB. Phys Lett A 2002;297:196; Li ZB, Liu YP. Comp Phys Commun 2002;155:65. [21] Liu SK, Fu ZT, Liu SD, Zhao Q. Phys Lett A 2001;289:69. [22] Fu ZT, Liu SK, Liu SD, Zhao Q. Phys Lett A 2001;290:72. [23] Liu SK et al. Acta Phys Sin 2002;51:1923 [in Chinese]; Fan EG. J Phys A: Math Gen 2002;35:6853; Yan ZY. Commun Theor Phys (Beijing, China) 2002;38:141. [24] Xu GQ, Li ZB. The applications of Jacobi elliptic function expansion method for nonlinear differential-difference equations. Commun Theor Phys (Beijing, China) 2005;43:385; Xu GQ, Li ZB. The explicit solutions to the coupled KdV equations with variable coefficients. Appl Math Mech 2005;26:92 [in Chinese].

Xu, Li, On the Painleve Integrability, Periodic Wave Solutions and ...

Xu, Li, On the Painleve Integrability, Periodic Wave S ... upled Higher-Order Nonlinear Schrodinger Equations.pdf. Xu, Li, On the Painleve Integrability, Periodic ...

810KB Sizes 1 Downloads 182 Views

Recommend Documents

On almost periodic viscosity solutions to Hamilton ...
Abstract. We prove the existence and uniqueness of Bohr almost periodic vis- cosity solution of the Cauchy problem for a Hamilton-Jacobi equation with merely ...

ON THE INTEGRABILITY OF SYMPLECTIC MONGE ...
Example of dKP uxt −. 1. 2 u. 2 xx. = uyy. Quasilinear form: set v = uxx, w = uxy vt − vvx = wy, vy = wx. N-phase solutions: v = v(R. 1. , ..., R. N. ), w = w(R. 1. , ..., R.

SQUARE-MEAN ALMOST PERIODIC SOLUTIONS ...
classes of nonautonomous stochastic evolution equations with finite delay. 1. ... and obtain the existence of square-mean almost periodic solutions to the class of.

Plane wave Fourier series solutions to the ... - Peeter Joot's Blog
−iωt. (12). The set of fourier coefficients considered in the sum must be restricted to those values that equation 12 holds. An effective way to achieve this is to pick a specific orientation of the coordinate system so the angular velocity bivect

Plane wave Fourier series solutions to the ... - Peeter Joot's Blog
3.3 Energy density. Take II. For the Fourier coefficient energy calculation we now take 7 as the starting point. We will need the conguate of the field. F† = γ0. (. ∑.

Almost periodic solutions to some semilinear non ...
a Department of Mathematics, Faculty of Sciences Semlalia, B.P. 2390, Marrakesh, Morocco b Department of Mathematics, Howard University, 2441 6th Street NW, Washington, DC 20059, USA. a r t i c l e. i n f o. a b s t r a c t. Article history: Received

Existence of weighted pseudo almost periodic solutions ...
Sep 25, 2008 - To the best of our knowledge, the main result of this paper (Theorem 3.5) ...... proof by using the Lebesgue's dominated convergence theorem.

galerkin approximations of periodic solutions of ...
Mar 16, 2010 - Email addresses: [email protected] (D.C. Antonopoulos), .... (C3) and use the numerical code to study the evolution that ensues from an.

Almost periodic solutions for some higher-order ...
+1 202 806 7123; fax: +1 202 806 6831. ... existence of almost periodic solutions to the class of nonautonomous n-order differential equations with operator ...

Existence of weighted pseudo-almost periodic solutions ...
u(t) + f (t,B(t)u(t)) = A(t)u(t) + g(t,C(t)u(t)), t ∈ R,. (1.2). ∗. Tel.: +1 202 806 ... are weighted pseudo-almost periodic in t ∈ R uniformly in the second variable.

Jacky Xu
Large Size Bed With Laundry 2nd Level. Please Visit Our Website for The Virtual Tour. Feature & Upgrade List!! Mississauga One Realty Inc. Brokerage. (密市第 ...

Interactive Shape Manipulation Based on Space Deformation ... - Kai Xu
is the original distance of the barycenter of two adjacent clusters i and j. 4.5 Optimization. Our shape manipulation framework solves for the deformation through minimizing the weighted sum of all the above-stated energy terms, which results the fol

additional information on the periodic table of elements
to be in the same family. Here are the names which refer to the different common families: * Column I A- Alkali Metals. * Column II A- Alkaline Earths. * Columns III B through I B - Tranistion elements. * Column VII A - Halogens. * Column 0 - Noble G

Yi (Daniel) Xu
Feb 2015 - , Research Affiliate, Innovations for Poverty Action, SME Initiatve ... Program Committee, SED Annual Meeting, 2012 (Cyprus), 2013 (Seoul), 2014 (Toronto) ... and the Extensive Margin in Export Growth: A Microeconomic Accounting of ... 201

The XU Graphic and Identity Standards Manual.pdf
Page 3 of 38. i. POLICY STATEMENT. Named in honor of St Francis Xavier, Xavier University–Ateneo de. Cagayan treats with high respect its name, seal and ...

Periodic solutions to the Cahn-Hilliard equation in the ...
May 20, 2017 - structure whatsoever, usually a regularization of the energy of the following type is ..... In particular the Fredholm alternative in the space C. 4,α.

WAVE 0-TRACE AND LENGTH SPECTRUM ON ...
Introduction. The purpose of this note is to explain the relation between the renormalized trace (called. 0-trace) of the wave operator, the resonances, some conformal invariants of the boundary and the length spectrum for the Laplacian on a convex c

ZHIZHONG LI
Proficient in Qt, SketchUp; Experience with Quartus II, RTLinux. Hardware. Skilled in Verilog HDL, VHDL. Other. Proficient in Adobe Photoshop, Adobe Premiere.

Kevin S. Xu
Development of robust algorithms for analysis of physiological data (including electrodermal activity and heart rate variability) ... In Proceedings of the 6th IEEE International Conference on Big Data and Cloud. Computing, pages 21–28, .... Statis

Amy Xu Resume.pdf
Page 1 of 1. Design. Print Design. Packaging. Art Direction. UI/UX. Typography. Illustration. HTML/CSS. Software. Adobe CC. InDesign. Photoshop. Illustrator. Acrobat Pro. Premiere Pro. XD. Sketch. Proto.io. Mailchimp. MS Office. Technical. Scientific

Singapore: MAS rides the easing wave on inflation ...
Jan 28, 2015 - But the central bank's almost unprecedented decision to shift policy ahead of the regular April meeting came as a surprise both to us and the.

Film Resonance on Acoustic Wave Devices: The ... - Jonathan D. Gough
50-Ω coaxial cable to a HP8512A transmission/reflection unit. Materials and ..... This material is available free of charge via the Internet at http://pubs.acs.org.