Optimal Bayesian Hedging Strategies 26th November 2009, University of Oxford Alok Gupta D.Phil Mathematical Finance [email protected]

MCFG, Mathematical Institute, Oxford University Nomura Bank EPSRC Supervised by Christoph Reisinger Optimal Bayesian Hedging Strategies ⋄ 26 Nov 2009 ⋄ [email protected] – p. 1

Contents •

Introduction - Calibration Problem - Bayesian Estimators - Consistency - Example: Local Volatility



Hedging in the Presence of Model Uncertainty - Hedging Formulation - Motivating Examples - Bayesian Hedging Strategies



Hedging Error Loss Functions - Examples - Hedging Improvement - Link to Utility Functions



Numerical Examples



Conclusion & Extensions Optimal Bayesian Hedging Strategies ⋄ 26 Nov 2009 ⋄ [email protected] – p. 2

Introduction

Optimal Bayesian Hedging Strategies ⋄ 26 Nov 2009 ⋄ [email protected] – p. 3

Motivation •

Since Black-Scholes model proposed in 1973, huge growth in variety of financial models to capture behaviour of different markets e.g. stochastic interest rate models, credit models, etc.



Agent will typically want to use model to price and hedge an instrument but before she can do this she must calibrate model to observable prices to avoid introducing arbitrage.



Calibration not straight forward: instead of Black-Scholes single parameter, now calibrate vectors and functions e.g. Levy density, local volatility.



Perfect calibration not possible — introducing problem of uniqueness. This leads to competing hedging strategies.



Wealth of literature on local volatility hedging e.g. McIntyre (1999), Hull & Suo (2002), Coleman et al (2003). Optimal Bayesian Hedging Strategies ⋄ 26 Nov 2009 ⋄ [email protected] – p. 4

Calibration Problem Suppose we observe a price process S = (St )t≥0 and model it as a function of time t, some stochastic process(es) X = (Xt )t≥0 , and finite dimensional parameter θ ∈ Θ, i.e. St = S(t, (Xu )0≤u≤t , θ)

(1)

by abuse of notation of S. Let F = (Ft )t≥0 be the filtration generated by X so S is an F-adapted process. Now consider an option X over a finite time horizon [0, T ] written on S and with payoff function h. Let the time t model value of this option be written as ft (θ), where we include the argument θ to emphasise the dependence of this price on the model parameters. Explicitly, ft (θ) = E[B −1 (t, T )h(S(θ))|Ft ] with respect to some measure P (depending on θ) and where B −1 (t, T ) is the discount factor, possibly stochastic. Optimal Bayesian Hedging Strategies ⋄ 26 Nov 2009 ⋄ [email protected] – p. 5

Calibration Problem Suppose at time t ∈ [0, T ] we observe a set of such option prices (i)

{ft (θ) : i ∈ It } (i)

possibly with noise {et : i ∈ It }. In other words, we observe (i)

Vt

(i)

(i)

= ft (θ) + et

(2)

for i ∈ It . Then the calibration problem is to find the value of θ that best reproduces the (i) observed prices {Vt : i ∈ It , t ∈ Υn ([0, T ])}, for some measurement of best. Here Υn ([0, T ]) = {t1 , . . . , tn : 0 = t1 < t2 < . . . < tn ≤ T } is a partition of the interval [0, T ] into n parts. We can then use this parameter θ to hedge another claim Y . Optimal Bayesian Hedging Strategies ⋄ 26 Nov 2009 ⋄ [email protected] – p. 6

Bayesian Estimators Suppose we wish to estimate the value of some parameter θ. Assume we have some prior information for θ (for example that it belongs to a particular space, or is positive, or represents a smooth function), summarised by a prior density p(θ) for θ. And suppose we observe some noisy data V = {Vt : t ∈ Υn } related to θ by Vt = ft (θ) + et for all t ∈ Υn where et is some random noise and Υn is an index set of size n. Then p(V |θ) is the probability of observing the data V given θ and is called the likelihood function. Application of Bayes rule gives that the posterior density of θ is given by p(θ | V ) ∝ p(V |θ) p(θ). We can use the posterior to find distributions/estimates of other quantities of interest. Optimal Bayesian Hedging Strategies ⋄ 26 Nov 2009 ⋄ [email protected] – p. 7

Loss Functions The loss function L(θ, θ ′ ) gives the deficit incurred by taking θ ′ as the estimator for θ. It must satisfy   L(θ, θ ′ ) = 0 if θ ′ = θ  L(θ, θ ′ ) > 0 if θ ′ 6= θ.

Given data V , the corresponding Bayes estimator θL (V ) is the value of θ which minimises the expected loss with respect to the posterior i.e.  Z ′ L(θ, θ ) p(θ|V ) dθ . θL (V ) = arg min ′ θ

Since the loss function should penalise estimators which are further from the true value, we assume L is a (not necessarily strictly) increasing function of |θ − θ ′ |.

Optimal Bayesian Hedging Strategies ⋄ 26 Nov 2009 ⋄ [email protected] – p. 8

Consistency Suppose the price noises are given by et ∼ N (0, ε2t ) with εt ∈ [c, C] ⊆ R+ and are independent of each other and the underlying driving process. Take a nested sequences of partitions Υn ⊃ Υn−1 and a loss function L. Let the r.v. θn (V ) ∼ pn (θ|V ) and let θ ∗ be the true parameter value. Define the sequence of Bayes estimators θˆ by, Z  ′ θˆn (V ) = arg min L(θ, θ ) pn (θ|V ) dθ ′ θ ∈Σ

Θ

where Θ is the support of the posterior density pn (θ|V ) which is explicitly given by o n Y p(θ) 2 1 1 √ (V − f (θ)) exp − pn (θ|V ) = 2 t t pn (V ) . 2ε 2πε t

t

t∈Υn

There only exist consistency results (e.g. Fitzpatrick (1991)) for i.i.d. observations. Optimal Bayesian Hedging Strategies ⋄ 26 Nov 2009 ⋄ [email protected] – p. 9

Consistency With the following assumptionswe have that for all scalar and vector θ the subsequent Lemma and Theorem hold. Assumption. The prior Pprior (corresponding to prior density p(θ)) and its support Θ satisfy: 1. ∀ξ > 0, Pprior [kθ − θ ∗ k < ξ] > c ξ for some constant c > 0 2. Θ is closed and bounded Assumption. For each t, conditional on Ft the function ft (θ) (which is a mapping ft : Θ → R where Θ ⊆ Rm ) satisfies the following. Define   1 |ft (θ) − ft (θ ∗ )| >k . Υn (θ; k) = t ∈ Υn : εt kθ − θ ∗ k Then for each θ ∈ Θ there exists kθ > 0 such that |Υn (θ; kθ )| → ∞ as n → ∞. Optimal Bayesian Hedging Strategies ⋄ 26 Nov 2009 ⋄ [email protected] – p. 10

Consistency P

Lemma. For all V σn (V ) → σ ∗ . Proof. (Outline) •



1 − 2 φn (σ,V )

then can show Write pn (σ|V ) = qn (V )p(σ)e 2u(σ − σ ∗ ) ≤ 1 →0 n→∞ φn (σ, Y ) αn Define the moment generating function



ϕn (u) = E[eu(σn −σ ) ] then it follows that ϕn (u) → 1 as n → ∞ i.e. Dirac density δ(σ − σ∗). D



By Levy’s Continuity Theorem this implies that σn (V ) → σ ∗ where σ ∗ is a constant almost surely.



Hence σn (V ) → σ ∗ .

P

Optimal Bayesian Hedging Strategies ⋄ 26 Nov 2009 ⋄ [email protected] – p. 11

Consistency Theorem. For all L bounded and continuous on Σ the Bayes estimator σ ˆn (V ) is consistent. Proof. (Outline) •

First observe that we can write L(σ, σ ′ ) = l(σ − σ ′ ) for some function l.



Pσ∗ [|ˆ σn (V ) − σ ∗ | ≥ δ] ≤ Pσ∗ [|ˆ σn (V ) − σn (V )| ≥ 12 δ] + Pσ∗ [|σn (V ) − σ ∗ | ≥ 12 δ]



But Pσ∗ [|σn (V ) − σ ∗ | ≥ 12 δ] → 0 as n → ∞ by above lemma.



And can show Pσ∗ [|ˆ σn (V ) − σn (V )| ≥ 21 δ] → 0 as n → ∞ for L bounded and continuous.



Hence, for all δ > 0, Pσ∗ [|ˆ σn (V ) − σ ∗ | ≥ δ] → 0 as n → ∞.

Optimal Bayesian Hedging Strategies ⋄ 26 Nov 2009 ⋄ [email protected] – p. 12

Example: Local Volatility Corresponding to the model originally proposed by Black & Scholes, let (Ω, F, (Ft )0≤t≤T , (Zt )0≤t≤T ) be the standard Wiener space i.e. Zt is Brownian motion, Ft is the natural filtration of Zt over Ω and F = FT . Then the underlying asset price S is given by dSt = µSt dt + σSt dZt where µ is the drift and σ the volatility. In the local volatility model we choose σ to be a function of both the asset price and the time: σ = σ(S, t). Although Dupire found an explicit formula to calculate this function using the implied volatility surface, the resulting local volatility surface is unstable and spikey. Furthermore, the formula depends on knowledge of the prices of options for all strikes and maturities, which is usually not available in practice.

Optimal Bayesian Hedging Strategies ⋄ 26 Nov 2009 ⋄ [email protected] – p. 13

Example: Local Volatility Instead, we identify key characteristics expected of the local volatility surface that can be recast into a Bayesian prior. There are three properties we would expect of σ(S, t): Positivity: σ(S, t) > 0 for all values of S and t; since the price variation squared σ 2 > 0 we adopt the convention σ > 0. Smoothness: there should be no sharp spikes or troughs in the surface; no reason why current prices should be able to predict abrupt changes in future volatility. Consistency: for small values of t especially, σ should be close to today’s at-the-money (ATM) volatility σatm .

Optimal Bayesian Hedging Strategies ⋄ 26 Nov 2009 ⋄ [email protected] – p. 14

The Prior (Regularisation) For the purposes of introducing the theory we consider the simplest density the Gaussian density. It is also the second order approximation to any density. In light of the assumptions presented earlier we take for our prior o n 2 1˜ plv (σ) ∝ exp − 2 λk log(σ) − log(σatm )kκ where k · kκ is a Sobolev norm given by kuk2κ = (1 − κ)kuk22 + κk|∇u|k22 . Working in the logarithmic space guarantees σ is positive and the norm ensures greater prior density is attached to σ that are both smoother and closer to ATM volatility. ˜ quantifies how strong our prior assumptions are: a higher value of λ ˜ λ indicating greater confidence in our assumptions. Clearly, those θ which better satisfy prior beliefs have greater prior density. Optimal Bayesian Hedging Strategies ⋄ 26 Nov 2009 ⋄ [email protected] – p. 15

The Likelihood (Calibration) (i)

(i)

Let Vt be the market observed price at time t of a European call and ft (θ) the corresponding theoretical price. Then define the basis point square-error functional as X (i) (i) 108 Gt (θ) = S 2 wi |ft (θ) − Vt |2 t

i∈I

where the wi are weights summing to one. But only attach positive Bayesian posterior density if parameter reproduces prices to within their spreads: G(θ) ≤ δ 2 2

where δ = i∈I wi δi2 is the pre-specified tolerance. Hence, for the Bayesian likelihood for non-parametric models we will take  1 p(V |θ) = 1G(θ)≤δ2 exp − 2δ2 G(θ) . P

So those surfaces σ which reproduce prices closest to the market observed prices V have the greatest likelihood values.

Optimal Bayesian Hedging Strategies ⋄ 26 Nov 2009 ⋄ [email protected] – p. 16

The Posterior Combining the prior and likelihood functions we get the explicit form for the posterior function p(θ|V ) as  1   2 p(θ|V ) ∝ 1G(θ)≤δ2 exp − 2δ2 λkθk + G(θ) . Remark. Observe that maximising the posterior is equivalent to minimising the expression λkθk2 + G(θ) which is exactly the form of functional authors such as Lagnado & Osher (1997) and Jackson, Suli & Howison (1999) seek to minimise to find their optimal calibration parameter. This is not a coincidence but an insight into how the Bayesian approach reformats traditional Tikhonov regularisation methods into a unified and rigorous framework.

Optimal Bayesian Hedging Strategies ⋄ 26 Nov 2009 ⋄ [email protected] – p. 17

The Posterior Priced 66 European call options (on a known local volatility surface) with 11 strikes and 6 maturities and added Gaussian noise. We calibrate a 27-node surface. 479 calibrated surfaces are sampled from the posterior:

Optimal Bayesian Hedging Strategies ⋄ 26 Nov 2009 ⋄ [email protected] – p. 18

Bayesian Pricing Prices for a 3 month at-the-money up-and-out barrier call option with barrier 1.1S0 . Included are the true price with its bid-ask spread, the MAP price, and PN the Bayes price ( N1 i=1 f (θi )) with associated posterior pdf of prices. 0.25 pdf Bayes MAP true bid ask

posterior probability

0.2

0.15

0.1

0.05

0 80

82

84

86

88

90

92

94

96

98

100

102

price

Optimal Bayesian Hedging Strategies ⋄ 26 Nov 2009 ⋄ [email protected] – p. 19

Hedging in the Presence of Model Uncertainty

Optimal Bayesian Hedging Strategies ⋄ 26 Nov 2009 ⋄ [email protected] – p. 20

Literature Model uncertainty results from not being able to find the correct model underlying observed data. Many authors have studied the impact on hedging: •

Branger & Schlag (2004) calculate the correction to the Black-Scholes delta hedge when true underlying is Heston stochastic volatility.



Psychoyios & Skiadopoulos (2006) test using volatility options as hedging instruments in different models.



Li finds analytical formulas for the sensitivity of greeks to changes in the calibration prices and sets up ‘instrumental hedges’.



Monoyios (2007) assess the impact of drift parameter uncertainty on hedging error distributions and proposes a filtering approach with learning in order to improve the performance of the hedging strategy.

Optimal Bayesian Hedging Strategies ⋄ 26 Nov 2009 ⋄ [email protected] – p. 21

Hedging Formulation Recall the underlying price process St = S(t, (Xu )0≤u≤t , θ). Again, consider option X with finite time horizon [0, T ] written on S with payoff function h, and time t value ft (θ). Assuming market completeness, ft (θ) = E[B −1 (t, T )h(S(θ))|Ft ]. If a calibrated parameter θˆ is chosen then the value of X at time t is ˆ = E[B −1 (t, T )h(S(θ))|F ˆ ft (θ) t ]. Furthermore, taking a portfolio (∆, Ψ) of stock S and cash B respectively to hedge the option, the corresponding Black-Scholes delta at time t is ˆ ∂ft (θ) ˆ . ∆t (θ) = ∂St Optimal Bayesian Hedging Strategies ⋄ 26 Nov 2009 ⋄ [email protected] – p. 22

Hedging Formulation In the literature, there are two frequently cited delta hedges which, in the Bayesian Gaussian framework we assume, can be referred to as the following: 1. ∆t (θ M LE ) — the delta hedge corresponding to the maximum likelihood estimator (MLE) θ M LE (see e.g. Hull & Suo, Coleman et al, Mcintyre, Dumas et al). It minimises the calibration error so is given by θtM LE = arg min{p(θ|V )}. 2. ∆(θ M AP ) — the delta hedge corresponding to the maximum a posteriori estimator (MAP) θ M AP (see e.g. Jackson et al , Lagnado & Osher, Crepey). It maximises the Bayesian posterior and is given by θtM AP = arg min{p(V |θ)} Not usually referred to as the ‘MLE’ and ‘MAP’ estimates but are equivalent to this under Gaussian distribution assumptions. Optimal Bayesian Hedging Strategies ⋄ 26 Nov 2009 ⋄ [email protected] – p. 23

Motivating Examples Suppose underlying S follows Black-Scholes model with volatility 0.15. But we only observe spread [V bid , V ask ] = [23.958, 24.103] of a 1 year European call with strike 80 and where S0 = 100 and r = 0.05. 35.9

2000 Maximum Likelihood Estimator (MLE)

Prior Volatility Density 1800

35.8

1600 35.7

Maximum A Posteriori (MAP) Naive Bayesian Bayesian µ−Hedge Correct Delta Hedge

1400 1200 Frequency

Density

35.6

35.5

1000 800

35.4

600 35.3 400 35.2

35.1 0.125

200

0.13

0.135

0.14 0.145 Volatility

0.15

0.155

0 −1

−0.5

0 Hedging Profit

0.5

1

Optimal Bayesian Hedging Strategies ⋄ 26 Nov 2009 ⋄ [email protected] – p. 24

Motivating Examples Suppose the volatility is now 0.13. Again we only observe spread [V bid , V ask ] = [23.958, 24.103] of a 1 year European call with strike 80 and where S0 = 100 and r = 0.05. 35.9

2000 Maximum Likelihood Estimator (MLE)

Prior Volatility Density 1800

35.8

1600 35.7

Maximum A Posteriori (MAP) Naive Bayesian Bayesian µ−Hedge Correct Delta Hedge

1400 1200 Frequency

Density

35.6

35.5

1000 800

35.4

600 35.3 400 35.2

35.1 0.125

200

0.13

0.135

0.14 0.145 Volatility

0.15

0.155

0 −1

−0.5

0 Hedging Profit

0.5

1

Optimal Bayesian Hedging Strategies ⋄ 26 Nov 2009 ⋄ [email protected] – p. 25

Bayesian Hedging Strategies Might seem intuitive to use Bayesian model averaging and take parameter Z θ = θp(θ|V )dθ and hedge or price using this value, or directly take the delta hedge (Branger & Schlag) to be Z ∆=

∆(θ)p(θ|V )dθ.

However, no guarantee or intuition for why the above parameter or hedge would give the optimal hedging strategy. Not even sure if θ reproduces the observed data V or that ∆ corresponds to a calibrated parameter θ. Key Idea: Let L(θ, θ ′ ) correspond to some measure of the hedging error caused by hedging contract X using parameter θ ′ when the correct hedge is found using parameter θ. So take the estimator θˆ = θL (V ). Optimal Bayesian Hedging Strategies ⋄ 26 Nov 2009 ⋄ [email protected] – p. 26

Hedging Error Loss Functions

Optimal Bayesian Hedging Strategies ⋄ 26 Nov 2009 ⋄ [email protected] – p. 27

Examples Consider hedging strategy given by a portfolio with time t value Πt . Π used to hedge an option X written on S with payoff h(S) at maturity time T and has observable market value Π0 = V0 at inception time 0. The hedging error at time t is Et (θ, θ ′ ) = Πt (S(θ), ∆(θ ′ )) − Vt (S(θ)) where the underlying evolves according to model θ and we hedge in model θ ′ . Then take the loss function as Lg (θ, θ ′ ) = Eθ [g(ET (θ, θ ′ ))|F0 ] for some function g of the random variable ET (θ, θ ′ ). Recall that ET (θ, θ ′ ) is a random variable on the set of paths ω and the expectation Eθ is taken over these paths using model (measure) θ.

Optimal Bayesian Hedging Strategies ⋄ 26 Nov 2009 ⋄ [email protected] – p. 28

Examples Different choices of g give common hedging performance indicators: 1. gµ (z) = −z gives the average hedging loss. 2. gσ (z) = |z − E[z]| gives the absolute average hedging error. 3. gη (z) = −z1z
Optimal Bayesian Hedging Strategies ⋄ 26 Nov 2009 ⋄ [email protected] – p. 29

Hedging Improvement Let θ 0 be the original (e.g. MAP) parameter used for hedging. Then the improvement in hedging performance is I(θ 0 , θL ) := L(θ ∗ , θ 0 ) − L(θ ∗ , θL ) The expected value (with respect to the posterior density p(θ|V )) of the improvement I(θ 0 , θL ) is Z Z E[I(θ 0 , θL )] = L(θ, θ 0 ) p(θ|V ) dθ − L(θ, θL ) p(θ|V ) dθ ≥

(3)

(4)

0

by the definition of the Bayes estimator. E[I(θ 0 , θL )] ≥ 0 might seem a trivial (or tautologous) result but the implications are fundamental to the motivation behind the Bayesian approach.

Optimal Bayesian Hedging Strategies ⋄ 26 Nov 2009 ⋄ [email protected] – p. 30

Hedging Improvement Furthermore, because we can actually calculate the difference (4), if it is found to be large, then there is a good chance the actual hedging improvement (3) is significant. Of course, how close the two quanities (4) and (3) are to one another will depend on the accuracy of the posterior density function p(θ|V ). Shown earlier that, under particular assumptions on the parameter space Θ and pricing functions f , if a true model parameter θ ∗ exists then p(θ|V ) → δ(θ − θ ∗ ) in probability as the number of observations V increases (where δ(z) is the Dirac delta probability density — zero everywhere except at z = 0).

Optimal Bayesian Hedging Strategies ⋄ 26 Nov 2009 ⋄ [email protected] – p. 31

Hedging Improvement We can calculate the variance of the improvement as Z V[I(θ 0 , θL )] = [L(θ, θ 0 ) − L(θ, θL )]2 p(θ|V ) dθ − {E[I(θ 0 , θL )]}2 (5) to give estimated bounds for the actual improvement (3). For example i h p p E[I(θ 0 , θL )] − 2 V[I(θ 0 , θL )], E[I(θ 0 , θL )] + 2 V[I(θ 0 , θL )]

(6)

would correspond to a 95% confidence interval around the mean (4) if we approximate the distribution of (3) as Gaussian. If the variance (5) is low then we can get fairly tight bounds on the actual difference.

Optimal Bayesian Hedging Strategies ⋄ 26 Nov 2009 ⋄ [email protected] – p. 32

Link to Utility Functions A utility function U is a map from R → [−∞, ∞) representing an agent’s preferences over different contingent claims: Y is preferred to X



E[U (Y )] ≥ E[U (X)]

where X and Y are contingent claims and U is increasing and concave. In the context of the optimal hedging strategies, the utility theory approach would be to maximise the expected hedging profit, i.e. Find θ ′ which maximises EQ,θ [U (Π(θ ′ , ω) − h(θ, ω))]

(7)

where the expectation is taken over the different paths ω (using measure θ) of the driving process and also over the different possible models θ (using measure Q).

Optimal Bayesian Hedging Strategies ⋄ 26 Nov 2009 ⋄ [email protected] – p. 33

Link to Utility Functions On the other hand, the Bayesian approach is to Z Find θ ′ which minimises L(θ, θ ′ ) p(θ|V ) dθ Z = Eθ [g(Π(θ ′ , ω) − h(θ, ω)] p(θ|V ) dθ = EQ,θ [g(Π(θ ′ , ω) − h(θ, ω)] i.e. Find θ ′ which maximises

EQ,θ [−g(Π(θ ′ , ω) − h(θ, ω))]

(8)

So we see that the utility approach (7) and Bayesian approach (8) coincide precisely when U = −g.

(9)

When this equality holds, we must have then that g is decreasing and convex (since U is increasing and concave). Berger (1985) and Föllmer & Schied (2002) arrive at a very similar identity. Optimal Bayesian Hedging Strategies ⋄ 26 Nov 2009 ⋄ [email protected] – p. 34

Numerical Examples

Optimal Bayesian Hedging Strategies ⋄ 26 Nov 2009 ⋄ [email protected] – p. 35

Local Volatility Model Using this distribution of surfaces we can evaluate the performance of difference hedging strategies. First a 3 month at-the-money call option: 700 true delta MAP delta MAP delta−vega µ delta σ delta η delta

600

Frequency

500

400

300

200

100

0 −40

−30

−20

−10

0 Hedging Profit (%)

10

20

30

40

Optimal Bayesian Hedging Strategies ⋄ 26 Nov 2009 ⋄ [email protected] – p. 36

Local Volatility Model And we can table the results of hedging the call: mean hedge profit

absolute deviation

5% profit shortfall

true delta

0.4

12.0

-26.2

M AP delta

1.3

12.0

-24.9

M AP delta-vega

1.1

4.3

-10.5

µ- delta

2.3

12.2

-22.2

σ- delta

1.6

12.1

-23.5

η- delta

2.3

12.2

-22.1

I(θ M AP , θL )

+1.1

-0.1

+2.8

quasi conf. int.

[2.2,2.3]

[-0.1,0.7]

[2.7,5.6]

Optimal Bayesian Hedging Strategies ⋄ 26 Nov 2009 ⋄ [email protected] – p. 37

Local Volatility Model And a 3 month at-the-money up-and-out barrier call option with barrier 1.1S0 : 300 true delta MAP delta MAP delta−vega µ delta σ delta η delta

250

Frequency

200

150

100

50

0 −100

−80

−60

−40

−20

0 20 Hedging Profit (%)

40

60

80

100

Optimal Bayesian Hedging Strategies ⋄ 26 Nov 2009 ⋄ [email protected] – p. 38

Local Volatility Model Table of improvements for the barrier call option: mean hedge profit

absolute deviation

5% profit shortfall

true delta

-5.5

46.2

-137.4

M AP delta

-4.4

52.7

-178.7

M AP delta-vega

-5.4

52.0

-178.6

µ- delta

8.6

52.7

-160.7

σ- delta

1.6

52.5

-170.5

η- delta

8.6

52.7

-160.4

I(θ M AP , θL )

+13.0

+0.1

+18.2

quasi conf. int.

[5.3,13.1]

[-108.4,212.0]

[-30.1,105.6]

Optimal Bayesian Hedging Strategies ⋄ 26 Nov 2009 ⋄ [email protected] – p. 39

Heston Model Priced 70 European call options (in a known Heston stochastic volatility model) with 10 strikes and 7 maturities and added Gaussian noise. We calibrate a 32-node local volatility surface. 600 samples plotted:

Optimal Bayesian Hedging Strategies ⋄ 26 Nov 2009 ⋄ [email protected] – p. 40

Heston Model Using this distribution of surfaces we can evaluate the performance of different hedging strategies. First a 3 month at-the-money call option: 450 MAP delta MAP delta−vega µ delta σ delta η delta

400

350

Frequency

300

250

200

150

100

50

0 −40

−30

−20

−10

0 Hedging Profit (%)

10

20

30

40

Optimal Bayesian Hedging Strategies ⋄ 26 Nov 2009 ⋄ [email protected] – p. 41

Heston Model And we can table the results of hedging the call: mean hedge profit

absolute deviation

5% profit shortfall

M AP delta

-0.1

11.5

-27.2

M AP delta-vega

9.6

8.8

-6.3

µ- delta

3.2

11.3

-23.4

σ- delta

2.0

11.3

-24.7

η- delta

3.3

11.2

-23.3

I(θ M AP , θL )

+3.3

+0.2

+4.0

quasi conf. int.

[3.3,3.5]

[-0.3,1.1]

[1.5,9.5]

Optimal Bayesian Hedging Strategies ⋄ 26 Nov 2009 ⋄ [email protected] – p. 42

Heston Model And a 3 month at-the-money up-and-out barrier call option with barrier 1.1S0 : 350 MAP delta MAP delta−vega µ delta σ delta η delta

300

Frequency

250

200

150

100

50

0 −100

−80

−60

−40

−20

0 20 Hedging Profit (%)

40

60

80

100

Optimal Bayesian Hedging Strategies ⋄ 26 Nov 2009 ⋄ [email protected] – p. 43

Heston Model Table of improvements for the barrier call option: mean hedge profit

absolute deviation

5% profit shortfall

M AP delta

-9.1

45.6

-148.5

M AP delta-vega

-0.3

47.4

-148.2

µ- delta

1.6

45.5

-136.0

σ- delta

-8.4

45.7

-148.2

η- delta

1.6

45.5

-136.0

I(θ M AP , θL )

+10.8

-0.1

+12.5

quasi conf. int.

[6.4,15.1]

[-68.5,115]

[-32.6,96.3]

Optimal Bayesian Hedging Strategies ⋄ 26 Nov 2009 ⋄ [email protected] – p. 44

Robustness For the local volatility example, we changed the form of the prior (by adjusting the value of the constant κ in the formulation of the prior). Effect on hedging performance of barrier option:

300

300 true delta MAP delta MAP delta−vega µ delta σ delta η delta

250

250

200

Frequency

Frequency

200

150

150

100

100

50

50

0 −100

true delta MAP delta MAP delta−vega µ delta σ delta η delta

−80

−60

−40

−20

0 20 Hedging Profit (%)

(a) κ = 10−2.0

40

60

80

100

0 −100

−80

−60

−40

−20

0 20 Hedging Profit (%)

40

60

80

100

(b) κ = 100.0

Optimal Bayesian Hedging Strategies ⋄ 26 Nov 2009 ⋄ [email protected] – p. 45

Robustness For the local volatility example, we tested adding more noise to the market data (used ε = 10−2.5 instead of ε = 10−3.0 ). Effect on hedging performance of barrier option:

300

300 true delta MAP delta MAP delta−vega µ delta σ delta η delta

250

250

200

Frequency

Frequency

200

150

150

100

100

50

50

0 −100

true delta MAP delta MAP delta−vega µ delta σ delta η delta

−80

−60

−40

−20

0 20 Hedging Profit (%)

(c) Noise A

40

60

80

100

0 −100

−80

−60

−40

−20

0 20 Hedging Profit (%)

40

60

80

100

(d) Noise B

Optimal Bayesian Hedging Strategies ⋄ 26 Nov 2009 ⋄ [email protected] – p. 46

Conclusion & Extensions

Optimal Bayesian Hedging Strategies ⋄ 26 Nov 2009 ⋄ [email protected] – p. 47

Conclusion •

Introduced the Bayesian framework for calibrating the parameters of financial models to market prices.



Described the implicit model uncertainty and designed loss functions which optimisied hedging performance indicators.



Remarked on how to estimate bounds for the improvement, and use this to decide whether or not to implement the Bayesian strategy.



Used local volatility model and Heston model as case studies, tested hedging contracts in both models using local volatility deltas.



Saw improvements in hedging performance when using the Bayesian hedges instead of typical MAP strategies, especially for path dependent options.

Optimal Bayesian Hedging Strategies ⋄ 26 Nov 2009 ⋄ [email protected] – p. 48

Extensions •

The methodology is very general and can be applied to any parametric or non-parametric hedging strategy model — not just delta hedging



Can use the loss functions L(θ, θ ′ ) to quantify measures for the model uncertainty of any contingent claim. Such measures would be important for a risk manager or agent trying to decide between different products.



Can expand the choice of loss functions e.g. by exploiting the relationship with utility functions and/or by taking combinations of loss functions: Lgµ + αLgσ for some risk-return tradeoff parameter α



Try to extend the Bayesian philosophy to portfolio optimization problems. Higher dimensionality will make it difficult but there should be considerable scope for this.

Optimal Bayesian Hedging Strategies ⋄ 26 Nov 2009 ⋄ [email protected] – p. 49

Thank you for your attention Questions?

Optimal Bayesian Hedging Strategies ⋄ 26 Nov 2009 ⋄ [email protected] – p. 50

Optimal Bayesian Hedging Strategies

Agent will typically want to use model to price and hedge an instrument but before she can ..... delta hedge when true underlying is Heston stochastic volatility.

740KB Sizes 1 Downloads 189 Views

Recommend Documents

Optimal Dynamic Hedging of Cliquets - Semantic Scholar
May 1, 2008 - Kapoor, V., L. Cheung, C. Howley, Equity securitization; Risk & Value, Special Report, Structured. Finance, Standard & Poor's, (2003). Laurent, J.-P., H. Pham, Dynamic Programming and mean-variance hedging, Finance and Stochastics, 3, 8

Optimal Dynamic Hedging of Cliquets - Semantic Scholar
May 1, 2008 - some presumed mid price of vanillas results in a replicating strategy for the exotic. Risk management departments (also called Risk Control) are charged with feeding the pricing model sensitivity outputs into a VaR model, and generally

Optimal Static Hedging of Defaults in CDOs
The residual hedge error dependence on recovery uncertainty and ..... These insights come at the cost of extra effort in (1) solving the optimization problem to.

Bayesian-Optimal Image Reconstruction for ...
May 12, 2008 - marginalized likelihood, is called free energy. In the present ..... control which part of the frequency domain is amplified by the filter. .... 100. 102. 104. (a). (b). Fig. 6. Optimal filter parameter for different noise and smoothne

Optimal Static Hedging of Defaults in CDOs
These reference bonds can default, and in the event of default recover a fraction .... c. rT f h. ,T t. W i i i i i i. T i i i i τ ττ τ ττ. ∆. 0. 0 exp exp. :,0 at default exp exp. : ]0[ ...... tend to drive the upfront payment on the equity

Evolving Nash-optimal poker strategies using evolutionary ...
Evolving Nash-optimal poker strategies using evolutionary computation.pdf. Evolving Nash-optimal poker strategies using evolutionary computation.pdf. Open.

OPTIMAL BUNDLING STRATEGIES FOR ...
To our knowledge, all general results in the bundling literature available for an arbitrary number of goods maintain the assumption that the goods provided are ..... typically imposed on the value function of gains and losses in mental accounting and

A Bayesian approach to optimal monetary policy with parameter and ...
This paper undertakes a Bayesian analysis of optimal monetary policy for the United Kingdom. ... to participants in the JEDC conference and the Norges Bank conference, ... uncertainty that confront monetary policy in a systematic way. ...... 2 call f

Bayesian Optimal Power-utility Grows Hyperbolically in ...
Mar 5, 2012 - (see (3.3)), i.e., this optimal non-Bayesian power-utility grows exponentially ... standard probability space, endowed with the n-dimensional ...

A Bayesian approach to optimal monetary policy with parameter and ...
more useful communication tools. .... instance, we compare micro-founded and non micro-founded models, RE vs. non-RE models, .... comparison with the others. ...... Kimball, M S (1995), 'The quantitative analytics of the basic neomonetarist ...

Hedging Recessions
Mar 10, 2014 - We analyze the life-cycle investment and consumption problem of an investor exposed to ... hump several years before retirement as seen in the data. .... should put a large fraction of their financial wealth into the stock.

Approximating Game-Theoretic Optimal Strategies for ...
sizes, and is not practical for most real domains. ... The application domain used is the game ..... (ie. only one of the available choices), then a perfect mapping.

Optimal strategies and utility-based prices converge ...
time markets with finite time horizon and utility functions defined on the whole ..... into account when choosing the pricing functional by some “marginal rate of ... the minimal amount of money to be paid to the seller and added to her initial.

Optimal strategies and utility-based prices converge ...
analytic machinery has been developed, see Kramkov and Schachermayer ..... mayer [18]), we should find bounds on the solution which would involve the set.

Approximating Game-Theoretic Optimal Strategies for ...
The application domain used is the game of poker, specifically ... A poker-playing program that is a major improvement ...... ior. Princeton University Press, 1944.

Hedging volatility risk
Dec 9, 2005 - a Stern School of Business, New York University, New York, NY 10012, USA .... atility risk one could dynamically trade the straddle such that it ...

Macro-Hedging for Commodity Exporters - CiteSeerX
Jan 31, 2012 - conference as well as two referees for useful comments. ..... good that we will call the consumption good. .... the state in the following way. First ...

The Use of Hedging Devices
Phone: (62 274) 563929, Fax (62 274) 513235. Received/Accepted: 15 ... American writers use type 1 (modal auxiliary verbs) the most and type 6 (if .... other words, using hedging devices to mitigate claims, express genuine uncertainty or ...

Academic English- Hedging and Quoting Sources - UsingEnglish.com
13 The authority on this matter is Josephs, who says… 14 The best translation of that quotation is... 15 Smith and Wesson prove that… 16 The consensus among experts in the field is that… 17 The theory developed in this paper owes a debt to that

Academic English- Hedging and Quoting Sources - UsingEnglish.com
14 The best translation of that quotation is... 15 Smith and Wesson prove that… 16 The consensus among experts in the field is that… 17 The theory developed ...

A Time-Space Hedging Theory
Apr 2, 2004 - N (S) (in particular, by any linear combination of trading strategies with memory of order N)? For instance, in a standard Black-Scholes model, it is rather intuitive that an option whose payoff is a linear combination of random variabl

Optimal Arbitration
May 10, 2012 - comments. †Email: mylovanov ατ gmail.com ...... Ambrus, Atilla and Shih-En Lu, “Robust fully revealing equilibria in multi-sender cheap talk ...