Next-to-Next-to-leading ultrasoft running of the heavy quarkonium potentials and spectrum: Spin-independent case Phys.Rev.D84:014012,2011 Antonio Pineda Universitat Autònoma de Barcelona

QWG2011, Darmstadt, Germany October 4–7, 2011

INTRODUCTION

Ultrasoft

Matching conditions

Conclusions

Motivation



t-¯t production near threshold.



Non-relativistic sum rules. Determinations of the bottom quark mass.



Attempts of a weak coupling description of higher excitations of heavy quarkonium: Brambilla-Sumino-Vairo



Sumino-Recksiegel 1/m seemed to be important. Fine structure



recent experimental determination of L=1 states



Comparison with lattice potentials



Also relevant for the muonic hydrogen lamb shift (proton radius)

Next-to-Next-to-leading ultrasoft running of the heavy quarkonium potentials and spectrum: Spin-independent case

Antonio Pineda

INTRODUCTION

Ultrasoft

Matching conditions

Conclusions

Motivation



t-¯t production near threshold.



Non-relativistic sum rules. Determinations of the bottom quark mass.



Attempts of a weak coupling description of higher excitations of heavy quarkonium: Brambilla-Sumino-Vairo



Sumino-Recksiegel 1/m seemed to be important. Fine structure



recent experimental determination of L=1 states



Comparison with lattice potentials



Also relevant for the muonic hydrogen lamb shift (proton radius)

Next-to-Next-to-leading ultrasoft running of the heavy quarkonium potentials and spectrum: Spin-independent case

Antonio Pineda

INTRODUCTION

Ultrasoft

Matching conditions

Conclusions

Motivation



t-¯t production near threshold.



Non-relativistic sum rules. Determinations of the bottom quark mass.



Attempts of a weak coupling description of higher excitations of heavy quarkonium: Brambilla-Sumino-Vairo



Sumino-Recksiegel 1/m seemed to be important. Fine structure



recent experimental determination of L=1 states



Comparison with lattice potentials



Also relevant for the muonic hydrogen lamb shift (proton radius)

Next-to-Next-to-leading ultrasoft running of the heavy quarkonium potentials and spectrum: Spin-independent case

Antonio Pineda

INTRODUCTION

Ultrasoft

Matching conditions

Conclusions

Motivation



t-¯t production near threshold.



Non-relativistic sum rules. Determinations of the bottom quark mass.



Attempts of a weak coupling description of higher excitations of heavy quarkonium: Brambilla-Sumino-Vairo



Sumino-Recksiegel 1/m seemed to be important. Fine structure



recent experimental determination of L=1 states



Comparison with lattice potentials



Also relevant for the muonic hydrogen lamb shift (proton radius)

Next-to-Next-to-leading ultrasoft running of the heavy quarkonium potentials and spectrum: Spin-independent case

Antonio Pineda

INTRODUCTION

Ultrasoft

Matching conditions

Conclusions

Motivation



t-¯t production near threshold.



Non-relativistic sum rules. Determinations of the bottom quark mass.



Attempts of a weak coupling description of higher excitations of heavy quarkonium: Brambilla-Sumino-Vairo



Sumino-Recksiegel 1/m seemed to be important. Fine structure



recent experimental determination of L=1 states



Comparison with lattice potentials



Also relevant for the muonic hydrogen lamb shift (proton radius)

Next-to-Next-to-leading ultrasoft running of the heavy quarkonium potentials and spectrum: Spin-independent case

Antonio Pineda

INTRODUCTION

Ultrasoft

Matching conditions

Conclusions

Motivation



t-¯t production near threshold.



Non-relativistic sum rules. Determinations of the bottom quark mass.



Attempts of a weak coupling description of higher excitations of heavy quarkonium: Brambilla-Sumino-Vairo



Sumino-Recksiegel 1/m seemed to be important. Fine structure



recent experimental determination of L=1 states



Comparison with lattice potentials



Also relevant for the muonic hydrogen lamb shift (proton radius)

Next-to-Next-to-leading ultrasoft running of the heavy quarkonium potentials and spectrum: Spin-independent case

Antonio Pineda

INTRODUCTION

Ultrasoft

Matching conditions

Conclusions

Motivation



t-¯t production near threshold.



Non-relativistic sum rules. Determinations of the bottom quark mass.



Attempts of a weak coupling description of higher excitations of heavy quarkonium: Brambilla-Sumino-Vairo



Sumino-Recksiegel 1/m seemed to be important. Fine structure



recent experimental determination of L=1 states



Comparison with lattice potentials



Also relevant for the muonic hydrogen lamb shift (proton radius)

Next-to-Next-to-leading ultrasoft running of the heavy quarkonium potentials and spectrum: Spin-independent case

Antonio Pineda

INTRODUCTION

Ultrasoft

Matching conditions

Conclusions

Motivation



t-¯t production near threshold.



Non-relativistic sum rules. Determinations of the bottom quark mass.



Attempts of a weak coupling description of higher excitations of heavy quarkonium: Brambilla-Sumino-Vairo



Sumino-Recksiegel 1/m seemed to be important. Fine structure



recent experimental determination of L=1 states



Comparison with lattice potentials



Also relevant for the muonic hydrogen lamb shift (proton radius)

Next-to-Next-to-leading ultrasoft running of the heavy quarkonium potentials and spectrum: Spin-independent case

Antonio Pineda

INTRODUCTION

Ultrasoft

(



Matching conditions



Lus = Tr S (i∂0 − hs (r )) S + O (iD0 − ho (r )) O

Conclusions

)

n o o VB (r ) n † +gVA (r )Tr O† r · E S + S† r · E O + g Tr O {r · E, O} . 2 hs can be splitted in the kinetic term and the potential: p2 + Vs (r, p, S1 , S2 ) ≡ hsC + δhs , 2mr p2 ho (r, p, S1 , S2 ) = + Vo (r, p, S1 , S2 ) ≡ hoC + δho , 2mr

hs (r, p, S1 , S2 ) =

C where hs/o =

p2 2 mr

C + Vs/o , mr = m1 m2 /(m1 + m2 ) and p = −i∇r .

Vs/o (r )

=

V (2)

=

VSI

(2)

=

(2) VSD

=

V (2) V (1) (r ) + 2 + ··· , m m (2) (2) VSD + VSI , (2) 1 n 2 (2) o VL2 (r ) 2 (2) p , Vp2 (r ) + L + Vr (r ), 2 r2 (2) (2) (2) VLS (r )L · S + VS2 (r )S2 + VS12 (r )S12 (ˆr), (0)

Vs/o (r ) +

where S = S1 + S2 and L = r × p, and S12 (ˆr) ≡ 3ˆr · σ 1 ˆr · σ 2 − σ 1 · σ 2 . Next-to-Next-to-leading ultrasoft running of the heavy quarkonium potentials and spectrum: Spin-independent case

Antonio Pineda

INTRODUCTION

Ultrasoft

Z

Matching conditions

Conclusions

dte iEt d 3 Rhvac|S(t, r, R)S † (0, r′ , 0)|vaci

i |ri E − hsB − ΣB (E) + iη i ∼ φn (r)φn (r′ ) , E − Enpot − δEnus + iǫ ∼ hr′ |

where n generically denotes the quantum number of the bound state: n → (n (principal quantum number), l (orbital angular momentum), s (total spin), j (total angular momentum)). Enpot and φn (r) are the eigenvalue and eigenfunction respectively of the equation hs φn (r) = Enpot φn (r) and, in general, will depend on the renormalization scheme the ultrasoft computation has been performed with.

Next-to-Next-to-leading ultrasoft running of the heavy quarkonium potentials and spectrum: Spin-independent case

Antonio Pineda

INTRODUCTION

Ultrasoft

Matching conditions

Conclusions

The self-energy ΣB (E) accounts for the effects due to the ultrasoft scale and can be expressed in a compact form at NLO in the multipole expansion (but exact to any order in α) through the chromoelectric correlator. It reads (in the Euclidean) Z ∞ B TF b ΣB (E) = VA2 dtre −t(ho −E) rhvac|gEaE (t)φab adj (t, 0)gEE (0)|vaci . (D − 1)Nc 0 The pNRQCD one-loop computation yields ΣB (1 − loop) = −g 2 Cf VA2 (1 + ǫ)

Γ(2 + ǫ)Γ(−3 − 2ǫ) r (hoB − E)3+2ǫ r . π 2+ǫ

Next-to-Next-to-leading ultrasoft running of the heavy quarkonium potentials and spectrum: Spin-independent case

Antonio Pineda

INTRODUCTION

Ultrasoft

Matching conditions

Conclusions

vNRQCD ∼ 104 diagrams, pNRQCD ∼ 10 diagrams Next-to-Next-to-leading ultrasoft running of the heavy quarkonium potentials and spectrum: Spin-independent case

Antonio Pineda

INTRODUCTION

Ultrasoft

Matching conditions

Conclusions

The two-loop bare expression: Eidemuller-Jamin; Brambilla-Garcia-Soto-Vairo; Pineda-Stahlhofen i h (1) ΣB (2 − loop) = g 4 Cf CA VA2 Γ(−3−4ǫ) D(1) (ǫ) − (1 + 2ǫ)D1 (ǫ) r (hoB −E)3+4ǫ r , where

D(1) (ǫ) = (1)

D1 (ǫ) =

1 1 Γ2 (1 + ǫ)g(ǫ) , (2π)2 4π 2+2ǫ 1 1 Γ2 (1 + ǫ)g1 (ǫ) , (2π)2 4π 2+2ǫ

and

2ǫ3 + 6ǫ2 + 8ǫ + 3 2ǫΓ(−2ǫ − 2)Γ(−2ǫ − 1) − , ǫ (2ǫ2 + 5ǫ + 3) (2ǫ + 3)Γ(−4ǫ − 3)  2 6ǫ3 + 17ǫ2 + 18ǫ + 6 4(ǫ + 1)nf TF 2 ǫ + ǫ + 1 Γ(−2ǫ − 2)Γ(−2ǫ − 1) + + . g1 (ǫ) = ǫ2 (2ǫ2 + 5ǫ + 3) ǫ(2ǫ + 3)Nc ǫ(2ǫ + 3)Γ(−4ǫ − 3) g(ǫ) =

From ΣB (E) it is possible to obtain δEnus .

Next-to-Next-to-leading ultrasoft running of the heavy quarkonium potentials and spectrum: Spin-independent case

Antonio Pineda

INTRODUCTION

Ultrasoft

Matching conditions

Conclusions

o ii 1 h h 1 n 2 (0) r(ho − E)3 r = r2 (∆V )3 − p, p, V p , ∆V + o 2mr2 2mr2   1 d (0) 2 + (∆V )2 (3d − 5) + ∆V r Vs mr dr 2mr "      2 # d 1 d 4∆V r ∆V + ∆V + + r ∆V + ∆V 2mr dr dr +O((hs − E)) , (0)

(0)

where we have approximated ho − hs = Vo − Vs

Next-to-Next-to-leading ultrasoft running of the heavy quarkonium potentials and spectrum: Spin-independent case

Antonio Pineda

INTRODUCTION

Ultrasoft

Matching conditions

Conclusions

Care with the D-dimensional dependence of Vs and ∆V = Vo − Vs .   o ii d (0) 2 1 n 2 1 h h (0) ∆V r Vs p, p, Vo p , ∆V + + δVs = r (∆V ) − mr dr 2mr2 2mr2 "     2 #!  ∆V d d + r ∆V + ∆V ∆V (3d − 5) + 4 r ∆V + ∆V + 2mr dr dr # "   α2 (ν) 47 10 1 α2 (ν) 1 2 α(ν) 2 22 . + (CA ( + 2π ) − TF nf ) + 2 Cf VA β0 × Cf V A ǫ 3π 36π 2 3 3 ǫ 3 (4π)2 2

3

ν

d = BVs , V dν s,MS

where "

!   ii 2 1 h h d (0) (0) 2 BVs = p, p, V r (∆V ) + + (∆V ) − ∆V r Vs o mr dr 2mr2    o α2 (ν) 47 10 1 n 2 2α(ν) 2 3 + (C (− − 2π ) + T n ) + O(α ) + p , ∆V × − A F f 3π 9π 2 3 3 2mr2 Cf VA2

2

3

Next-to-Next-to-leading ultrasoft running of the heavy quarkonium potentials and spectrum: Spin-independent case

Antonio Pineda

INTRODUCTION

Ultrasoft

"

Matching conditions

Conclusions

 !   2 d (0) 2 δVs,RG (r ; ν, νus ) = r (∆V ) + + (∆V ) ∆V r Vs F (ν; νus ) mr dr ii o 1 h h 1 n 2 (0) − (r )F (ν; ν ) + p, p, V p , ∆V (r )F (ν; ν ) , us us o 2mr2 2mr2 2

3

and  2 α(νus ) 2π ln β0 3π α(ν)    1   8 β1 1 2 . − 47 + 6π − 10T n C −(α(νus ) − α(ν)) F A f 3 β0 (4π)2 27π 2

F (ν; νus ) = Cf VA2

Static limit known before. LL: Pineda-Soto: NLL: Brambilla-Garcia-Soto-Vairo. Beyond static limit. LL: Pineda NLL confirmed by Hoang-Stahlhofen in vNRQCD (see Stahlhofen’s talk)

Next-to-Next-to-leading ultrasoft running of the heavy quarkonium potentials and spectrum: Spin-independent case

Antonio Pineda

INTRODUCTION

Ultrasoft

Matching conditions

Conclusions

Initial conditions

(0),RG

(0)

(0)

Vs,MS (r ; ν, νus ) = Vs,MS (r ; ν) + δVs,RG (r ; ν, νus ) ≡ −Cf where

αVs (r ; ν, νus ) , r

(0)

δVs,RG (r ; ν, νus ) = r2 (∆V )3 F (ν; νus ) .

Next-to-Next-to-leading ultrasoft running of the heavy quarkonium potentials and spectrum: Spin-independent case

Antonio Pineda

INTRODUCTION

Ultrasoft

Matching conditions

Conclusions

Initial conditions

(0),RG

(0)

(0)

Vs,MS (r ; ν, νus ) = Vs,MS (r ; ν) + δVs,RG (r ; ν, νus ) ≡ −Cf where

αVs (r ; ν, νus ) , r

(0)

δVs,RG (r ; ν, νus ) = r2 (∆V )3 F (ν; νus ) .

Next-to-Next-to-leading ultrasoft running of the heavy quarkonium potentials and spectrum: Spin-independent case

Antonio Pineda

INTRODUCTION

Ultrasoft

(0)

Vs,MS (r ; ν)

=

Matching conditions



Cf α(ν) r

Conclusions

 n  3  X α(ν) 1+ an (r ; ν) 4π n=1

with coefficients a1 (r ; ν)

=

a2 (r ; ν)

=

a3 (r ; ν)

= + +

a1 + 2β0 ln (νe γE r ) , π2 2 β + ( 4a1 β0 + 2β1 ) ln (νe γE r ) + 4β02 ln2 (νe γE r ) , 3 0 5π 2 a3 + a1 β02 π 2 + β0 β1 + 16ζ3 β03 6   16 3 2 2 3 2π β0 + 6a2 β0 + 4a1 β1 + 2β2 + CA π ln (νe γE r ) 3   12a1 β02 + 10β0 β1 ln2 (νe γE r ) + 8β03 ln3 (νe γE r ) , a2 +

O(α) Fischler; O(α2 ) Schroder; O(α3 ) logarithmic term Brambilla et al., Kniehl et al.; the light-flavour finite piece Smirnov et al.; and the pure gluonic finite piece Anzai et al., Smirnov et al.. Next-to-Next-to-leading ultrasoft running of the heavy quarkonium potentials and spectrum: Spin-independent case

Antonio Pineda

INTRODUCTION

Ultrasoft

Matching conditions

Conclusions

For the 1/m potential the initial matching condition reads   α(1/r ) 2 Cf α(e −γE /r ) Cf (1) VMS (r ; ν) = − CA + − (CA2 + 2CA Cf ) ln(ν 2 r 2 e 2γE ) 2r 2 2 π 3  89 17 49 2 − CA2 + CA Cf + CA T F n f − Cf T F n f . 36 18 36 9 O(α3 ) log-dependent term Kniehl et al., Brambilla et al.; The log-independent O(α3 ) term from Kniehl et al. changed to our scheme. (1),RG

VMS

(1)

(1)

(r ; ν, νus ) = VMS (r ; ν) + δVRG (r ; ν, νus ) ≡ −

Cf CA D (1) (r ; ν, νus ) , 2r 2

where (1) δVRG (r ; ν, νus )

= 4 ∆V



d (0) r Vs dr



+ (∆V )

2

!

F (ν; νus ) .

Next-to-Next-to-leading ultrasoft running of the heavy quarkonium potentials and spectrum: Spin-independent case

Antonio Pineda

INTRODUCTION

Ultrasoft

Matching conditions

Conclusions

For the momentum-dependent 1/m2 potential the Wilson coefficient reads at one loop    C α(e −γE /r ) 20 8 α(1/r ) 31 (2) Vp2 ,MS (r ; ν) = f CA − TF nf + CA ln(ν 2 r 2 e 2γE ) −4 − 4 π 9 9 3 O(α2 ) log-dependent term Kniehl et al., Brambilla et al.; the log-independent O(α2 ) term Kniehl et al.. (2),RG

(2)

(2)

(2)

Vp2 ,MS (r ; ν, νus ) = Vp2 ,MS (r ; ν) + δVp2 ,RG (r ; ν, νus ) ≡ −Cf D1 (r ; ν, νus ) , where (2)

δVp2 ,RG (r ; ν, νus ) = 4∆V (r )F (ν; νus )

Next-to-Next-to-leading ultrasoft running of the heavy quarkonium potentials and spectrum: Spin-independent case

Antonio Pineda

INTRODUCTION

Ultrasoft

Matching conditions

Conclusions

Vr depends logarithmically on the mass of the heavy quark through the Wilson coefficients inherited from NRQCD. It is convenient to write it in terms of the potential in momentum space (otherwise ill-defined distributions appear) ˜ (2) (q; ν, νus ) ˜ (2) (q; νp , ν) + δ V ˜ (2) (q; νp , ν, νus ) = V V r ,RG r ,RG r ,MS

˜ (2) (q; νp , ν) V r ,MS

=

"

πCf α(q)(1 + cD (ν) − 2cF2 (ν)) 1 1 + (dvs (νp , ν) + 3dvv (νp , ν) + (dss (νp , ν) + 3dvv (νp , ν))) π Cf i ˜soft (ν, q) , +δ V

˜soft = δV

α2 π



25 ν 2 9 + ln 2 4 6 q



CA +



1 7 ν2 − ln 2 3 3 q



Cf



.

2˜ ˜ δV r ,RG (q; ν, νus ) = −2q Vo (q)F (ν; νus ) (2)

(0)

Next-to-Next-to-leading ultrasoft running of the heavy quarkonium potentials and spectrum: Spin-independent case

Antonio Pineda

INTRODUCTION

Ultrasoft

Matching conditions

Conclusions

Z d 3 q iq·r ˜ (2) (2),RG Vr ,MS (r ; νp , νus ) ≡ e Vr ,RG (q; νp , q, νus ) (2π)3   ˜ (2) (νp ; νp , νp , νus ) − (ln νp )q d (V ˜ (2) (q; νp , q, νus ))|q=νp = δ 3 (r) V r ,RG dq r ,RG   d ˜ (2) 1 1 (q; νp , q, νus ))|q=νp + · · · . reg 3 q (V − 4π r dq r ,RG Only the term proportional to reg r13 contributes to the l 6= 0 states mass. Higher order terms in the Taylor expansion are subleading.

d q dq

˜ (2) (q; νp , q, νus ) V r ,RG πCf

!

|q=νp = −

  α(νp ) α2 (νp ) 16 CA ( − Cf ) 1 + ln π 3 2 α(νus )

α2 (νp ) 2 β0 + TF nf (cD (νp ) + c1hl (νp )) − π 2 3  14 2 13 2 2 CA )cF (νp ) + ( Cf − CA )ck . +(β0 − 3 3 3

+



Next-to-Next-to-leading ultrasoft running of the heavy quarkonium potentials and spectrum: Spin-independent case

Antonio Pineda

INTRODUCTION

Ultrasoft

Matching conditions

Conclusions

(1),RG

RG (r ; νp , νus ) Vs,MS

=

V (r ; 1/r , νus ) (0),RG Vs,MS (r ; 1/r , νus ) + MS m  n  o 1 1 (2),RG (2),RG p2 , Vp2 ,MS (r ; 1/r , νus ) + Vr ,MS (r ; νp , νus ) + 2 m 2

Next-to-Next-to-leading ultrasoft running of the heavy quarkonium potentials and spectrum: Spin-independent case

Antonio Pineda

INTRODUCTION

Ultrasoft

Matching conditions

Conclusions

  pot us Enljs |l6=0,s=0 = EMS,nljs + δEMS,nl |l6=0,s=0 ,

pot is the eigenvalue of the equation where EMS,nljs



 p2 pot RG + Vs,MS φnljs (r) , φnjls (r) = EMS,nljs 2mr

"

    ho − En,l α 6 ln + 6 ln 2 − 5 = − En,l ) − 9π ν       ho − En,l α2 2 2 + 18β ln 13 + 4π − 6 N c 0 108π 2 ν   ho − En,l −2β0 (−5 + 3 ln 2)) ln ν   2 +2CA 84 − 39 ln 2 + 4π (2 − 3 ln 2) − 72ζ(3) #   +β0 67 + 3π 2 − 60 ln 2 + 18 ln2 2 r|n, li . us δEMS,nl

Cf VA2 hn, l|r(ho

3

Next-to-Next-to-leading ultrasoft running of the heavy quarkonium potentials and spectrum: Spin-independent case

Antonio Pineda

INTRODUCTION

Ultrasoft

Matching conditions

Conclusions

Conclusions

We have computed the NLL ultrasoft running of the spin-independent singlet potentials up to O(1/m2 ). This sets the stage for the complete analytic and numerical computation of the heavy quarkonium spectrum with N3 LL accuracy for l 6= 0 and s = 0 states. First place to apply: t-¯t and non-relativistic sum rules.

Next-to-Next-to-leading ultrasoft running of the heavy quarkonium potentials and spectrum: Spin-independent case

Antonio Pineda

INTRODUCTION

Ultrasoft

Matching conditions

Conclusions

Conclusions

We have computed the NLL ultrasoft running of the spin-independent singlet potentials up to O(1/m2 ). This sets the stage for the complete analytic and numerical computation of the heavy quarkonium spectrum with N3 LL accuracy for l 6= 0 and s = 0 states. First place to apply: t-¯t and non-relativistic sum rules.

Next-to-Next-to-leading ultrasoft running of the heavy quarkonium potentials and spectrum: Spin-independent case

Antonio Pineda

INTRODUCTION

Ultrasoft

Matching conditions

Conclusions

Conclusions

We have computed the NLL ultrasoft running of the spin-independent singlet potentials up to O(1/m2 ). This sets the stage for the complete analytic and numerical computation of the heavy quarkonium spectrum with N3 LL accuracy for l 6= 0 and s = 0 states. First place to apply: t-¯t and non-relativistic sum rules.

Next-to-Next-to-leading ultrasoft running of the heavy quarkonium potentials and spectrum: Spin-independent case

Antonio Pineda

Next-to-Next-to-leading ultrasoft running of the heavy ...

1/m seemed to be important. Fine structure. ▻ recent experimental determination of L=1 states. ▻ Comparison with lattice potentials. ▻ Also relevant for the muonic hydrogen lamb shift (proton radius). Next-to-Next-to-leading ultrasoft running of the heavy quarkonium potentials and spectrum: Spin-independent case.

158KB Sizes 1 Downloads 185 Views

Recommend Documents

Heavy metals
aDepartment of En¨ironmental and Industrial Health, School of Public Health, Uni¨ersity of Michigan, Ann .... Lake. Distance. Area. Shoreline. Max depth. Mean depth. Volume. pH. 3. Ž . Ž . ...... Technical Assessment Section, Ontario Ministry of.

Cheap Japanese Version Of The Heavy Metal Band Metallica ...
Cheap Japanese Version Of The Heavy Metal Band Met ... e Edition 13Cd Free Shipping & Wholesale Price.pdf. Cheap Japanese Version Of The Heavy Metal ...

Ultrasoft magnetic properties in nanocrystalline alloy Finemet with Au ...
Mar 6, 2006 - The DSC curves show the first peak at 547–579 1C (corresponds to the crystallization of ... E-mail address: [email protected] (N. Chau).

Heavy rain.pdf
Page 1 of 1. Heavy rain.pdf. Heavy rain.pdf. Open. Extract. Open with. Sign In. Main menu. Displaying Heavy rain.pdf.

heavy rain.pdf
Page 1 of 1. heavy rain.pdf. heavy rain.pdf. Open. Extract. Open with. Sign In. Main menu. Displaying heavy rain.pdf.

Zen of Running
Published by Organic Marketing. 11989 Loch Lomond ... panded by several short, intense, creative bursts following particularly ... if so, of course do it your way .

heavy metal pdf.pdf
Connect more apps... Try one of the apps below to open or edit this item. heavy metal pdf.pdf. heavy metal pdf.pdf. Open. Extract. Open with. Sign In. Main menu.

The running intersection relaxation of the multilinear ...
May 9, 2018 - The multilinear polytope MPG of a hypergraph G = (V,E) is the ..... implies that for each k = 2,...,t, the node uk exists and if zek = 1, we have zuk ...

Scheme of filling up the posts of Loco Running Supervisors.PDF ...
Retrying... Scheme of filling up the posts of Loco Running Supervisors.PDF. Scheme of filling up the posts of Loco Running Supervisors.PDF. Open. Extract.

TOA Heavy Guard.pdf
Sign in. Page. 1. /. 6. Loading… Page 1 of 6. Page 1 of 6. Page 2 of 6. Page 2 of 6. Page 3 of 6. Page 3 of 6. TOA Heavy Guard.pdf. TOA Heavy Guard.pdf. Open.

Ultrasoft magnetic properties in nanocrystalline alloy Finemet with Au ...
Mar 6, 2006 - technology on a single copper wheel. .... ribbons are collected in Table 1. ... Table 1. The magnetic characteristics of studied samples (as-cast ...

www.antcq.blogspot.com - Contracting, Heavy Equipment and ...
www.antcq.blogspot.com - Contracting, Heavy Equipment and Safety Tools.pdf. www.antcq.blogspot.com - Contracting, Heavy Equipment and Safety Tools.pdf.

heavy instrumentals vol.pdf
Loading… Page 1. Whoops! There was a problem loading more pages. heavy instrumentals vol.pdf. heavy instrumentals vol.pdf. Open. Extract. Open with.

Details - Bharat Heavy Electricals Ltd.
Feb 22, 2010 - Telecommunication & Renewable Energy requires Civil, Mechanical and ... QUALIFICATION : Bachelors degree in Engineering / Technology in Civil, ... Upper Age limit is relaxable by 5 years for SC / ST and 3 years for OBC.

Modification of ceramic coatings by swift heavy ions
deposited on Si, by irradiation with 90 to 350 MeV Ar, Kr, Xe and Au-ions at 80 K at different ..... The system Fe/Au being immiscible, again supports earlier.

DownloadPDF Fundamentals Of Medium/Heavy Duty ...
Education Foundation. (NATEF) Medium/Heavy ... technology Additional features include: • Up-to- ... Reinforcement of concepts learned • Application to real-.

Collective Motion of Moshers at Heavy Metal Concerts
Feb 7, 2013 - Why does an inherently non-equilibrium system exhibit. FIG. 1. (A) Example image of crowd at a heavy metal con- cert. (B) Single video frame ...

Evaluation of Some Heavy Metals in Malva parviflora.pdf
There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. Evaluation of ...