Non-Parametric Econometrics Emmanuel Flachaire

Emmanuel Flachaire

Non-Parametric Econometrics

Chapter 2

Kernel Regression

Emmanuel Flachaire

Non-Parametric Econometrics

Introduction

I

Two-variable regression: one dependent variable y and one regressor x

I

The relationship between y and x is not specified a priori

I

The regression model is defined as: y = m(x) + ε

I

The unknown function m is estimated nonparametrically

I

Nonparametric regression: no parameters

I

Nonparametric vs. parametric: a (classical) arbitrage robustness vs. efficiency

Emmanuel Flachaire

Non-Parametric Econometrics

(1)

10.0

9.5

log(wage)

9.0

8.5

............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... ... .... .......... ... ... .... ... ... .. ... . ... .. ...... . . ... . . . . . .... ... . ... ... .... ... ... ..... . . . . ... ... .. . . . ... ... . . . . . . ... ... . .. . . . ... ... .. . . . . . ... ... . . . . . . ... ... . . . . . .. ... ... . .. . .. . ... ... ... . . . . . . ... . . ......... . . . ... ... . . ... ... . . . ... . ... . . . .. .. ... .. . ....... . . .. . . . .. . . .. .. . . ... ... . ...... . .. . . . . . . . . . . ... ... . .. ...... . . . . . . . . . . . . .. ... ..... . .. . . . .. . . . . . ... . ... ..... . . . . . . . . . .. . . .. ... . . .. . . . . . . . . .. ... ... . . ... ... ..... ............ . . . . ... ... .. ........ . . . ... ... .. ...... . ... ... . . . . . . . . ... ... . .... . . . ... ... . .... . . ... ... . .... . . ... ... . .... . . ... ... . ... . ... ... . . ... . ........... . ... . ... . . ... ... . .. . . ... ... . .... . . ... ... . .. . . ... ... . ... . . . ... ... . .. . . ... ... . ... . . ... ... . ... . . ... ... . . . . ... ... . . . . ... ... . . . . ... ... . ... .... . ... . ... ... . ... ... . ... ... .. . ... ... .. .. . . ... ......... . . ... . ... .. .. ................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... .. .. .. .. .. ..

Determinants of wages

.......................... ...................... ................. . . . . . . . . . . . . . . ............ .......... ......... . . . . . . ...... ......... ......... . . . . . . . . . ....... ........ ....... . . . . . ... .... ... . . . ... ... .... . . . ... .. ... .. ... ... .. .. .... ..

experience

0

10

20

Emmanuel Flachaire

30

40

Non-Parametric Econometrics

50

1.0

0.8

0.6

... .. .... .. .. .. .... . .. .. .... . .. .. ... ... .. ... . .. .. ... . ... .. . . .. ... . . .. .. .. . . .. ... ... . . .. .... ..... . . . . . . . ..................................................................................... ....................................... ...........

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................ ... ... ... .......... . ... ... ... ... ...... .... . .... . . . ... . .... ... ... ... .... ... ... ... ... ..... ..... ... ... ... ... ... ... ... ... ... ... . ... ... . ... . . . . ... . ......... . . ... . . ... .... .... . ... ... ... ... ... ... .. ... ... ... ... ... ... ... ... ... ... ... ... .. ... ... . ... . . ... .... ... . ... ... . ..... . .......... ... .. ... . ... ... ... ... . . ... ... ... . ... ... ... . ... . ... . ... . ... . ... .. ... .. ... ... . . ... ... . . . ... . .......... . . ... . . ..... .... ... . ... . ... . ... . . ... ... . ... . . ... ... . ... . . ... ... . . . . . . ... . ... . . . . . ... .... . ... . . . . . .... . ... . ... . . . . . . . ... ...... . .. . . ... .. . ... ...... .. . .. . . .. ... . . . ... ... . . . ... ... . . . ... . . .. . . ... . . .............. ......... ............................ . . . ... ... . . . . ... ... .. . . . ... . ... . . .. ... . .. ... . . . .. .. . . . ... . . ... ... .. ........ ........................ . ... . ... . ... . ... . ... . ... . ... . ... ... ... . .... ... .. . . . ... . ... .. ... .. ... ... ... ... ... .. ... .......... ... .... .. ................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... .. .. .. .. .. ..

Determinants of wages (heteroskedasticity)

(residuals)2 0.4

0.2

0.0

experience

0

10

20

Emmanuel Flachaire

30

40

Non-Parametric Econometrics

50

Nadaraya-Watson estimator From the discrete to the continuous case

I

Regression y = m(x) + ε can be rewritten E (y |x) = m(x)

I

If x is a dummy, we compute the mean of y for the 1st group (x = 0) and for the 2nd group (x = 1): wage of men/women

I

If x is continuous, we cannot estimate E (y |X ) like that

I

Na¨ıve estimator: we compute the mean of y with values of the regressor “close” to x:  Pn x−xi 1 1 i=1 I − 2 < h < 2 yi  m(x) ˆ = Pn x−xi 1 1 i=1 I − 2 < h < 2

I

The estimator m ˆ is not smooth

Emmanuel Flachaire

Non-Parametric Econometrics

Nadaraya-Watson estimator From the discrete to the continuous case I

To obtain a smooth estimator, we replace the indicator function by a kernel function (Gaussian, Epanechnikov)

I

Nadaraya-Watson estimator: Pn i=1 K m(x) ˆ = P n i=1 K

I



It can be view as a weighting mean of y , with weights depending on the distance of xi to x: m(x) ˆ =

n X

wi (x)yi

i=1 I

x−xi yi h  x−xi h

with

i K ( x−x h ) wi (x) = Pn x−xi i=1 K ( h )

This estimator is very sensitive to the choice of h, not to K Emmanuel Flachaire

Non-Parametric Econometrics

Nadaraya-Watson estimator Formal derivation

I

A conditional expectation is defined as Z +∞ E (y |x) = y f (y |x) dy −∞

I

It can be rewritten in terms of unconditional density R +∞ Z +∞ y f (x, y )dy y f (x, y ) E (y |x) = dy = R−∞ +∞ f (x) −∞ −∞ f (x, y )dy

I

An estimator is obtained with kernel density estimation fˆ(x, y )

Emmanuel Flachaire

Non-Parametric Econometrics

Nadaraya-Watson estimator Formal derivation

We obtain the Nadaraya-Watson estimator with     n 1 X x − xi y − yi ˆ f (x, y ) = 2 K K nh h h i=1

The denominator is:  Z +∞    Z +∞ n   1 X x − xi y − yi ˆ K f (x, y )dy = 2 K dy nh h h −∞ i=1 {z } | −∞ =1

The numerator is:  Z +∞    Z +∞ n   1 X x − xi y − yi ˆ y f (x, y )dy = 2 K yK dy nh h h −∞ i=1 {z } | −∞ =yi

Emmanuel Flachaire

Non-Parametric Econometrics

Nadaraya-Watson estimator Comments

The denominator of the estimator is given by f (x): I

The Nadaraya-Watson estimator cannot be computed at x, such that f (x) = 0 (denominator equals to 0)

I

This estimator is very unprecised at x, if f (x) ≈ 0

I

This estimator cannot be used to forecast outside the sample, as opposed to parametric estimation

Emmanuel Flachaire

Non-Parametric Econometrics

Local polynomial Bias 1: non-equidistant observations

.................................................................................................................................................................................................................... ... ... ... ... ... ... ... ... . .... . .... .... . . . ... . .... . . . ... .... . .... . . . ... ... . ..... ... ... ..... ........ ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ........... ... . . . ... ... . . .... .. . . . ... ... . .. . ... .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ............ ... ... . . . .... ... . .... . . . . . ... ... . . .. . .. .... .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ............. ... . . . . . ... ... . . . ... . . . . . . . ... ... . .. . . .. ........ ...... ...... ...... ...... ...... ...... ...... ...... ...... ................ ... . . . . . . . ... ... . . . .... .. . . . . ... ... . . .. . .. . .... . . . ... ... . . . .... . . . . . ... . ... . . . . . . .... . . . ... . ... . . .... . . . . . . ... ... . . . . . . .... . . . . ... ... .. . . . ........ ...... ...... ...... ............... ... ... . . . . . . . . ... ... . . .... .. . . . . . . ... ... . . . . . . . .... . . . . ... ... . . .... . . . . . . . ... ... . . . .. . . . . . ... ........... ... . . . ... ... ... . ... ... . . . ... ... . . . ... ... . ... ... . . . ... ... . . . ... . ... ... ... . . . ... ... . . . ... . ... ... ... . . . ... .. ..............................................................................................................................................................................................................................................................................................

m(x)

y3 yB yA y2

y1

x1

x2 xA xB x3

Emmanuel Flachaire

Non-Parametric Econometrics

Local polynomial Order 1: locally linear

I

Source of the bias: non-equidistant observations

I

This bias can be very important at the bounds of the sample

I

Solution: replace the weighting mean by a fitted value obtained from a locally linear regression

I

m(x) ˆ =α ˆ obtained from the regression model: yi = α + β (xi − x) + εi , estimated by Weighted Least Squares, with weights K ( xi −x h )

I

m(x) ˆ =α ˆ is an OLS estimate of the regression model: q q q xi −x K ( xi −x ) y = α K ( ) + β K ( xi −x i h h h ) (xi − x) + εi

Emmanuel Flachaire

Non-Parametric Econometrics

Local polynomial Bias 2: concavity/convexity of the curve

.................................................................................................................................................................................................................... ... ... ... ... ... ... ... ... .... ... ... ... ... ... ... ... ... .. ........ ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ..... ....................................... .... . . . . . . . . . . . ... ... . . . . ............ . . . . . . . . . . . ... ... . ..... ........ ...... ...... ...... ...... ...... ...... ...... ...... ........................... ... .... . . . ... ... . ..... . . . . . ... ... . . . .. .. .... . . ... ... . ... . . . . ... ... . . . . . ... . . . . ... ... . .. .. .... ... ... . . . . . . . ... ... . .. .. ... ... ... . . . . . .. ... ... . .. .. .. ... ... . . . . . .. ... . ... .. . . ... . ... . . . . .. . ... ... . ........ ...... ...... ...... ......... ... ... ... ... ... ... ... ... ... ... ...... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... .... ... ... ... ... ... ... .. ............................................................................................................................................................................................................................................................................................

m(x)

y3 y2

y1

x1

Emmanuel Flachaire

x2

x3

Non-Parametric Econometrics

Local polynomial Order 2: locally quadratic

I

Source of the bias: concavity/convexity of the curve

I

Solution: fitted value obtained from a locally quadratic regression

I

m(x) ˆ =α ˆ obtained from the regression model: yi = α + β (xi − x) + γ (xi − x)2 + εi , estimated by Weighted Least Squares, with weights K ( xi −x h )

I

m(x) ˆ =α ˆ is an OLS estimate of the regression model: p p p p K (.) yi = α K (.) +β K (.) (xi −x)+γ K (.) (xi −x)2 +εi

I

Remark: Nadaraya-Watson ≡ local polynomial of order 0

Emmanuel Flachaire

Non-Parametric Econometrics

Local polynomial Application

Determinants of wages 10.0

9.5

9.0

8.5

......................................................................................................................................................................................................................................................................................................................... . ... .......... ... . ..... ... ... ... ... ... ... ... ....... ... ... ... ... ......... ... ... . . . . . . . ... ... ... . . . . . . ... . ... . .. . . . . . . . ... . ... ... . . . . ... . ... . . . . . . . ... . ......... . . . . . ... . ................................................................ ..... . . . ... . . .. . . .. . .. . . .. . . ... .... . ............. ... ... .......... ... ... . . . . . . . ... ... . . . . . ... . ... .... . . ... . ... ... . . . ... ... .. . . . ... ... ... . . .. . . ... . ... . ... . . . . ... ... .. .... .... .. . .. . .. . ... . ... ......... . . ... ... . . . ... ... . . . ... ... . . . ... ... . . . ... ... . . . ... ... . . . ... ... ... .... ... ... . ... ... ... ... ... ... ... .......... .. .......................................................................................................................................................................................................................................................................................................................... ... ... ... ... ... ...

order 0 (Nadaraya-Watson) order 1 (local linear) .......... order 2 (local quadratic) ........................ ................ ............. . . . . . . . . ....... ........ ........ . . . . . . . ......... ....... ...... . . . .... .... .... .. .. .... ... .. . . . ... ...

0

10

20

30

Emmanuel Flachaire

40

50

Non-Parametric Econometrics

Local polynomial Derivatives

Usefulness of derivatives I

1st derivative, m0 (x) → influence of variations of x over y

I

2nd derivative, m00 (x) → curvature of the function

Derivative estimates can be computed from their definitions: m ˆ 0 (x) = m ˆ 00 (x) =

1 [m(x ˆ + h) − m(x ˆ − h)] 2h

1 [m(x ˆ + h) − 2 m(x) ˆ + m(x ˆ − h)] (2h)2

with h → 0 as the sample size increases, n → ∞

Emmanuel Flachaire

Non-Parametric Econometrics

Local polynomial Derivatives

Derivatives are directly given from the local polynomial estimation Local polynomial estimation of order p: n X 2 p 2 Min K ( xi −x h ) [yi −α−β (xi −x)−γ (xi −x) −· · ·−δ(xi −x) ] α,β,γ,...,δ

i=1

That we get using in

P

K (.)[yi − m(xi )]2 a Taylor approx of m(xi ):

m(xi ) ≈ m(x)+m0 (x)(xi −x)+

m(p) (x) m00 (x) (xi −x)2 +· · ·+ (xi −x)p 2 p!

Thus, we have: m(x) = α,

m0 (x) = β,

m00 (x) = 2γ,

Emmanuel Flachaire

...

and m(p) (x) = p! δ

Non-Parametric Econometrics

Sensitivity to the bandwidth Heteroskedasticity 1.0 0.8 0.6 0.4 0.2 0.0

.. .. ... ... .. .......... default ... . . default*2 . ... default/2 .. ... ... .. ... .. ... ... .. .. .... .. ... ... ... ... . . . .. .............................................................................................

.......................................................................................................................................................................................................................................................................................................................... . .. .. .. .......... ... ... .... .... ..... . ... .... ... ... ... ... ... . ... ... ......... .... ... ... . . ... . .......... ....... . ... . .... ..... ... . . ... . .. ..... ... ... ..... ... . ... .. . . ... . ... .. ... ... ... . . . . . . ... ......... ..... .... ... ... ... ... .. ... ... . ... ..... .... ... ... ... ... ... ... ... . ... ..... ... ... . . .......... ... . ... . .... . ... ..... ... . ... . . . ... . . ... . .. . . ... . ... . . . . . ... . ... ... . . ... . . ... . . . . . .. . . . . ... . . .......... ...... ......... ..... . . .. . .. .. . . .. . . . ... . ........ . .......... ... ................................................................................. .... ... ..... ...... . ... . ... .......... ... ... ... ... ... ... ... ... ... . ... ......... ... .. ........................................................................................................................................................................................................................................................................................................................... .. .. .. .. .. ..

0

10

20

Emmanuel Flachaire

30

40

50

Non-Parametric Econometrics

How to select the bandwidth? Rule of thumb I

Choose one criterion, as the mean integrated squared error:  Z 2 [m(x) ˆ − m(x)] dx MISE(h) = E

I

Minimizing an approximation of the MISE gives: hopt = c n−1/5 .

I

The constant term c depends on unknown functions f and m. I

I

I

We can replace f by a “reference” density function, as in the case of the kernel density estimation We cannot replace m by a “reference” regression function, which one should we use?

Consequence: there is no rule of thumb to select h! Emmanuel Flachaire

Non-Parametric Econometrics

How to select the bandwidth? Cross validation

I

Cross validation remains to minimize the following criterion : n

1X [yi − m ˆ −i (xi )]2 CV(h) = n i=1

where m ˆ −i (.) is estimated from the sample from which the observation i is removed. I

It is quite similar to the OLS criterion (Min SSR)

I

If xi is not removed from the sample, we have hopt = 0

I

It works quite well and can often be checked by a plot of m ˆ

Emmanuel Flachaire

Non-Parametric Econometrics

Confidence intervals Asympotic method I

Under regularities conditions, the Nadaraya-Watson estimator is asymptotically Normal:   √ v σ2 , hn [m(x) ˆ − m(x)] → N b , f (x) R where σ 2 is the variance of x and v = K 2 (u)du.

I

b is the asymptotic bias of m(x), ˆ depending on the unknown quantities f (x), f 0 (x), m0 (x) and m00 (x).

I

If the bias is not significant (h sufficiently small), we have s vσ ˆ2 , m(x) ˆ ± 1.96 nhfˆ(x)

I

A value smaller than hopt is preferred → undersmooth Emmanuel Flachaire

Non-Parametric Econometrics

Confidence intervals Bootstrap methods

I

In general, the distribution of a statistic τ is unknown in practice (finite sample) → we use an approximation

I

Asymptotic method: distribution of τ as n → ∞

I

Bootstrap method: distribution of τ from a predefined DGP

I

If the “bootstrap” DGP is close to the true DGP, the approximation given by the bootstrap should be good Bootstrap Principle:

I

I I I

an initial estimation is used to calculate the residuals these residuals are used to generate new samples (resampling) new regression estimations from the new samples

The set of new estimates allow us to measure the variation in the estimated values

Emmanuel Flachaire

Non-Parametric Econometrics

Confidence intervals Bootstrap methods

A bootstrap CI is obtained as follows: I

Select an optimal bandwidth hopt

I

Reestimate regression with h+ = 1.1hopt (oversmooth): m ˆ h+

I

Reestimate regression with h− = 0.9hopt (undersmooth): εˆi

I

Bootstrap DGP: yi∗ = m ˆ h+ (xi ) + εˆi ηi∗

I

Estimate the regression over the bootstrap sample (y ∗ , x) with the optimal bandwidth hopt → m(x) ˆ ∗

I

Repeat the 2 preceding steps many times. The 95% CI results from the calculation of the 0.025 and 0.975 quantiles of the EDF of m(x) ˆ ∗ : percentile approach.

Emmanuel Flachaire

Non-Parametric Econometrics

Confidence intervals Bootstrap methods I

Bootstrap DGP: yi∗ = m ˆ h+ (xi ) + εˆi ηi∗

I

Percentile method: I I I

I

from B bootstrap samples, compute m ˆ b∗ (b = 1, . . . , B) ∗ ˆ i) The EDF of m ˆ b is the bootstrap distribution of m(x Use EDF quantiles to define a confidence interval: [q1−α ; qα ]

Percentile-t method: I I I

from B boot. samples, compute τb∗ = [m ˆ ∗ (xi ) − m(x ˆ i )]/ˆs (xi ) ∗ The EDF of τb is the bootstrap distribution of τˆ Use EDF quantiles to define a confidence interval: [m(x) ˆ − q.975 ˆs (x) ; m(x) ˆ − q.025 ˆs (x)]

I

Key difference: τ is asymptotically pivotal Emmanuel Flachaire

Non-Parametric Econometrics

Parametric vs. nonparametric model A simple test

I

Let us assume that the true regression function is: y = β0 + β1 x + β3 x 3 + ε

I

A parametric test of the following hypotheses: H0 : y = β0 + β1 x + ε vs. H1 : y = β0 + β1 x + β2 x 2 + ε would not reject the null!

I

On the contrary, a test statistic based on H1 : y = m(x) + ε would likely reject the null

Emmanuel Flachaire

Non-Parametric Econometrics

(2)

Parametric vs. nonparametric model A simple test I

Is a parametric model adequate? A measure of distance is: Z  2 ˆ dx m(x) ˆ − m(x, β)

I

Hardle and Mammen note that the nonparametric estimator is ˆ by: biased and propose to replace m(x, β) ˆ = m(x, ˆ β)

I

P

i ˆ K ( x−x )m(x, β) P h x−xi K( h )

A simple test statistic is thus, Tn =

n  2 √ X ˆ h m(x ˆ i ) − m(x, ˆ β) ψ(xi ) i=1

Emmanuel Flachaire

Non-Parametric Econometrics

Parametric vs. nonparametric model A simple bootstrap test

A bootstrap P-value is obtained as follows: ˆ and calculate Tn I estimate m(x), ˆ m(x, β) I

ˆ save residuals from the parametric model: εˆi = yi − m(xi , β) ˆ generate a bootstrap sample from: y ∗ = m(xi , β)

I

calculate a bootstrap test Tn∗ from the new sample

I

repeat several times

I

i

The P-value is the percentage of Tn∗ greater than Tn

Emmanuel Flachaire

Non-Parametric Econometrics

Non-Parametric Econometrics

Nonparametric vs. parametric: a (classical) arbitrage ...... x−xi h. ) ▷ It can be view as a weighting mean of y, with weights depending on the distance of xi to x:.

382KB Sizes 0 Downloads 170 Views

Recommend Documents

Growth econometrics
Oct 1, 2004 - To show this, we rank the countries by their annual growth rate between ...... s is the saving rate for human capital and dots above variables ...

Growth econometrics
Oct 1, 2004 - Foundation for financial support. Johnson thanks the Department of Economics,. University of Wisconsin for its hospitality in Fall 2003, during ...

Nonparametric Hierarchical Bayesian Model for ...
results of alternative data-driven methods in capturing the category structure in the ..... free energy function F[q] = E[log q(h)] − E[log p(y, h)]. Here, and in the ...

Nonparametric Euler Equation Identification and ... - Boston College
Sep 24, 2015 - the solution of equation (1) has a well-posed generalized inverse, ...... Together, these allow us to establish nonparametric global point iden-.

Nonparametric Euler Equation Identification and ... - Boston College
Sep 24, 2015 - (1997), Newey and Powell (2003), Ai and Chen (2003) and Darolles .... estimation problems include Carrasco and Florens (2000), Ai and Chen.

Nonparametric Estimation of Triangular Simultaneous ...
Oct 6, 2015 - penalization procedure is also justified in the context of design density. ...... P0 is a projection matrix, hence is p.s.d, the second term of (A.21).

Incremental Learning of Nonparametric Bayesian ...
Jan 31, 2009 - Mixture Models. Conference on Computer Vision and Pattern Recognition. 2008. Ryan Gomes (CalTech). Piero Perona (CalTech). Max Welling ...

A Tail-Index Nonparametric Test
Feb 1, 2010 - In our application, the tail index gives a measure of bid clustering around .... data. Collusion implies that bids will be close to the reserve. To the ...

A Tail−Index Nonparametric Test
that with common values, an open auction is revenue superior to the first−price, .... the asymptotic variance designed for auction data, and compare it to Hill ...

A Nonparametric Variance Decomposition Using Panel Data
Oct 20, 2014 - In Austrian data, we find evidence that heterogeneity ...... analytical standard errors for our estimates without imposing functional forms on Fi, we.

Empirical Econometrics
chosen as an illustration of the concepts taught and how these methods are .... In this section we will, briefly, recap the ideas behind the basic hypothesis test and the .... the red area (that is, increasing the likelihood of making a type II error

Econometrics paper.wps
This paper aims to explain the econometrics methods which are widely used in empirical economics study. There are three methods described in this paper, ...

Econometrics paper.wps
from samples or a set of data which produces the smallest value of the residual sum of squares (Gujarati, 2003, pp.79). According to The Gauss-Markov theorem, ...

Growth econometrics - CiteSeerX
the true degree of uncertainty about the parameters, and the choice of which ...... convergence does not occur if countries are perpetually subjected to distinct business ...... Masters, W. and M. McMillan, (2001), “Climate and Scale in Economic ..

Nonparametric/semiparametric estimation and testing ...
Mar 6, 2012 - Density Estimation Main Results Examples ..... Density Estimation Main Results Examples. Specification Test for a Parametric Model.

Robust Nonparametric Confidence Intervals for ...
results are readily available in R and STATA using our companion software ..... mance in finite samples by accounting for the added variability introduced by.

Supplement to "Robust Nonparametric Confidence ...
Page 1 ... INTERVALS FOR REGRESSION-DISCONTINUITY DESIGNS”. (Econometrica ... 38. S.2.6. Consistent Bandwidth Selection for Sharp RD Designs .

Variational Nonparametric Bayesian Hidden Markov ...
[email protected], [email protected]. ABSTRACT. The Hidden Markov Model ... nite number of hidden states and uses an infinite number of Gaussian components to support continuous observations. An efficient varia- tional inference ...

Scalable Dynamic Nonparametric Bayesian ... - Research at Google
cation, social media and tracking of user interests. 2 Recurrent Chinese .... For each storyline we list the top words in the left column, and the top named entities ...

Growth econometrics - CiteSeerX
(from 33% to 40%) but very little change at the 75th percentile. This pattern ..... The stylized facts of economic growth have led to two major themes in the.

labor econometrics
and (b) the infusion of a variety of sources of microdata. This essay outlines ... portant ways to accommodate a variety of models and types of data. To account.