A European Center for Brain  Simulation Henry Markram, EPFL, Switzerland

Goals & Ambition Build an ICT facility to simulate the brain across species, ages & diseases  •

Neuroscience: •



Industrial Screening: 



Neuroinformatics:

















Federate clinical data on the Human Brain; study the  Diseasome as a complex system; 



Generate mathematical models for all levels of biological  organization of the brain  (structure/geometry/function/computation); establish  parameters, generate equations, build libraries, develop  algorithms, enable multi‐scale models

Simulation:  •

Build software applications to model, simulate, visualize and  diagnose biologically detailed brain models; build simulation  engines, libraries, procedures, workflows; build an internet  accessible European facility for simulation‐based brain  research.

Build a suite of analytics applications to process brain data  (signal analytics, visual analytics, real‐time analytics, auto‐ analytics); build data display applications for complex data  (multidimensional data; visualizing complexity)

Computational Intelligence:  •



Enable interactive, collaborative and visual steering of  supercomputing (HPC as a desktop virtual environment);  build remotely accessible virtual laboratories; build  a  simulation cockpit for the brain; create a European Facility  for Scientific Multimedia Production (for science, education  & society).

Analytics: •

Build new ICT technologies  to probe the structure and  function of the brain and biological organisms in greater  depth, with more detail and faster than ever before

Establish an European Exascale HPC Facility for brain  simulation; build a European HPC Design & Optimization  Centre to design and optimimize HPC for any simulation  challenge; enable hardware‐software co‐design & co‐ development for supercomputers;

Visualization:

Modeling: •



Supercomputing: 

Federate experimental data from all over the world;  design  and build an exa‐scale database for the brain and brain  models; database the brain; Predictive Reverse Engineering  to build detailed brain models from non‐invasive data.

Diseasome: •



Screen the brain at all –omics levels (genes to whole brain);   develop new ICT for screening

Brain Probes: •



Understand the brain at all levels of organization (genes to  whole brain); simulate the brain in any species at any age  with any disease; heal the diseases of the brain

Discover the essential mathematical, physical and chemcal  principles of neural information processing, emergent  functions, complex behavior & cognition.

BrainICT:  •

Build a European Facility for Neuromorphic Engineering;  design and build neural computers, intelligent devices and  software  



Neurorobotics: 



Education: 





Enable a real‐time closed loop between  virtual and physical  robots and  brain simulations on supercomputers Create virtual centers for education; create 3D internet  technologies; produce multimedia & internet based training  programs & workshops; 

Impact •







– – – –







Boost Europe’s role in global HPC Create a European design & configuration center  for exascale HPC Intelligent software & hardware devices Neuromorphic computers



A new generation of virtual laboratories for  collaborative and interactive research Remotely accessible immersive environments 

Impact on Neuroscience

– – – –

– – –



ICT methods for pharmaceutical companies  (disease and drug simulation); simulation for drug  screening and for rational design of new drugs ICT tools for high‐tech SMEs offering  high  throughput screening services. Simulatation of  neuroprosthetics, and surgery  New Brainprobes for clinical diagnostics New role for simulation‐based science

Impact on education and skill base –

A unifying agenda A new way of integrating data and knowledge and  of testing hypotheses Insight into the structural and functional design of  biological intelligence

A systems view of all brain diseases A strategy to study the causes of any brain  disorder New prospects for prevention, diagnosis and  treatment.  reduce the incidence and impact of brain disease;  contribute to individual and family well‐being,  reduce the impact on national economies and  health services.

Impact on Industry –

Impact on ICT (Global Collaboration) –





New strategies to store manage and mine  exascale volumes of data New strategies to predict unknown data from  data at other levels of biological information or in  other species  (Predictive Reverse Engineering)

Impact on ICT (Computing)

Impact on mental health – –

Advanced ICT technologies for high throughput  multiomics screening

Impact on ICT (Data Deluge)  –





Impact on ICT (Screening Life)



Development of key skills in life sciences  (multiomics) and simulation based science. New immersive multimedia tools for education 

Integration •

Disciplines – – – – – –



ICT (transform & enable),  Life Science (data & knowledge; computation),  Health & Medicine (mental health), Materials (research & development; screening, diagnostics), Physics, Mathematics, Chemistry (models of all levels of biology)  Science & Society (3D internet education, psychology, philosophy, ethics)

Countries – All EU countries – USA, Japan, China, Russia, Australia, Latin America, Africa



EU Industries  – – – – – –

ICT (HPC, visualization and analytics, neuromorphic and brain‐inspired computing, Internet) Bio‐tech,  Bio‐services,  Medical devices Pharmaceuticals  Robotics. 

Plausibility •

Neuroscience:  •







Already possible to database all past and current data Informatics, biostatistics & complex systems theory  provides basis for very large‐scale correlation‐based  science  

• •



Organic, nano‐, micro‐ and other physical devices to  probe the brain in more detail, in greater depth and  faster than ever before Rapidly growing industry

• • •

Modeling:  •

Applied mathematics sufficiently advanced to   describe structural (geometrical) and functional  (computational) aspects of the brain with biological  precision





Supercomputers lack visual interactivity Current PC‐derived technologies inadequate   Supercomputing power for real‐time interactive  visualization, new rendering techniques,  holography.  

Computational Intelligence:  •

The brain disease pandemic: 560 diseases, 35% of the  population affected, over  €800 billion p.a. for Europe  alone.  Huge need for understanding, diagnosis and treatment Unique opportunities to examine brain disorders as a  complex emergent system; Identification of connections between diseases:  genetic, protein, cellular, circuit, systems‐level  constraints on the functioning of the healthy brain

Supercomputing power already sufficient for circuit‐ level simulation  of whole rat brain Exascale computers ready by 2018 Exascale power for multilevel simulation of whole  human brain

Visualization:  • • •



Software Engineering (engines, libraries, workflows;  applications, internet technologies)  ready to build  simulators across all levels of biology

Supercomputing:  •

The diseasome:  •



Rapidly falling costs Data deluge from High Throughput technologies 

Brain Probes:  •





Neuroinformatics:  • •



Simulation: 

Industrial Screening:  • •





120’000 neuroscientists, vast amounts of fragmented  data,

Tools to extract the essence of neural information  processing systems already available Require accurate brain models

BrainICT:  •

Neuromorphic engineering waiting for validated data  on biological circuit designs…



Neurorobotics: 



Education: 



Science & Society:

• • •

Virtual and physical waiting for a brain… The 3D internet is coming… Society wants, can and should be closer to science and  its implications….

Interest and Support 9 9 9

Switzerland provides core infrastructure and operational support Each pillar country & Institution provides infrastructure and operational support Industry  (Computing, Big Pharma, Bio‐tech, Bio‐services) is expressing  interest & matching support

Simulating the Human Brain - Cordis

Understand the brain at all levels of organization (genes to whole brain); simulate the brain ... Build software applications to model, simulate, visualize and diagnose biologically ... ICT methods for pharmaceutical companies. (disease and drug ...

60KB Sizes 1 Downloads 312 Views

Recommend Documents

Simulating the Human Brain - Cordis
Build a suite of analytics applications to process brain data. (signal analytics, visual analytics, real-time analytics, auto- analytics); build data display applications ...

the human brain evolving - John Allman
Bottom: right lateral view. ... Close-up views of anatomical details evident in the structural MR image. .... Society London B Biological Sciiences 360, 733-750.

the human brain evolving - John Allman
brain using a high-field experimental imaging system. ... on a 9.4 Tesla MRI system. To test the ... using Amira (Mercury, San Diego) and the FSL suite of MRI ...

Simulating the Ionosphere - GitHub
Sep 30, 2009 - DEFINITION: Approximating measurements at intermediate scales/positions from scattered measurements. We have sparse measurements.

Simulating Human Collision Avoidance Using a ...
State-of-the-art techniques for local collision avoidance are ... tal interaction data and present some key concepts regard- .... to visually convincing simulations. 3.

A Velocity-Based Approach for Simulating Human ... - Springer Link
ing avoidance behaviour between interacting virtual characters. We first exploit ..... In: Proc. of IEEE Conference on Robotics and Automation, pp. 1928–1935 ...

On Simulating Human Reach Motions for Ergonomics ...
International Conference on Computer-Aided Ergonomics and Safety, CAES, 2001. Many existing job analysis tools for ergonomics have concentrated on the ...

The song system of the human brain
Available online 12 May 2004. Abstract ... Keywords: Singing; Song system; Brain; Music; Melody; Harmony. Singing is a ...... Proceedings of the Annual Meeting.

The song system of the human brain
May 12, 2004 - songs via social learning during development [30,31]. In some species, known as ... adult singing abilities. At the same time, human music has ...

Simulating History: The Problem of Contingency - CiteSeerX
Analyses of Social Issues and Public Policy, Vol. 3, No. 1, 2003. Simulating History: The Problem of Contingency. David R. Mandel∗. University of Victoria.

Download Simulating the Physical World: Hierarchical ... - Sites
Mechanics to Fluid Dynamics For Free. Download ... suitable for advanced undergraduate and graduate courses on molecular modeling and simulation.

Simulating History: The Problem of Contingency - CiteSeerX
outcome measures that affect the security and prosperity of the world community. The problem of contingency for testing hypotheses about the causes of certain.

'What' and 'where' in the human brain
... cerebral blood flow. 0 Current Biology Ltd ISSN 0959-4388. 157 ..... evaluates the degree to which these subcortical pathways remain segregated in cortex.

Decision Threshold Modulation in the Human Brain
Oct 27, 2010 - all had normal or corrected-to-normal visual acuity. None of them was ... After 5 s of target display, the back- ground turned black .... Thus, our hypothesis was that both behavioral and fMRI data would be better explained by an ...

The Human Brain Encodes Event Frequencies ... - Caltech Authors
Here we show all the steps leading to the Bayesian formulas. ..... Table S8: Voxel-based analysis: BOLD regressed on Bayesian expected net payoff. Cluster.