On Basing Private Information Retrieval on NP-Hardness Tianren Liu1

Vinod Vaikuntanathan1

1 MIT [email protected], [email protected]

Thirteenth IACR Theory of Cryptography Conference

. . .

Tianren, Vinod (MIT)

Basing PIR on NP-Hardness

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

TCC 2016-A

. .

.

. . . . . .

1 / 14

Assumptions and Primitives in Cryptography Add-Homomorphic Enc Trapdoor Permutation

PIR

Pub-key Enc

CRHF

OWP

OWF Avg-NP ⊈ BPP NP ⊈ BPP

. . .

Tianren, Vinod (MIT)

Basing PIR on NP-Hardness

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

TCC 2016-A

. .

.

. . . . . .

2 / 14

Assumptions and Primitives in Cryptography Add-Homomorphic Enc Trapdoor Permutation

PIR

Pub-key Enc

CRHF

OWP

OWF Avg-NP ⊈ BPP NP ⊈ BPP Can we prove the security of a cryptographic primitive from the minimal assumption NP ⊈ BPP? (Brassard 1979) . . .

Tianren, Vinod (MIT)

Basing PIR on NP-Hardness

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

TCC 2016-A

. .

.

. . . . . .

2 / 14

(Black-box) Security Proofs To prove the security of X based on NP ⊈ BPP, find a (p.p.t.) reduction R s.t. for any oracle A that “breaks the security of X”, RA solves SAT

R

. . .

Tianren, Vinod (MIT)

Basing PIR on NP-Hardness

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

TCC 2016-A

. .

.

. . . . . .

3 / 14

(Black-box) Security Proofs To prove the security of X based on NP ⊈ BPP, find a (p.p.t.) reduction R s.t. for any oracle A that “breaks the security of X”, RA solves SAT

A

R

. . .

Tianren, Vinod (MIT)

Basing PIR on NP-Hardness

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

TCC 2016-A

. .

.

. . . . . .

3 / 14

(Black-box) Security Proofs To prove the security of X based on NP ⊈ BPP, find a (p.p.t.) reduction R s.t. for any oracle A that “breaks the security of X”, RA solves SAT

A

{ ( ) accepts w.p. ≥ 2/3, x accepts w.p. ≤ 1/3,

if x ∈ SAT if x ∈ / SAT

R

. . .

Tianren, Vinod (MIT)

Basing PIR on NP-Hardness

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

TCC 2016-A

. .

.

. . . . . .

3 / 14

(Black-box) Security Proofs To prove the security of X based on NP ⊈ BPP, find a (p.p.t.) reduction R s.t. for any oracle A that “breaks the security of X”, RA solves SAT

A

{ ( ) accepts w.p. ≥ 2/3, x accepts w.p. ≤ 1/3,

if x ∈ SAT if x ∈ / SAT

R Note: Black-box security proof but allow arbitrary construction.

. . .

Tianren, Vinod (MIT)

Basing PIR on NP-Hardness

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

TCC 2016-A

. .

.

. . . . . .

3 / 14

Impossibility Results Add-Homomorphic Enc Trapdoor Permutation

PIR

Pub-key Enc

CRHF

No known cryptographic scheme based on NP ⊈ BPP. Several negative results* (Brassard

OWP

1979, . . . )

OWF Avg-NP ⊈ BPP NP ⊈ BPP

. . .

Tianren, Vinod (MIT)

Basing PIR on NP-Hardness

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

TCC 2016-A

. .

.

. . . . . .

4 / 14

Impossibility Results Add-Homomorphic Enc

One-way Permutations (Brassard 1979)

Trapdoor Permutation

PIR

Pub-key Enc

CRHF

OWP

OWF Avg-NP ⊈ BPP NP ⊈ BPP

. . .

Tianren, Vinod (MIT)

Basing PIR on NP-Hardness

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

TCC 2016-A

. .

.

. . . . . .

4 / 14

Impossibility Results (restricting the primitives) Add-Homomorphic Enc

Homomorphic Encryption∗ (Bogdanov-Lee 2013)

Trapdoor Permutation

PIR

Pub-key Enc

CRHF

One-way Functions∗ OWP

(Akavia-Goldreich-GoldwasserMoshkovitz 2006, Bogdanov-Brzuska 2014)

OWF Avg-NP ⊈ BPP NP ⊈ BPP

. . .

Tianren, Vinod (MIT)

Basing PIR on NP-Hardness

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

TCC 2016-A

. .

.

. . . . . .

4 / 14

Impossibility Results (restricting the reductions) Add-Homomorphic Enc Trapdoor Permutation

PIR

Pub-key Enc

CRHF

Public-key Encryption Scheme, via “smart” reduction (Goldreich-Goldwasser 1998)

OWP

Collision-resistant Hash Functions, via constant-adaptive reduction (Haitner-Mahmoody-Xiao 2009)

OWF Avg-NP ⊈ BPP

Average-case NP, via non-adaptive reduction (Bogdanov-Trevisan 2006)

NP ⊈ BPP

. . .

Tianren, Vinod (MIT)

Basing PIR on NP-Hardness

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

TCC 2016-A

. .

.

. . . . . .

4 / 14

Our Result: Private Information Retrieval

[CGKS95, KO97]

Add-Homomorphic Enc Trapdoor Permutation

PIR

Pub-key Enc

CRHF

Theorem (Informal) OWP

OWF Avg-NP ⊈ BPP

Let Π be a single-server one-round PIR scheme. Security of Π can not be based on NP-hardness unless polynomial hierarchy collapses.

NP ⊈ BPP

. . .

Tianren, Vinod (MIT)

Basing PIR on NP-Hardness

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

TCC 2016-A

. .

.

. . . . . .

5 / 14

Our Result: Private Information Retrieval

[CGKS95, KO97]

Add-Homomorphic Enc Trapdoor Permutation

PIR

Pub-key Enc

CRHF

Theorem (Informal) OWP

OWF Avg-NP ⊈ BPP NP ⊈ BPP

Let Π be a single-server one-round PIR scheme. Security of Π can not be based on NP-hardness unless polynomial hierarchy collapses. Rule out approximately correct PIR. Rule out PIR with communication complexity n − o(n). . . .

Tianren, Vinod (MIT)

Basing PIR on NP-Hardness

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

TCC 2016-A

. .

.

. . . . . .

5 / 14

Proof Overview Lemma 1 (Single-server one-round) PIR can be broken with an SZK oracle Lemma 2 Language L ∈ BPPSZK =⇒ L ∈ AM ∩ coAM (Mahmoody & Xiao, 2010)

Thus: if there is a reduction from SAT to breaking PIR, then SAT ∈ AM ∩ coAM. Lemma 3 NP ̸⊆ coAM unless polynomial hierarchy collapses (Boppana, H˚ astad & Zachos, 1987)

Thus: if there is a reduction from SAT to breaking PIR, then polynomial hierarchy collapses.

. . .

Tianren, Vinod (MIT)

Basing PIR on NP-Hardness

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

TCC 2016-A

. .

.

. . . . . .

6 / 14

Proof Overview Lemma 1 (Single-server one-round) PIR can be broken with an SZK oracle Lemma 2 Language L ∈ BPPSZK =⇒ L ∈ AM ∩ coAM (Mahmoody & Xiao, 2010)

Thus: if there is a reduction from SAT to breaking PIR, then SAT ∈ AM ∩ coAM. Lemma 3 NP ̸⊆ coAM unless polynomial hierarchy collapses (Boppana, H˚ astad & Zachos, 1987)

Thus: if there is a reduction from SAT to breaking PIR, then polynomial hierarchy collapses.

. . .

Tianren, Vinod (MIT)

Basing PIR on NP-Hardness

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

TCC 2016-A

. .

.

. . . . . .

6 / 14

Proof Overview Lemma 1 (Single-server one-round) PIR can be broken with an SZK oracle Lemma 2 Language L ∈ BPPSZK =⇒ L ∈ AM ∩ coAM (Mahmoody & Xiao, 2010)

Thus: if there is a reduction from SAT to breaking PIR, then SAT ∈ AM ∩ coAM. Lemma 3 NP ̸⊆ coAM unless polynomial hierarchy collapses (Boppana, H˚ astad & Zachos, 1987)

Thus: if there is a reduction from SAT to breaking PIR, then polynomial hierarchy collapses.

. . .

Tianren, Vinod (MIT)

Basing PIR on NP-Hardness

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

TCC 2016-A

. .

.

. . . . . .

6 / 14

Proof Overview Lemma 1 (Single-server one-round) PIR can be broken with an SZK oracle Lemma 2 Language L ∈ BPPSZK =⇒ L ∈ AM ∩ coAM (Mahmoody & Xiao, 2010)

Thus: if there is a reduction from SAT to breaking PIR, then SAT ∈ AM ∩ coAM. Lemma 3 NP ̸⊆ coAM unless polynomial hierarchy collapses (Boppana, H˚ astad & Zachos, 1987)

Thus: if there is a reduction from SAT to breaking PIR, then polynomial hierarchy collapses.

. . .

Tianren, Vinod (MIT)

Basing PIR on NP-Hardness

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

TCC 2016-A

. .

.

. . . . . .

6 / 14

Proof Overview Lemma 1 (Single-server one-round) PIR can be broken with an SZK oracle Lemma 2 Language L ∈ BPPSZK =⇒ L ∈ AM ∩ coAM (Mahmoody & Xiao, 2010)

Thus: if there is a reduction from SAT to breaking PIR, then SAT ∈ AM ∩ coAM. Lemma 3 NP ̸⊆ coAM unless polynomial hierarchy collapses (Boppana, H˚ astad & Zachos, 1987)

Thus: if there is a reduction from SAT to breaking PIR, then polynomial hierarchy collapses.

. . .

Tianren, Vinod (MIT)

Basing PIR on NP-Hardness

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

TCC 2016-A

. .

.

. . . . . .

6 / 14

Proof Overview Lemma 1 (Single-server one-round) PIR can be broken with an SZK oracle Lemma 2 Language L ∈ BPPSZK =⇒ L ∈ AM ∩ coAM (Mahmoody & Xiao, 2010)

Thus: if there is a reduction from SAT to breaking PIR, then SAT ∈ AM ∩ coAM. Lemma 3 NP ̸⊆ coAM unless polynomial hierarchy collapses (Boppana, H˚ astad & Zachos, 1987)

Thus: if there is a reduction from SAT to breaking PIR, then polynomial hierarchy collapses.

. . .

Tianren, Vinod (MIT)

Basing PIR on NP-Hardness

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

TCC 2016-A

. .

.

. . . . . .

6 / 14

Proof Overview Lemma 1 (Single-server one-round) PIR can be broken with an SZK oracle Lemma 2 Language L ∈ BPPSZK =⇒ L ∈ AM ∩ coAM (Mahmoody & Xiao, 2010)

Thus: if there is a reduction from SAT to breaking PIR, then SAT ∈ AM ∩ coAM. Lemma 3 NP ̸⊆ coAM unless polynomial hierarchy collapses (Boppana, H˚ astad & Zachos, 1987)

Thus: if there is a reduction from SAT to breaking PIR, then polynomial hierarchy collapses.

. . .

Tianren, Vinod (MIT)

Basing PIR on NP-Hardness

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

TCC 2016-A

. .

.

. . . . . .

6 / 14

Proof Overview Lemma 1 (Single-server one-round) PIR can be broken with an SZK oracle Lemma 2 Language L ∈ BPPSZK =⇒ L ∈ AM ∩ coAM (Mahmoody & Xiao, 2010)

Thus: if there is a reduction from SAT to breaking PIR, then SAT ∈ AM ∩ coAM. Lemma 3 NP ̸⊆ coAM unless polynomial hierarchy collapses (Boppana, H˚ astad & Zachos, 1987)

Thus: if there is a reduction from SAT to breaking PIR, then polynomial hierarchy collapses.

. . .

Tianren, Vinod (MIT)

Basing PIR on NP-Hardness

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

TCC 2016-A

. .

.

. . . . . .

6 / 14

Single-server One-round Private Information Retrieval Client Index i ∈ {1, . . . , n}

One Server Data x ∈ {0, 1}n

. . .

Tianren, Vinod (MIT)

Basing PIR on NP-Hardness

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

TCC 2016-A

. .

.

. . . . . .

7 / 14

Single-server One-round Private Information Retrieval Client

One Server

Index i ∈ {1, . . . , n} Client send a query

Data x ∈ {0, 1}n q

−−−−−−−−→

. . .

Tianren, Vinod (MIT)

Basing PIR on NP-Hardness

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

TCC 2016-A

. .

.

. . . . . .

7 / 14

Single-server One-round Private Information Retrieval Client

One Server

Index i ∈ {1, . . . , n} Client send a query

Data x ∈ {0, 1}n q

−−−−−−−−→ a

←−−−−−−−− Server answer

. . .

Tianren, Vinod (MIT)

Basing PIR on NP-Hardness

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

TCC 2016-A

. .

.

. . . . . .

7 / 14

Single-server One-round Private Information Retrieval Client

One Server

Index i ∈ {1, . . . , n} Client send a query

Data x ∈ {0, 1}n q

−−−−−−−−→ a

←−−−−−−−− Server answer Correctness: The client learns xi

. . .

Tianren, Vinod (MIT)

Basing PIR on NP-Hardness

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

TCC 2016-A

. .

.

. . . . . .

7 / 14

Single-server One-round Private Information Retrieval Client

One Server

Index i ∈ {1, . . . , n} Client send a query

Data x ∈ {0, 1}n q

−−−−−−−−→ a

←−−−−−−−− Server answer Correctness: The client learns xi (W.p. 1 − ε.)

. . .

Tianren, Vinod (MIT)

Basing PIR on NP-Hardness

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

TCC 2016-A

. .

.

. . . . . .

7 / 14

Single-server One-round Private Information Retrieval Client

One Server

Index i ∈ {1, . . . , n} Client send a query

Data x ∈ {0, 1}n q

−−−−−−−−→ a

←−−−−−−−− Server answer Correctness: The client learns xi (W.p. 1 − ε.)

Privacy: The server learn nothing about i

. . .

Tianren, Vinod (MIT)

Basing PIR on NP-Hardness

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

TCC 2016-A

. .

.

. . . . . .

7 / 14

Single-server One-round Private Information Retrieval Client

One Server

Index i ∈ {1, . . . , n} Client send a query

Data x ∈ {0, 1}n q

−−−−−−−−→ a

←−−−−−−−− Server answer Correctness: The client learns xi (W.p. 1 − ε.)

Privacy: The server learn nothing about i

An Oracle Breaking Single-server One-round PIR Given a query q, guess the index with probability > 1/n + 1/ poly.

. . .

Tianren, Vinod (MIT)

Basing PIR on NP-Hardness

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

TCC 2016-A

. .

.

. . . . . .

7 / 14

Break PIR with SZK oracle (Lemma 1) Client Index i ∈ {1, . . . , n} Generate a query

q

−−−−−−−−→

. . .

Tianren, Vinod (MIT)

Basing PIR on NP-Hardness

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

TCC 2016-A

. .

.

. . . . . .

8 / 14

Break PIR with SZK oracle (Lemma 1) Client

Server

Index i ∈ {1, . . . , n} Generate a query

Random x ∈ {0, 1}n q

−−−−−−−−→

. . .

Tianren, Vinod (MIT)

Basing PIR on NP-Hardness

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

TCC 2016-A

. .

.

. . . . . .

8 / 14

Break PIR with SZK oracle (Lemma 1) Client

Server

Index i ∈ {1, . . . , n} Generate a query

Random x ∈ {0, 1}n q

−−−−−−−−→ a

←−−−−−−−− Server answers

. . .

Tianren, Vinod (MIT)

Basing PIR on NP-Hardness

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

TCC 2016-A

. .

.

. . . . . .

8 / 14

Break PIR with SZK oracle (Lemma 1) Client

Server

Index i ∈ {1, . . . , n} Generate a query

Random x ∈ {0, 1}n q

−−−−−−−−→ a

←−−−−−−−− Server answers Claim 1: I(xi ; a) is big∗ .



The randomness is from x and from the proceduce generating the answer. . . .

Tianren, Vinod (MIT)

Basing PIR on NP-Hardness

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

TCC 2016-A

. .

.

. . . . . .

8 / 14

Break PIR with SZK oracle (Lemma 1) Client

Server

Index i ∈ {1, . . . , n} Generate a query

Random x ∈ {0, 1}n q

−−−−−−−−→ a

←−−−−−−−− Server answers Claim 1: I(xi ; a) is big∗ . Proof: Correctness.



The randomness is from x and from the proceduce generating the answer. . . .

Tianren, Vinod (MIT)

Basing PIR on NP-Hardness

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

TCC 2016-A

. .

.

. . . . . .

8 / 14

Break PIR with SZK oracle (Lemma 1) Client

Server

Index i ∈ {1, . . . , n} Generate a query

Random x ∈ {0, 1}n q

−−−−−−−−→ a

←−−−−−−−− Server answers Claim 1: I(xi ; a) = 1 assuming perfect correctness Proof: Correctness.



The randomness is from x and from the proceduce generating the answer. . . .

Tianren, Vinod (MIT)

Basing PIR on NP-Hardness

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

TCC 2016-A

. .

.

. . . . . .

8 / 14

Break PIR with SZK oracle (Lemma 1) Client

Server

Index i ∈ {1, . . . , n} Generate a query

Random x ∈ {0, 1}n q

−−−−−−−−→ a

←−−−−−−−− Server answers Claim 1: I(xi ; a) = 1 assuming perfect correctness Proof: Correctness. ∑ Claim 2: nj=1 I(xj ; a) ≤ H(a) ≤ |a|.



The randomness is from x and from the proceduce generating the answer. . . .

Tianren, Vinod (MIT)

Basing PIR on NP-Hardness

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

TCC 2016-A

. .

.

. . . . . .

8 / 14

Break PIR with SZK oracle (Lemma 1) Client

Server

Index i ∈ {1, . . . , n} Generate a query

Random x ∈ {0, 1}n q

−−−−−−−−→ a

←−−−−−−−− Server answers Claim 1: I(xi ; a) = 1 assuming perfect correctness Proof: Correctness. ∑ Claim 2: nj=1 I(xj ; a) ≤ H(a) ≤ |a|. Proof: As x1 , . . . , xn are independent.



The randomness is from x and from the proceduce generating the answer. . . .

Tianren, Vinod (MIT)

Basing PIR on NP-Hardness

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

TCC 2016-A

. .

.

. . . . . .

8 / 14

Break PIR with SZK oracle (Lemma 1) Client

Server

Index i ∈ {1, . . . , n} Generate a query

Random x ∈ {0, 1}n q

−−−−−−−−→ a

←−−−−−−−− Server answers Claim 1: I(xi ; a) = 1 assuming perfect correctness Proof: Correctness. ∑ Claim 2: nj=1 I(xj ; a) ≤ H(a) ≤ |a|. Proof: As x1 , . . . , xn are independent. ∑ Corollary: nj=1 I(xj ; a) is small.



The randomness is from x and from the proceduce generating the answer. . . .

Tianren, Vinod (MIT)

Basing PIR on NP-Hardness

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

TCC 2016-A

. .

.

. . . . . .

8 / 14

Idea: Reduce Breaking PIR to Estimating Entropy Given a query q, guess the index

Claim 1: I(xi ; a) = 1 assuming perfect correctness ∑ Claim 2: nj=1 I(xj ; a) ≤ H(a) ≤ |a|.

. . .

Tianren, Vinod (MIT)

Basing PIR on NP-Hardness

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

TCC 2016-A

. .

.

. . . . . .

9 / 14

Idea: Reduce Breaking PIR to Estimating Entropy Given a query q, guess the index Emulate how the server answer q when x ∈ {0, 1}n is random Estimate I(xj ; a) for each j ∈ {1, . . . , n} using SZK oracle (on next slide)

Claim 1: I(xi ; a) = 1 assuming perfect correctness ∑ Claim 2: nj=1 I(xj ; a) ≤ H(a) ≤ |a|.

. . .

Tianren, Vinod (MIT)

Basing PIR on NP-Hardness

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

TCC 2016-A

. .

.

. . . . . .

9 / 14

Idea: Reduce Breaking PIR to Estimating Entropy Given a query q, guess the index Emulate how the server answer q when x ∈ {0, 1}n is random Estimate I(xj ; a) for each j ∈ {1, . . . , n} using SZK oracle (on next slide) I(xi′ ; a) Output a random i′ w.p. ∑n j=1 I(xj ; a)

Claim 1: I(xi ; a) = 1 assuming perfect correctness ∑ Claim 2: nj=1 I(xj ; a) ≤ H(a) ≤ |a|.

. . .

Tianren, Vinod (MIT)

Basing PIR on NP-Hardness

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

TCC 2016-A

. .

.

. . . . . .

9 / 14

Idea: Reduce Breaking PIR to Estimating Entropy Given a query q, guess the index Emulate how the server answer q when x ∈ {0, 1}n is random Estimate I(xj ; a) for each j ∈ {1, . . . , n} using SZK oracle (on next slide) I(xi′ ; a) Output a random i′ w.p. ∑n j=1 I(xj ; a) Guess correctly w.p. ≥

1 |a|

Claim 1: I(xi ; a) = 1 assuming perfect correctness ∑ Claim 2: nj=1 I(xj ; a) ≤ H(a) ≤ |a|.

. . .

Tianren, Vinod (MIT)

Basing PIR on NP-Hardness

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

TCC 2016-A

. .

.

. . . . . .

9 / 14

Idea: Reduce Breaking PIR to Estimating Entropy Given a query q, guess the index Emulate how the server answer q when x ∈ {0, 1}n is random Estimate I(xj ; a) for each j ∈ {1, . . . , n} using SZK oracle (on next slide) I(xi′ ; a) Output a random i′ w.p. ∑n j=1 I(xj ; a) Guess correctly w.p. ≥

1 − h(ε) |a|

Claim 1: Eq [I(xi ; a)] ≥ 1 − h(ε) assuming correctness w.h.p. ∑ Claim 2: nj=1 I(xj ; a) ≤ H(a) ≤ |a|.

. . .

Tianren, Vinod (MIT)

Basing PIR on NP-Hardness

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

TCC 2016-A

. .

.

. . . . . .

9 / 14

Mutual Information and SZK Mutual information I(xi ; a) = H(xi ) + H(a) − H(xi , a) = H(xi ) − H(xi |a) Entropy Approximation is in SZK: Given a circuit generating a distribution D, and h 1 To distinguish between H(D) ≥ h + poly and H(D) ≤ h −

1 poly

Can estimate entropy given an SZK oracle

. . .

Tianren, Vinod (MIT)

Basing PIR on NP-Hardness

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

TCC 2016-A

. .

.

. . . . . .

10 / 14

Mutual Information and SZK Mutual information I(xi ; a) = H(xi ) + H(a) − H(xi , a) = H(xi ) − H(xi |a) Entropy Approximation is in SZK: Given a circuit generating a distribution D, and h 1 To distinguish between H(D) ≥ h + poly and H(D) ≤ h −

1 poly

Can estimate entropy given an SZK oracle

. . .

Tianren, Vinod (MIT)

Basing PIR on NP-Hardness

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

TCC 2016-A

. .

.

. . . . . .

10 / 14

Mutual Information and SZK Mutual information I(xi ; a) = H(xi ) + H(a) − H(xi , a) = H(xi ) − H(xi |a) Entropy Approximation is in SZK: Given a circuit generating a distribution D, and h 1 To distinguish between H(D) ≥ h + poly and H(D) ≤ h −

1 poly

Can estimate entropy given an SZK oracle

. . .

Tianren, Vinod (MIT)

Basing PIR on NP-Hardness

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

TCC 2016-A

. .

.

. . . . . .

10 / 14

Mutual Information and SZK Mutual information I(xi ; a) = H(xi ) + H(a) − H(xi , a) = H(xi ) − H(xi |a) Entropy Approximation is in SZK: Given a circuit generating a distribution D, and h 1 To distinguish between H(D) ≥ h + poly and H(D) ≤ h −

1 poly

Can estimate entropy given an SZK oracle

Server data x, random tape

Client i, index q a

. . .

Tianren, Vinod (MIT)

Basing PIR on NP-Hardness

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

TCC 2016-A

. .

.

. . . . . .

10 / 14

Mutual Information and SZK Mutual information I(xi ; a) = H(xi ) + H(a) − H(xi , a) = H(xi ) − H(xi |a) Entropy Approximation is in SZK: Given a circuit generating a distribution D, and h 1 To distinguish between H(D) ≥ h + poly and H(D) ≤ h −

1 poly

Can estimate entropy given an SZK oracle

Server data x, random tape

Client i, index q a

. . .

Tianren, Vinod (MIT)

Basing PIR on NP-Hardness

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

TCC 2016-A

. .

.

. . . . . .

10 / 14

Mutual Information and SZK Mutual information I(xi ; a) = H(xi ) + H(a) − H(xi , a) = H(xi ) − H(xi |a) Entropy Approximation is in SZK: Given a circuit generating a distribution D, and h 1 To distinguish between H(D) ≥ h + poly and H(D) ≤ h −

1 poly

Can estimate entropy given an SZK oracle

Server data x, random tape

Client i, index q, fixed a

. . .

Tianren, Vinod (MIT)

Basing PIR on NP-Hardness

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

TCC 2016-A

. .

.

. . . . . .

10 / 14

Recall Proof Overview Lemma 1 (Single-server one-round) PIR can be broken with an SZK oracle Lemma 2 Language L ∈ BPPSZK =⇒ L ∈ AM ∩ coAM (Mahmoody & Xiao, 2010)

Thus: if there is a reduction from SAT to breaking PIR, then SAT ∈ AM ∩ coAM. Lemma 3 NP ̸⊆ coAM unless polynomial hierarchy collapses (Boppana, H˚ astad & Zachos, 1987)

Thus: if there is a reduction from SAT to breaking PIR, then polynomial hierarchy collapses.

. . .

Tianren, Vinod (MIT)

Basing PIR on NP-Hardness

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

TCC 2016-A

. .

.

. . . . . .

11 / 14

Open problem: Multiple-round Multiple-round PIR

One-round PIR

Could we rule out multiple-round PIR?

. . .

Tianren, Vinod (MIT)

Basing PIR on NP-Hardness

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

TCC 2016-A

. .

.

. . . . . .

12 / 14

Open problem: Multiple-round Multiple-round PIR

One-round PIR

Could we rule out multiple-round PIR? Server x, data

Client i, index random tape

random tape

q a

. . .

Tianren, Vinod (MIT)

Basing PIR on NP-Hardness

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

TCC 2016-A

. .

.

. . . . . .

12 / 14

Open problem: Multiple-round Multiple-round PIR Could we rule out multiple-round PIR?

One-round PIR Given the view of server, it’s easy to generate another view. Server x, data

Client i, index random tape

random tape

q a

. . .

Tianren, Vinod (MIT)

Basing PIR on NP-Hardness

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

TCC 2016-A

. .

.

. . . . . .

12 / 14

Open problem: Multiple-round Multiple-round PIR

One-round PIR

Could we rule out multiple-round PIR?

Given the view of server, it’s easy to generate another view.

Server x, data

Client i, index random tape

random tape

m1 m2 m3

random tape

random tape

q a1

a

a2 a3

. . .

Tianren, Vinod (MIT)

Server x, data

Client i, index

Basing PIR on NP-Hardness

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

TCC 2016-A

. .

.

. . . . . .

12 / 14

Open problem: CRHF Add-Homomorphic Enc

(This work)

Trapdoor Permutation Pub-key Enc

PIR

PIR CRHF

One-way Permutations OWP

(Brassard 1979)

OWF Avg-NP ⊈ BPP NP ⊈ BPP

. . .

Tianren, Vinod (MIT)

Basing PIR on NP-Hardness

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

TCC 2016-A

. .

.

. . . . . .

13 / 14

Open problem: CRHF Add-Homomorphic Enc

(This work)

Trapdoor Permutation Pub-key Enc

PIR

PIR CRHF

One-way Permutations OWP

OWF

(Brassard 1979)

Could we rule out reduction from SAT to finding collisions? (TCC 2017?)

Avg-NP ⊈ BPP NP ⊈ BPP

. . .

Tianren, Vinod (MIT)

Basing PIR on NP-Hardness

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

TCC 2016-A

. .

.

. . . . . .

13 / 14

Thank you!

. . .

Tianren, Vinod (MIT)

Basing PIR on NP-Hardness

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

TCC 2016-A

. .

.

. . . . . .

14 / 14

On Basing Private Information Retrieval on NP-Hardness

Assumptions and Primitives in Cryptography. NP ⊈ BPP. Avg-NP ⊈ BPP. OWF. CRHF. Pub-key Enc. OWP. Trapdoor. Permutation. PIR. Add-Homomorphic Enc. Can we prove the security of a cryptographic primitive from the minimal assumption NP ⊈ BPP? (Brassard 1979). Tianren, Vinod (MIT). Basing PIR on NP-Hardness.

260KB Sizes 0 Downloads 318 Views

Recommend Documents

Private Location-Based Information Retrieval via k ...
Abstract We present a multidisciplinary solution to an application of private re- trieval of ..... to this work build upon the idea of location anonymizers, that is, TTPs implementing location ..... an arbitrary clustering of a large cloud of points.

On the Protection of Private Information in ... - Research at Google
protecting the privacy of training data for machine learning systems, and comment ... to protection from programs [22]. When we discuss .... the best results. They lead, in .... noise to sensitivity in private data analysis,” in Theory of. Cryptogr

Private Location-Based Information Retrieval through ...
Nov 2, 2009 - Privacy and security are paramount in the proper deployment of location-based services (LBSs). We present a ..... an incremental path-building design, where a client who wishes to .... ing secure network communication may be satisfied b

Private Location-Based Information Retrieval via k ...
based on Cartesian coordinates, graphs, multiple client-server interactions[Duckham 05 ... Other TTP-free methods build upon cryptographic methods for PIR,. which may be .... an arbitrary clustering of a large cloud of points. This is ...

Optimized Query Forgery for Private Information Retrieval
include not only the risk of user profiling by an Internet search engine, but also by location-based service (LBS) providers, or even corporate profiling by patent ...

Private Location-Based Information Retrieval via k ...
ID, Query,. Location. IDTTP, Query,. Location. Reply. TTP. Reply. LBS Provider. User. Fig. 1: Anonymous access to an LBS provider through a TTP. sense that the provider cannot know the user ID, but merely the identity IDTTP of the TTP itself inherent

Private Location-Based Information Retrieval via k ...
Abstract We present a multidisciplinary solution to an application of private re- trieval of ..... density functions (PDF) and probability mass functions (PMF) are denoted by p and ..... an arbitrary clustering of a large cloud of points. This is ...

On the Protection of Private Information in Machine Learning Systems ...
[14] S. Song, K. Chaudhuri, and A. Sarwate, “Stochastic gradient descent with differentially ... [18] X. Wu, A. Kumar, K. Chaudhuri, S. Jha, and J. F. Naughton,.

Interactive Cluster-Based Personalized Retrieval on ... - Springer Link
consists of a good test-bed domain where personalization techniques may prove ... inserted by the user or implicitly by monitoring a user's behavior. ..... As the underlying distributed memory platform we use a beowulf-class linux-cluster .... Hearst

Image Retrieval: Color and Texture Combining Based on Query-Image*
into account a particular query-image without interaction between system and .... groups are: City, Clouds, Coastal landscapes, Contemporary buildings, Fields,.

Impact of Retrieval Precision on Perceived ... - Semantic Scholar
Department of Management Sciences. University ... David R. Cheriton School of Computer Science ... We conducted a user study that controlled retrieval preci-.

Fast protein tertiary structure retrieval based on ... - Semantic Scholar
Feb 11, 2008 - Lee Sael,1 Bin Li,1 David La,2 Yi Fang,3 Karthik Ramani,3 Raif Rustamov,4 and Daisuke ...... Pearson WR, Lipman DJ. Improved tools for ...

Fast protein tertiary structure retrieval based on ... - Semantic Scholar
Feb 11, 2008 - SAL is powerful in finding overall fold similarity of proteins that is missed by CE or COSEC. This feature of SAL is especially useful for finding ...

Information on Aps.pdf
Rando 4Me bills itself as 'Anti-Social Media' because. it doesn't require conversation or linking in with people to send/receive. images. As there is no way of ...

Detailed guidance on the electronic submission of information on ...
Apr 19, 2017 - marketing authorisation holders to the European Medicines Agency in accordance with Article .... Pharmacovigilance enquiry email (AP.7) .

Detailed guidance on the electronic submission of information on ...
Apr 19, 2017 - basis in line with the requirements and business processes described in this ...... to support data analytics and business intelligence activities; ...

BASIC INFORMATION ON THE 6TH WORLD SOCIAL FORUM ON ...
Around 3,000 delegates and participants from Africa and all over the world are expected ... To provide a platform for the sharing of experiences, exchange of information and ... It consists of social movements, migrant networks, non-government.

Interactive Cluster-Based Personalized Retrieval on ... - Springer Link
techniques based on user modeling to initiate the search on a large ... personalized services, a clustering based approach towards a user directed ..... Communities on the Internet Using Unsupervised Machine Learning Techniques. ... Distributed Compu

Video Retrieval Based on Textual Queries
Center for Visual Information Technology,. International Institute of Information Technology,. Gachibowli ... There are two important issues in Content-Based Video Ac- cess: (a) A .... matching algorithm then computes the degree of similarity be-.

Shape Indexing and Semantic Image Retrieval Based on Ontological ...
Retrieval Engine by NEC USA Inc.) provides image retrieval in Web by ...... The design and implementation of the Redland RDF application framework, Proc.

Image Retrieval Based on Wavelet Transform and Neural Network ...
The best efficiency of 88% was obtained with the third method. Key Words: .... Daubechies wavelets are widely used in signal processing. For an ..... Several procedures to train a neural network have been proposed in the literature. Among ...

On Real-time Ad-hoc Retrieval Evaluation
and Software—Performance Evaluation. General Terms .... graded relevance, ranking measures are possible and follow the general principles of the proposed ...

Shape Indexing and Semantic Image Retrieval Based on Ontological ...
Center retrieves images, graphics and video data from online collections using color, .... ular class of image collection, and w(i,j) is semantic weight associated with a class of images to which .... Mn is defined by means of two coordinates (x;y).

Video Retrieval Based on Textual Queries
Audio and the textual content in videos can be of immense use ... An advanced video retrieval solution could identify the text ..... Conference on Computer.