A  Laboratory Report On  

Wireless  Communication  Hardware Design and  Simulation: Part II  Design Project: Coupler and Wilkinson Power Divider Design Submitted by: Amit Prakash Singh and Abhinay Dubey Integrated Dual Degree, IV year Department of Electronics & Communication Engineering Indian Institute of Technology Roorkee Submitted to: Dr. N.P. Pathak, Assistant Professor, Department of Electronics & Communication Engineering Indian Institute of Technology Roorkee

   

 



 

Wireless Communication Hardware Design and Simulation: Part II 

Acknowledgements  We are very thankful to Dr. N.P. Pathak for providing us constant encouragement and support during the course of the Wireless Communications Lab. Without his help it would not have possible to complete this report. We are also highly indebted to Mr. Raja Ram, the laboratory assistant, for helping us in the lab. Amit Prakash Singh Abhinay Dubey Integrated Dual Degree IV year Indian Institute of Technology Roorkee

                                   

 



 

Wireless Communication Hardware Design and Simulation: Part II 

Contents  Directional Couplers ...................................................................................................................................... 4  Definitions ................................................................................................................................................. 5  Forward versus backward wave couplers ................................................................................................. 5  Hybrid (3 dB) couplers .............................................................................................................................. 5  180 degree hybrid couplers .................................................................................................................. 6  90 degree hybrid couplers .................................................................................................................... 7  Single‐box branchline couplers ................................................................................................................. 9  Rat‐race couplers .................................................................................................................................... 12  Wilkinson Power Divider ......................................................................................................................... 15  Two‐port Wilkinsons ........................................................................................................................... 15  Coupler Design in Microstrip ...................................................................................................................... 17  Specification: Design a 3‐dB, 90 Branch Line Coupler at 2.5Ghz ............................................................ 17  Specification: Design 15‐dB Single Section Parallel Coupled Backward Wave Coupler at 2.4 Ghz ........ 20  Specification: To Design a 3‐dB Rat‐Race Coupler at 2.4GHz ................................................................. 22  Microstrip Wilkinson Power Divider Design ............................................................................................... 24  Specification: To Design a 3‐dB Wilkinson Power Divider at 2.4GHz ...................................................... 24   



 

Wireless Communication Hardware Design and Simulation: Part II 

Power splitters and couplers are passive microwave components used for distributing or combining microwave signals. A splitter can be used as either a power combiner or a power divider, it is a reciprocal device.

Directional Couplers  Directional couplers are four-port circuits where one port is isolated from the input port. Directional couplers are passive reciprocal networks, which you can read more about on our page on basic network theory. All four ports are (ideally) matched, and the circuit is (ideally) lossless. Directional couplers can be realized in microstrip, stripline, coax and waveguide. They are used for sampling a signal, sometimes both the incident and reflected waves (this application is called a reflectometer, which is an important part of a network analyzer). Directional couplers generally use distributed properties of microwave circuits, the coupling feature is generally a quarter (or multiple) quarter wavelengths. Lumped element couplers can be constructed but without distributed properties are non-directional. What do we mean by "directional"? A directional coupler has four ports, where one is regarded as the input, one is regarded as the "through" port (where most of the incident signal exits), one is regarded as the coupled port (where a fixed fraction of the input signal appears, usually expressed in dB), and an isolated port, which is usually terminated. If the signal is reversed so that it enter the "though" port, most of it exits the "input" port, but the coupled port is now the port that was previously regarded as the "isolated port". The coupled port is a function of which port is the incident port. Looking at the generic directional coupler schematic below, if port 1 is the incident port, port 2 is the transmitted port (because it is connected with a straight line). Either port 3 or port 4 is the coupled port, and the other is the isolated port, depending on whether the coupling mode is forward or backward.

   



 

Wireless Communication Hardware Design and Simulation: Part II 

Definitions Let port 1 be the input port, port 2 be the "through" port. For a backward wave coupler, port 4 is the coupled port and port 3 is the isolated port. Ideally, power into port 1 will only appear at ports 2 and 4, with no power at port 3, but in real couplers some power leaks to port 3. For an incident signal at port 1 of power P1 (and output powers P2, P3 and P4 at ports 2, 3 and 4), then: Insertion Loss (IL) = 10 log

20log  20

Coupling Factor (CF) = 10 Isolation (I) = 10

  20

Directivity (D) = 10

31

20

Note that these numbers are positive in dB. Note that directivity requires two, two-port S-parameter measurements; the other quantities require only one. Directivity is the ratio of isolation to coupling factor. In decibels, isolation is equal to coupling factor plus directivity.

Forward versus backward wave couplers  Waveguide couplers couple in the forward direction (forward-wave couplers); a signal incident on port 1 will couple to port 3 (port 4 is isolated). Microstrip or stripline couplers are "backward wave" couplers. In the schematic above, which means for a signal incident on port 1, port 4 is the coupled port (port 3 is isolated). The coupled port on a microstrip or stripline directional coupler is closest to the input port because it is a backward wave coupler. On a waveguide broadwall directional coupler, the coupled port is closest to the output port because it is a forward wave coupler.

Hybrid (3 dB) couplers  Hybrid couplers are the special case of a four-port directional coupler that is designed for a 3-dB (equal) power split. Hybrids come in two types, 90 degree or quadrature hybrids, and 180 degree hybrids.



 

Wireless Communication Hardware Design and Simulation: Part II 

180 degree hybrid couplers These include rat-race couplers and waveguide magic tees. Here we will look at the rat-race and introduce the vector and shorthand notation that is often used when referring to 180 degree hybrid couplers.

Here's a plot that shows the ideal, "classic" rat-race response (equal split at center frequency).



 

Wireless Communication Hardware Design and Simulation: Part II 

The rat-race gives about 32% bandwidth for a phase error of +/-10 degrees from the ideal 180 degree split.

90 degree hybrid couplers These are often called quadrature couplers, and include Lange couplers, the branchline coupler, overlay couplers, edge couplers, and short-slot hybrid couplers. Here we will just look at a branchline, and show you some of the "short hand" notation that is often used when referring to hybrids. A quadrature coupler is one in which the input is split into two signals (usually with a goal of equal magnitudes) that are 90 degrees apart in phase. Types of quadrature couplers include branchline couplers (also known as quadrature hybrid couplers), Lange couplers and overlay couplers. Below the branchline is used as a combiner. The input signals are vectors of magnitude A and B, then the outputs are as shown. Note that because we are dealing with voltages, the outputs have a square-root-of-two factor. Power is split exactly in half (-3 dB), equal to the square of the voltages.



 

Wireless Communication Hardware Design and Simulation: Part II 

Now let's look at it as a divider. Here only an input signal is present at port A. It splits by 3 dB at the two outputs, and is isolated from Port B (ideally zero energy comes out this port).



 

Wireless Communication Hardware Design and Simulation: Part II 

Now let's look at the response of this component, and compare it to the "classic" rat-race:

The bandwidth is less. If we just look at the frequency where the 180 degree split is within +/- 10 degrees, it is about 20% (0.9 to 1.1 GHz). Referring to the classic rat-race above, it has 32 percent bandwidth for the same phase error.

Single­box branchline couplers The branchline the simplest type of quadrature coupler, since the circuitry is entirely planar. A ideal single-box branchline coupler is shown below. Each transmission line is a quarter wavelength. However, 3/4, 5/4 or 7/4 wavelengths (etc.) could also be used on each arm if the circuit layout requires it, the penalty is paid in decreasing bandwidth. A signal entering the top left port (port 1 in the figure) is split into two quadrature signals on the right (ports 2 and 3), with the remaining port 4 fully isolated from the input port at the center frequency. Remember that the lower output port (port 3) has the most negative transmission phase since it has the farthest path to travel.

10 

 

Wireless Communication Hardware Design and Simulation: Part II 

Ideal branchline coupler The next figure shows the response of an ideal branchline coupler where the each side is a quarter wavelength at 10,000 MHz (10 GHz). The first graph shows the losses from the input to the two output arms. S21 is the transmission loss from the top port to the upper right port, S31 is from the input to the lower right port. Using the ideal transmission line impedances shown above provides a equal 3 dB split at the center frequency. The markers have been aligned to show the 1-dB bandwidth of the coupler, which is 2580 MHz or 25.8%.

Power split of ideal branchline coupler The second graph shows that the bandwidth where the device has better than 14 dB return loss (1.5:1 VSWR) is 2080 MHz, or 20.8%. The isolation (power coupled to the terminated port) is also plotted here and is very nearly equal to the return loss.

11 

 

Wireless Communication Hardware Design and Simulation: Part II 

Return loss (blue) and isolation (red) of ideal branchline coupler The next plot shows the phase difference between the two outputs (ideally 90 degrees, remember?) For +/-10 degrees the bandwidth is about 4300 MHz, or 43%.

Phase response of ideal branchline coupler

12 

 

Wireless Communication Hardware Design and Simulation: Part II 

Rat­race couplers  Applications of rat-race couplers are numerous, and include mixers and phase shifters. The ratrace gets its name from its circular shape, shown below. The circumference is 1.5 wavelengths. For an equal-split rat-race coupler, the impedance of the entire ring is fixed at 1.41xZ0, or 70.7 ohms for a 50 ohm system. For an input signal Vin, the outputs at ports 2 and 4 are equal in magnitude, but 180 degrees out of phase.

Rat-race coupler (equal power split) The coupling of the two arms is shown in the figure below, for an ideal rat-race coupler centered at 10 GHz (10,000 MHz). An equal power split of 3 dB occurs at only the center frequency. The 1-dB bandwidth of the coupled port (S41) is shown by the markers to be 3760 MHz, or 37.6 percent.

13 

 

Wireless Communication Hardware Design and Simulation: Part II 

Power split of ideal rat-race coupler The graph below illustrates the impedance match of the same ideal rat-race coupler, at ports 1 and 4. By symmetry, the impedance match at port 3 is the same as at port 1 (S11=S33). For better than 2.0:1 VSWR (14 dB return loss), a bandwidth of 4280 MHz (42.8%) is obtained.

Impedance match of ideal rat-race coupler The next graph shows the isolation between port 1 and port 3 (S31). In the ideal case, it is infinite at the center frequency. The bandwidth over which greater than 20 dB isolation is obtained is 3140 MHz, or 31.4%.

14 

 

Wireless Communication Hardware Design and Simulation: Part II 

Isolation of ideal rat-race coupler Below the phase difference between arms 2 and 4 is plotted. At the center frequency. a perfect 180 degree difference is observed. The bandwidth that better than +/- 10 degrees is maintained is 3200 MHz, or 32%.

   

15 

 

Wireless Communication Hardware Design and Simulation: Part II 

Wilkinson Power Divider  The Wilkinson power splitter was invented around 1960 by an engineer named Ernest Wilkinson. It splits an input signal into two equal phase output signals, or combines two equalphase signal into one in the opposite direction. Wilkinson relied on quarter-wave transformers to match the split ports to the common port. Because a lossless reciprocal three-port network cannot have all ports simultaneously matched, Wilkinson knew he had to cheat so he added one resistor and the rest is history. The resistor does a lot more than allow all three ports to be matched, it fully isolates port 2 from port 3 at the center frequency. Amazingly, the resistor adds no resistive loss to the power split, so an ideal Wilkinson splitter is 100% efficient.

Two­port Wilkinsons  In its simplest form, an equal-amplitude, two-way split, single-stage Wilkinson is shown the figure below. The arms are quarter-wave transformers of impedance 1.414xZ0 (thanks for the correction, Rod!) Here we show a three-port circuit (the most common in practice by far, but Wilkinson described an N-way divider).

Ideal two-port Wilkinson splitter

S-parameters of ideal 2-way Wilkinson power splitter Here is how the Wilkinson splitter works as a power divider: when a signal enters port 1, it splits into equal-amplitude, equal-phase output signals at ports 2 and 3. Since each end of the isolation

16 

 

Wireless Communication Hardware Design and Simulation: Part II 

resistor between ports 2 and 3 is at the same potential, no current flows through it and therefore the resistor is decoupled from the input. The two output port terminations will add in parallel at the input, so they must be transformed to 2xZ0 each at the input port to combine to Z0. The quarter-wave transformers in each leg accomplish this; without the quarter-wave transformers, the combined impedance of the two outputs at port 1 would be Z0/2. The characteristic impedance of the quarter-wave lines must be equal to 1.414xZ0 so that the input is matched when ports 2 and 3 are terminated in Z0. Okay, what about as a power combiner? Consider a signal input at port 2. In this case, it splits equally between port 1 and the resistor R with none appearing at port 3. The resistor thus serves the important function of decoupling ports 2 and 3. Note that for a signal input at either port 2 or 3, half the power is dissipated in the resistor and half is delivered to port 1. Why is port 2 isolated from port 3 and vice-versa? Consider that the signal splits when it enters port 2. Part of it goes clockwise through the resistor and part goes counterclockwise through the upper arm, then splits at the input port, then continues counterclockwise through the lower arm toward port 3. The recombining signals at port 3 end up equal in amplitude (half power or the CW signal is lost in resistor R1, while half of the CCW signal is output port 1. And they are 180 degrees out of phase due to the half-wavelength that the CCW signal travels that the CW signal doesn't. The two signal voltages subtract to zero at port 3 and the signal disappears, at least under ideal circumstances. In real couplers, there is a finite phase through the resistor that will limit the isolation of the output ports.                          

17 

 

Wireless Communication Hardware Design and Simulation: Part II 

Coupler Design in Microstrip  In this laboratory we designed three couplers, namely, Branch Line Coupler, Backward Wave Coupler  and Rat Race Coupler. All designs were done using Transmission line Calculator tool of Serenade ™ .  Once the design was completed on paper, the Coupler was designed in Ansoft Designer ™ with Planar  EM design. Then a simulation was run and the S parameters obtained in the Simulation along with the  simulated design have been shown.  

Specification: Design a 3­dB, 90 Branch Line Coupler at 2.5Ghz  DESIGN:  From the given specification,  Since the coupling is given as 3‐dB  Therefore, we can write:  20

|

|

|

|

|

20 |

1

|

√2

|



 

  √2   √2 √2   Or    √2  

√2 Or   

Since Z0 =50Ω, we get impedance of the series and shunt branches as:  50 √2

35.4Ω  50Ω 

18 

 

Wireless Communication Hardware Design and Simulation: Part II 

  To get MIC layout, we need width and length of transmission line.  CALCULATION RESULTS    Z0=50 Ω  W= 3.611mm  l=19.4456mm  Keff=2.5826   

Z=35.4 Ω  W=6.00mm  L=19.036mm  Keff=2.6949 

SIMULATION RESULTS   

 

Branch Line Coupler S Parameters

19 

 

Wireless Communication Hardware Design and Simulation: Part II 

 

Coupler Layout                    

20 

 

Wireless Communication Hardware Design and Simulation: Part II 

Specification: Design 15­dB Single Section Parallel Coupled Backward Wave  Coupler at 2.4 Ghz    DESIGN  From the given Specifications  Mid band operating frequency, f0= 2.4 Ghz  Port Impedance, Z0= 50Ω  Mean Coupling, C0=15dB  Coupling Length, 

5

15

  15 

20 10

0.1778 

1 1

59.8435Ω 

1 1

41.7756Ω 

  Dimension required for the fabrication of coupler in Microstrip configuration is given below  CALCULATION RESULTS    W=3.411mm  S=0.862mm  L=19.63mm       

  59.8435 Ω  Keff=2.7411   

41.8 Ω  Keff=2.3252   

21 

 

Wireless Communication Hardware Design and Simulation: Part II 

SIMULATION RESULTS: S Parameters and Layout 

 

 

22 

 

Wireless Communication Hardware Design and Simulation: Part II 

 

Specification: To Design a 3­dB Rat­Race Coupler at 2.4GHz  DESIGN   Rat‐race circuit is shown in the fig. Output signals from ports 2 and 4 doffer in phase by 1800(In Contrast  in BLC where the phase difference is 90o).  An interesting and important design feature arises by considering the quarter wave transformer action  of this coupler. Only ports 2 and 4 exibit this action because port 3 is half‐wave separated from the input  feeding port 1. Thus, the net effective load on the inner ring lines feeding ports 2 and 4 amounts to 2Z0  (two Z0 loads appearing, equivalently, in series).  Now, the characteristic impedance Z0 of any   transforming line between two impedances Z01 and Z02 is  known to equal 

 . In this case, the two impedances are 

 and 2

 respectively, so the 

impedance of the intervening   line (i.e. the ring) must be:  2

 

Or  √2  Thus the characteristic impedance of the line forming the ring itself must be √2 times that of the  feeder  line impedances. When the impedances of all the feeder lines is 50Ω, the ring characteristic impedance  is 70.7Ω.  CALCULATION RESULTS  =50Ω  W=3.611mm  Keff=2.5826     

√2=70.7Ω  W=1.99mm  Keff=2.4698  Λg=79.562mm 

        SIMULATION RESULTS: S Parameters and Layout   

23 

 

Wireless Communication Hardware Design and Simulation: Part II 

 

   

24 

 

Wireless Communication Hardware Design and Simulation: Part II 

Microstrip Wilkinson Power Divider Design  In this laboratory we designed a Wilkinson Power Divider. The design was done using Transmission line  Calculator tool of Serenade ™ . Once the design was completed on paper, the Power Divider was  designed in Ansoft Designer ™ with Planar EM design. Then a simulation was run and the S parameters  obtained in the Simulation along with the simulated design have been shown.    

Specification: To Design a 3­dB Wilkinson Power Divider at 2.4GHz  DESIGN   The Wilkinson Power Divider is a 3‐Port network which has the useful property of being lossless when  the output ports are matched; i.e. only reflected power is dissipated.  The S‐Matrix of a power divider satisfying the following requirements  1. Matched Input and Output Ports  2. Equal power division  3. Isolation between Output ports will be given by:   

√2

0 1 1

1 0 0

1 0  0

Port 1 is taken to be the input and ports 2 and 3 are the two outputs. It may be noticed that this    matrix will not be unitary (whatever phases one takes), and hence cannot be built using purely lossless  passive structure such as transmission lines, inductors, capacitors only. The Wilkinson Power divider  incorporates a lumped resistor to give the desired   matrix.  The layout of the Wilkinson Power divider is shown in fig below. Zd is the terminating impedance in all 3  ports 

  WILKINSON POWER DIVIDER  For a 50Ω system, 

 =50 Ω, Dimensions are given in the following table: 

25 

 

Wireless Communication Hardware Design and Simulation: Part II 

CALCULATION RESULTS  =50Ω  W=3.611mm  Keff=2.5826     

√2 =70.7Ω  W=1.99mm  Keff=2.4863  L(90o)=19.891mm 

  SIMULATION RESULTS: S Parameters and Layout 

 

26 

 

Wireless Communication Hardware Design and Simulation: Part II 

 

Wireless Communication Hardware Design and ...

Simulation: Part II. Design Project: Coupler and Wilkinson Power Divider Design. Submitted by: Amit Prakash Singh and Abhinay Dubey. Integrated Dual Degree ...

2MB Sizes 2 Downloads 226 Views

Recommend Documents

Wireless communication system and wireless station
Jan 27, 2010 - beam control in an access point, on the basis of received .... stations. It is presumably possible to achieve similar advantages by applying this ...

Design of Multilayered Stack Antenna for Wireless Communication
In Today's technology of wireless communication requires small, portable and low ... communication services for various commercial and military applications.

Design of Multilayered Stack Antenna for Wireless Communication
IJRIT International Journal of Research in Information Technology, Volume 2, Issue ... In Today's technology of wireless communication requires small, portable ...

wireless communication and networks by william stallings solution ...
Click here if your download doesn't start automatically. Page 1 of 1. wireless communication and networks by william stallings solution manual pdf. wireless ...

MEMS for wireless communication
number of frequency bands and communication ... to get much smaller, circuitry miniaturization is still ... mode phones that can be used in many different parts.

Delay spread estimation for wireless communication systems ...
applications, the desire for higher data rate transmission is ... Proceedings of the Eighth IEEE International Symposium on Computers and Communication ...

Wireless communication system having linear encoder
Apr 8, 2013 - digital audio broadcasting,” in Proc. of the IEEE Region 10 Conf,. 1999, 1:569-572 ... Proc. of 36th Asilomar Conf. on Signals, Systems, and Computers,. Nov. 2002 ...... local area network, a cellular phone, a laptop or handheld.

RF MEMS for Wireless Communication
Abstract—This paper deals with a relatively new area of radio-frequency. (RF) technology based on. Microelectromechanical Systems (MEMS). RF MEMS provides a class of new devices and components which display superior high-frequency performance relat

UPTU B.Tech Wireless & Mobile Communication EEC801 Sem ...
UPTU B.Tech Wireless & Mobile Communication EEC801 Sem 8_2014-15.pdf. UPTU B.Tech Wireless & Mobile Communication EEC801 Sem 8_2014-15.pdf.

RF MEMS for Wireless Communication
Abstract—This paper deals with a relatively new area of radio-frequency. (RF) technology based on. Microelectromechanical Systems (MEMS). RF MEMS ...

Hardware Trojan Detection Solutions and Design ... - Semantic Scholar
tial information or secret keys. Trojans can be ... Solutions and. Design-for-Trust ... technology library, then they integrate gate-level IP cores from a vendor into ...

Wireless communication system having linear encoder
Apr 8, 2013 - Antipolis, France. [Online]. 1999, Available: http://www.etsi.org/ umts, 25 pages. ... Boutros et al., “Good lattice constellations for both Rayleigh fading ..... and Computer Engineering, Edmonton, Alta, Canada, May 9-12,. 1999.

Design and Development of an Optimised Hardware ...
We also define an optimal ... These three steps are all easy to implement by direct calculation in software or hardware. ... byte is defined mathematically as:.

WCSY431364-Wireless communication system.pdf
There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item.

Hardware Design Experiences in ZebraNet - Margaret Martonosi
B.0 [Hardware]: General; C.2.1 [Computer-Communi- cation Networks]: ..... also begin researching custom sensor CPUs with very good ..... course) collect some initial zebra movement data. For this ..... [27] Rockwell Science Center. Wireless ...

Automated Hardware Design Using Genetic ...
ABSTRACT. In this research we developed a completely automated approach to hardware design based on integrating three core technologies into one ...

Hardware Design Experiences in ZebraNet
experiences designing sensor nodes and low level software to control them. .... efficient communications over distances of 100 meters or less. ...... Smart Dust.

Hardware Design Experiences in ZebraNet - CiteSeerX
from zebra to zebra until infrequent communications perco- late data to base stations [14]. Our system's three primary goals are to generate detailed, accurate logs of each zebra's position, to recover those logs for analysis, and to run autonomously