Supporting Top-K Item Exchange Recommendation in Large Online Community

Zhan Su, Anthony K. H. Tung, Zhenjie Zhang

Item Exchange: Pioneer Trail / Frontier Ville • The most popular social game on Facebook

Item Exchange: Pioneer Trail / Frontier Ville • Player needs items to finish tasks

Item Exchange: Pioneer Trail / Frontier Ville • Wish List: waiting for help from your friends

Item Exchange: World of Warcraft • Auction-based approach

Item Exchange: World of Warlord • Problems with Auction-based approach – Inflation: the players prefer to exchange instead of selling their weapons

Item Exchange: Real Item • A popular website in Chinese

Item Exchange: Service • Some item/service swap web sites: – http://www.swapcycle.co.uk/ – http://www.u-exchange.com/

Agenda of the presentation • • • • •

Problem Definition (5 mins) Exchange between 2 users (5 mins) General Recommendation (5 mins) Experiments (5 mins) Conclusion and Future Work (2 mins)

Exchange Model • Exchange Model Wish List Unneeded List

Price List

$1

$5

Wish List

$2

$10

Unneeded List

$8

$16

Wish List Unneeded List

Eligible Exchange Pair • Exchange Model Wish List Unneeded List

Price List

$1

$5

Wish List

$2

$10

Unneeded List

$8

$16

Wish List Unneeded List

Eligible Exchange Pair • Formal definition – Only between two users – The unneeded items are in the wish list of the other user (item matching) – The values of the exchange items are approximately the same. Specifically, the ratio between the value is between b and b-1. b=0.8

+

$16

$1

$18

$10

Top-K Exchange Recommendation • How to maximize the utility of the exchange – We aim to recommend exchange candidates with maximal value for each user, i.e. sum on the item prices – For Alice, the value of the exchange is $15. For Bob, the value of the exchange is $16

$16

+

$18

Top-K Exchange Recommendation • How to maximize the utility of the exchange – There’s no multiple exchange pairs on a single pair of user. Why? – We prove that there is always a dominating exchange pair, maximizing the utilities of both sides.

$16

+

$18

Research Target • System’s Perspective – Handling updates on the list in real time – High throughput of the system – Scalability of the system in terms of users Wish List Unneeded List Wish List Unneeded List

Price List

1$

5$

2$

10$

8$

16$

We’re only … • Recommendation only – There’s no automatic commitment of the exchange

• Exchange between 2 users only – Multi-party exchange chain is hard to find and even harder to proceed

• No currency used – Inflation issue

Agenda of the presentation • • • • •

Problem Definition (5 mins) Exchange between 2 users (5 mins) General Recommendation (5 mins) Experiments (5 mins) Conclusion and Future Work (2 mins)

Hardness result • NP-hardness on finding optimal exchange – In terms of the lengths of the lists – Polynomial reduction from Load Balancing

• Fortunately, – The number of items are usually bounded by a constant, e.g. every individual player in WoW has limited number of weapons in hand.

Polynomial-Time Approximation Scheme • Map the combinations onto the price axis $8

$2

Wish List Unneeded List Wish List Unneeded List

$10

$16

$18

Price List

$1

$5

$2

$10

$8

$16

Approximate Value Table • Join the Wish list of Bob and Unneeded list of Celina Wish List Unneeded List Wish List Unneeded List

• Approximate all combinations using Approximate Value Table (AVT)

Approximate Value Table Iteration 1: Paper ($2) $1 $2 $3 $4

$6

$9

Entry App. Value LB

$13

$19

LB Items

UB

$28

UB Items

Approximate Value Table Iteration 1: Paper ($2) {Paper} is added $1 $2 $3 $4

$6

$9

$13

$19

$28

Entry App. Value LB

LB Items

UB

UB Items

1

{Paper}

2

{Paper}

2

2

Approximate Value Table Iteration 2: Bike ($16) $1 $2 $3 $4

$6

$9

$13

$19

$28

Entry App. Value LB

LB Items

UB

UB Items

1

{Paper}

2

{Paper}

2

2

Approximate Value Table Iteration 2: Bike ($16) {Bike} is added $1 $2 $3 $4

$6

$9

$13

$28

$19

Entry App. Value LB

LB Items

UB

UB Items

1

2

2

{Paper}

2

{Paper}

2

19

16

{Bike}

16

{Bike}

Approximate Value Table Iteration 2: Bike ($16) {Paper, Bike} is added $1 $2 $3 $4

$6

$9

$13

$19

$28

Entry App. Value LB

LB Items

UB

UB Items

1

2

2

{Paper}

2

{Paper}

2

19

16

{Bike}

18

{Paper, Bike}

Approximate Value Table Entry App. Value LB

LB Items

UB

UB Items

1

9

8

{Hammer}

8

{Hammer}

2

13

10

{Ribbon}

10

{Ribbon}

3

19

18

{Hammer, Ribbon}

18

{Hammer, Ribbon}

Entry App. Value LB

LB Items

UB

UB Items

1

2

2

{Paper}

2

{Paper}

2

19

16

{Bike}

18

{Paper, Bike}

Linear scan the UB of one table

AVT v.s. Brute-Force • AVT is more effective when list length>8

Agenda of the presentation • • • • •

Problem Definition (5 mins) Exchange between 2 users (5 mins) General Recommendation (5 mins) Experiments (5 mins) Conclusion and Future Work (2 mins)

A Naïve Solution • Maintain two AVTs between every pair of user – Quadratic overhead on storage – Linear update cost in terms of user #

• How to improve? How to narrow down the search space? – Critical Item – Optimizations on Insertion – Optimizations on Deletion

Critical Item • Some items are necessary for eligible exchange – If you don’t have hammer and ribbon, you can never exchange with Celina – If you don’t want bicycle, you can never exchange with Celina Wish List Unneeded List

Insertion • When a new item is inserted into a list – Update critical items for the user. Stop if new item is not critical – Find the users with the critical items – Recalculate the optimal exchange between Alice and every candidate user Wish List Unneeded List Wish List Unneeded List

Not critical!

Deletion • Can we update the recommendation only? – No. It may affect the top-k recommendation of others

Wish List Unneeded List Wish List Unneeded List

Wish List Unneeded List

Deletion • To keep all recommendations optimal – Update every pair of user with valid critical items – Much more expensive than insertion

• How to avoid unnecessary re-calculation? – Maintain k’ > k pairs of optimal recommendations – When some recommendations disappear, just display the backup ones

Agenda of the presentation • • • • •

Problem Definition (5 mins) Exchange between 2 users (5 mins) General Recommendation (5 mins) Experiments (5 mins) Conclusion and Future Work (2 mins)

Simulation Setup • Basic parameters – – – – – –

Maximal Value: $10,000 Minimal Value: $10 Matching relaxation b: 0.8 (default) List length: 15 (default) Number of items: 1500 (default) Number of users: 30,000 (default)

• Item Distribution – Synthetic data: exponential distribution, Zipf distribution – Real data: Ebay auction data

Simulation Setup • Item/Price Distribution

Workload Generation • Workload: a sequence of updates – Initially, the database is empty – Uniform selection on the user – Pick up Wanted list or Unneeded list with equal probability – Pick up insertion or deletion operation – Randomly pick an item based on a specific distribution on the items – Add/Remove the item in the specific list

Dynamics of the Simulation • System is stable after the lists are almost full

Results on Simulation with Ebay data

Conclusion • Item exchange: an emerging business of huge market value • Top-K Item exchange problem • Database performance issue • General system engine to support updates

Future Work • Social Network • Item Priority • System Performance – Index Structure: bitmap – Transaction: Insertion of item groups

Supporting Top-K Item Exchange Recommendation in ...

... Pioneer Trail / Frontier Ville. • The most popular social game on Facebook ... A popular website in Chinese ... List. $1. $2. $8. $5. $10. $16. Price List. Wish. List. Unneeded. List. Wish. List. Unneeded. List .... Social Network. • Item Priority.

1MB Sizes 0 Downloads 165 Views

Recommend Documents

Supporting Top-K Item Exchange Recommendations ...
School of Computing ... the items for exchange in online games are usually virtual objects, ..... list Wi for ui and unneeded item list Lj . A new item In+1 is.

Recommendation on Item Graphs
Beijing 100085, China [email protected] Tao Li. School of Computer Science. Florida International University. Miami, FL 33199 [email protected]

Recommendation on Item Graphs
Fei Wang. Department of Automation ... recommender system - a personalized information filtering ... Various approaches for recommender systems have been.

A Model and Supporting Mechanism for Item Evaluation ...
implemented using C# and Microsoft SQL server. It runs under ... will be published on the web site of the National Center of Examinations & Educational.

Item Kit -
10. SALES INVOICE JOURNAL in sales invoice, only item header has journal. Product Window 1. BER-62. TO DO. No. Task. SP. 1 create table. 1. 2 create tab. 1.

Predicting Item Difficulties and Item Dependencies for C ...
dimensional analysis on the item level. Due to .... with LLTM for item difficulties, the analysis of text difficulties can be carried ..... Even though software programs.

Personal item reminder
May 14, 2009 - security cards, laptop computers, car keys, AC adapter plugs, cameras ..... detected, then at step 38 the tracker 10 marks the REID as missing.

Supporting Synchronous Sensemaking in Geo ...
College of Information Sciences and Technology, the Pennsylvania State University. University ... sensemaking in an emergency management situation, which.

Supporting Mutual Engagement in Creative Collaboration - CiteSeerX
engage with each other through their social interaction. In our work we focus on ... can create and edit a short shared loop of music semi- .... Performance Arts and Digital Media. Intellect ... Interventions: A Strategy and Experiments in Mapping.

Supporting Variable Pedagogical Models in Network ... - CiteSeerX
not technical but come from educational theory backgrounds. This combination of educationalists and technologists has meant that each group has had to learn.

Supporting Information
Jul 13, 2010 - macaque brain consists of 95 vertices and 2,402 edges [1], where the network models brain regions as vertices and the presence of long dis-.

Supporting Information
Jul 13, 2010 - brain regions, lack of acronym field in the connectivity database, the ..... 2. while (some vertex in (Vk+1, Ek+1) has degree less than k + 1). (a) Set mk .... Goodale MA, Mansfield RJ (MIT Press, Cambridge, MA), pp 549-586. 18.

Supporting Information
May 31, 2011 - The molecular orbitals are expressed as linear combinations of atomic orbitals ... minimization for free atoms and are optimized for all electron.