Maxmin Expected Utility with Non-unique Prior Gilboa, I. and Schmeidler, D. (1989) Journal of Mathematical Economics, 18: 141–153.

Weiye Chen Graduated School of Economics , Osaka University

Introduction

Ellsberg paradigm Gamble 1

Red

Urn

1 ball

(contains 50 red balls and 50 black balls)

(random) black

Bet 1(named π‘ΉπŸ)

The ball will be red

Bet 2(named π‘©πŸ)

$100 if it red

The ball will be black

$0 If it black

π‘ΉπŸ β‰… π‘©πŸ

$0 if it red $100 If it black

Gamble 2

red

Urn

1 ball

(contains 100 balls)

(random) black

Bet 3(named π‘ΉπŸ)

The ball will be red

Bet 4(named π‘©πŸ)

$100 if it red

The ball will be black

$0 If it black

π‘ΉπŸ β‰… 𝑩 𝟐

$0 if it red $100 If it black

Gamble 3

If you can take only one from those bets(bet 1,2,3,4) ,which one would you preference ? Why ?

π™πŸ ≃ π‘©πŸ > π™πŸ ≃ π‘©πŸ In gamble 2 β€’ We considers a set of the priors as possible.(too little information) β€’ We take into account the minimal expected utility.(uncertainty averse)

Hint: π’Žπ’Šπ’ 𝑬 𝒖 π™πŸ

= π’Žπ’Šπ’ 𝑬 𝒖 π‘©πŸ

> π’Žπ’Šπ’ 𝑬 𝒖 π™πŸ

= π’Žπ’Šπ’ 𝑬 𝒖 π‘©πŸ

Statement π‘Œ = 𝑦: 𝑋 β†’ 0,1 𝑦 π‘₯ β‰  0 π‘“π‘œπ‘Ÿ π‘œπ‘›π‘™π‘¦ 𝑓𝑖𝑛𝑖𝑑𝑒𝑙𝑦 π‘šπ‘Žπ‘¦ π‘₯′𝑠 𝑖𝑛 𝑋(𝑠𝑒𝑑, π‘›π‘œπ‘› βˆ’ π‘’π‘šπ‘π‘‘π‘¦ ) π‘Žπ‘›π‘‘

𝑦 π‘₯ =1 π‘₯βˆˆπ‘‹

For notational 𝑦 ∈ π‘Œ 𝑦 π‘₯ = 1 π‘“π‘œπ‘Ÿ π‘ π‘œπ‘šπ‘’ π‘₯ 𝑖𝑛 𝑋 βŠ‚ π‘Œ

Ζ© = 𝜬 Ζ© π’Šπ’” 𝒂𝒍𝒍 𝒂𝒏 π’‚π’π’ˆπ’†π’ƒπ’“π’‚ 𝒔𝒖𝒃𝒔𝒆𝒕𝒔 𝒐𝒇 𝑺 𝑳0 = 𝒇 ∢ 𝑆 β†’ π‘Œ 𝑓 𝑖𝑠 π‘Žπ‘› 𝛴 βˆ’ π‘šπ‘’π‘Žπ‘ π‘’π‘Ÿπ‘Žπ‘π‘™π‘’ 𝑓𝑖𝑛𝑖𝑑𝑒 𝑠𝑑𝑒𝑝 π‘“π‘’π‘›π‘π‘‘π‘–π‘œπ‘›π‘  𝑳𝑐 = 𝒇 βŠ‚ 𝑳0 𝒇 𝑖𝑠 π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘ π‘“π‘’π‘›π‘π‘‘π‘–π‘œπ‘›π‘  π‘Œ 𝑆 = 𝒇 ∢ 𝑆 β†’ π‘Œ π‘Œ 𝑆 𝑖𝑠 π‘Ž π‘ π‘’π‘π‘ π‘π‘Žπ‘π‘’ π‘œπ‘“ π‘‘β„Žπ‘’ π‘™π‘–π‘›π‘’π‘Žπ‘Ÿ π‘ π‘π‘Žπ‘π‘’ 𝑳 = 𝒇 ∈ π‘Œ 𝑆 𝑳𝑐 βŠ‚ 𝑳, 𝑳 𝑖𝑠 π‘π‘œπ‘›π‘£π‘’π‘₯ βŠ‚ π‘Œ 𝑆 Example 𝑋 β‹― outcomes π‘Œ β‹― π‘Ÿπ‘Žπ‘›π‘‘π‘œπ‘š π‘œπ‘’π‘‘π‘π‘œπ‘šπ‘’π‘  π‘œπ‘Ÿ π‘Ÿπ‘œπ‘’π‘™π‘’π‘‘π‘‘π‘’ π‘™π‘œπ‘‘π‘‘π‘’π‘Ÿπ‘–π‘’π‘  𝑳 β‹― π‘Žπ‘π‘‘π‘  β„Žπ‘œπ‘Ÿπ‘ π‘’ π‘™π‘œπ‘‘π‘‘π‘’π‘Ÿπ‘–π‘’π‘  and a binary relation over 𝑳 π‘‘π‘’π‘›π‘œπ‘‘π‘’π‘‘ 𝑏𝑦 β‰₯ S β‹― π‘ π‘‘π‘Žπ‘‘π‘’π‘  π‘œπ‘“ π‘›π‘Žπ‘‘π‘’π‘Ÿπ‘’ 𝛴 β‹― 𝑒𝑣𝑒𝑛𝑑𝑠

Property (axiom)

A.1. Weak order β€’ (a) For all 𝒇 and π’ˆ in 𝑳: 𝒇 ≧ π’ˆ or π’ˆ ≧ 𝒇. (Completeness) β€’ (b) For all 𝒇, π’ˆ and 𝒉 in 𝑳: If 𝒇 ≧ π’ˆ and π’ˆ ≧ 𝒉 then 𝒇 ≧ 𝒉. (Transitivity)

A.2. Certainty-Independence (C-independence) β€’ For all 𝒇, π’ˆ in 𝑳 and 𝒉 in 𝑳𝑐 and for all 𝛼 in 0,1 : 𝒇 > π’ˆ iff 𝛼𝒇 + 1 βˆ’ 𝛼 𝒉 > π›Όπ’ˆ + 1 βˆ’ 𝛼 𝒉.

A.3. Continuity β€’ For all 𝒇, π’ˆ and 𝒉 in 𝑳: if 𝒇 > π’ˆ and π’ˆ > 𝒉 then there are 𝛼 and 𝛽 in 0,1 such that 𝛼𝒇 + (1 βˆ’ 𝛼)𝒉 > π’ˆ and π’ˆ > 𝛽𝒇 + (1 βˆ’ 𝛽)𝒉

A.4. Monotonicity β€’ For all 𝒇 and π’ˆ in 𝑳: if 𝒇 𝑠 ≧ π’ˆ(𝑠) on S then 𝒇 ≧ π’ˆ.

A.5. Uncertainty Aversion β€’ For all 𝒇, π’ˆ ∈ 𝑳 and 𝛼 ∈ 0,1 : 𝒇 ≃ π’ˆ implies 𝛼𝒇 + (1 βˆ’ 𝛼)π’ˆ ≧ 𝒇.

A.6. Non-degeneracy β€’ Not for all 𝒇 and π’ˆ in 𝑳, 𝒇 ≧ π’ˆ.

Theorem 1 Let ≧ be a binary relation on 𝐿0 . Then the following conditions are equivalent: (1) ≧ satisfies assumptions A.1-A.5 for 𝐿 = 𝐿0. (2) There exist an affine function π“Š: π‘Œ β†’ 𝑅 and a non-empty, closed and convex set π‘ͺ of finitely additive probability measures on 𝛴 such that: (*) 𝒇 ≧ π’ˆ iff π‘šπ‘–π‘›π™‹βˆˆπ‘ͺ ∫ π“Š ∘ 𝒇𝑑𝑃 ≧ π‘šπ‘–π‘›π™‹βˆˆπ‘ͺ ∫ π“Š ∘ π’ˆπ‘‘π‘ƒ (for all 𝒇, π’ˆ ∈ 𝐿0) furthermore: (a) The function π“Š in (2) is unique up to a positive linear transformation; (b) The set C in (2) is unique iff assumption A.6 is add to (1).

proof Step 1:We will proof that (1)β‡’(2) by several lemmata we suppose assumptions A.1-A.6 Define: π“Š π’š = π“Š: π‘Œ ⟢ 𝑅 π“Š π’š1 < βˆ’1, π“Š π’š2 > 1 𝑩 𝑺, Ζ© = 𝒇: 𝑺 ⟢ 𝒀 𝑩 𝑺, Ζ© 𝑖𝑠 π‘π‘œπ‘’π‘›π‘‘π‘’π‘‘ Ζ© βˆ’ π‘šπ‘’π‘Žπ‘ π‘’π‘Ÿπ‘’π‘Žπ‘π‘™π‘’ π‘Ÿπ‘’π‘Žπ‘™ π‘£π‘Žπ‘™π‘’π‘’π‘‘ π‘“π‘’π‘›π‘π‘‘π‘–π‘œπ‘›π‘  𝑩0 = 𝒇: 𝑺 ⟢ 𝒀 𝑩0 βŠ‚ 𝑩 𝑺, Ζ© π‘€β„Žπ‘–π‘β„Ž π‘Žπ‘ π‘ π‘’π‘šπ‘’ 𝑓𝑖𝑛𝑖𝑑𝑒𝑙𝑦 π‘£π‘Žπ‘™π‘’π‘’π‘  𝑲= π‘²βˆˆπ‘Ήπ‘²=π“Š 𝒀 𝑩0 𝑲 = 𝒇 ∈ 𝑩0 π“Š ∘ 𝒇 = 𝑲 π›„βˆ— = π›„βˆ— ∈ 𝑩0 π›„βˆ— = 𝛾 π‘“π‘œπ‘Ÿ 𝛾 ∈ 𝑹

Lemma 3.1. β€’ There exists an affine π“Š: π‘Œ β†’ 𝑅 such that for all π’š, 𝒛 ∈ π‘Œ: π’š ≧ 𝒛 iff π“Š π’š β‰§π“Š 𝒛 . β€’ Furthermore, π“Š is unique up to a positive linear transformation. Proof: This is immediate from the von Neumann-Morgenstern theorem.(Cindependence β‡’ Independence)

Lemma 3.2. β€’ Given a π“Š: π‘Œ β†’ 𝑅 fro Lemma 3.1, there exists a unique 𝑱: 𝑳0 β†’ 𝑅 such

that: β€’ (𝑖) 𝒇 ≧ π’ˆ iff 𝑱 𝒇 ≧ 𝑱 π’ˆ (for all 𝒇, π’ˆ ∈ 𝑳0) β€’ (𝑖𝑖) for 𝒇 = π’šβˆ— ∈ 𝑳𝐢 , 𝑱 𝒇 = π“Š π’š

Proof:π’šβˆ— = π’šβˆ— 𝑠 = π’š βˆ€π’š ∈ π‘Œ, 𝑠 ∈ 𝑆 𝒇 ∈ 𝑳0, π’š, π’š ∈ π‘Œ such thatπ’š ≀ 𝒇 ≀ π’š, there exists a unique 𝛼 ∈ 0,1 that 𝒇 = π›Όπ’š + 1 βˆ’ 𝛼 π’š, and 𝑱 𝒇 ≑ 𝑱 π›Όπ’š + 1 βˆ’ 𝛼 π’š

such

Lemma 3.3. There exists a functional 𝑰: 𝑩0 ⟢ 𝑹 such that : (𝑖) For all 𝒇 ∈ 𝑳0 , 𝑰 π“Š ∘ 𝒇 = 𝑱 𝒇 (hence 𝑰 πŸβˆ— = 1). (𝑖𝑖) 𝑰 is monotonic(i.e., for 𝒂, 𝒃 ∈ 𝑩0: 𝒂 ≧ 𝒃 β‡’ 𝑰 𝒂 ≧ 𝑰 𝒃 ). (𝑖𝑖𝑖) 𝑰 is superlinear(that is, superadditive and homogeneous of degree 1). β€’ (𝑖𝑣) 𝑰 is C-independent: for any 𝒂 ∈ 𝑩0 and 𝛾 ∈ 𝑹, 𝑰 𝒂 + π›„βˆ— = β€’ β€’ β€’ β€’

𝑰 𝒂 + 𝑰 π›„βˆ— .

Proof: Monotonicity: Lemma 3.2 Homogeneous: 𝒂, 𝒃 ∈ 𝑩0 𝑲 , 𝛼 ∈ 0,1 , 𝒂 = 𝛼𝒃 β‡’ 𝑰 𝒂 = 𝛼𝑰 𝒃 C-independent: π“Š ∘ 𝒇 = 𝒂, π“Š ∘ π’š = 𝒃, π“Š ∘ 𝒛 = 2π›„βˆ— , 𝒇 ≃ π’š β‡’ 𝑰 𝒂 + π›„βˆ— = 𝑰 𝒂 + 𝛾 Superadditive: 𝑖𝑓 𝑰 𝒂 = 𝑰 𝒃 β‡’ 𝑰 𝑰 𝒃 , 𝒄 = 𝒃 + π›„βˆ— β‡’ 𝑰

1 1 𝒂+ 𝒄 2 2

≧

1 1 𝒂+ 𝒃 ≧ 𝑰 2 2 1 1 𝑰 𝒂 + 𝑰 𝒃 2 2

1 2

1 2

𝒂 = 𝑰 𝒂 + 𝑰 𝒃 ; 𝑖𝑓 𝑰 𝒂 > 1 2

+ 𝛾

Lemma 3.4. β€’ There exists a unique continuous extension of 𝑰 to 𝑩. β€’ Furthermore, this extension is monotonic, superlinear and C-

independent.

Proof: 𝒂 ≦ 𝒃 + 𝒂 βˆ’ 𝒃

βˆ—

β‡’ 𝑰 𝒂 βˆ’π‘° 𝒃

≦ π’‚βˆ’π’ƒ

Lemma 3.5. β€’ If 𝑰 is a monotonic superlinear and C-independent functional on 𝑩 with 𝑰 1βˆ— = 1 , there exists a closed and convex set π‘ͺ of finitely additive probability measures on Ζ© such that: for all 𝒃 ∈ 𝑩, 𝑰 𝒃 = min ∫ 𝒃 𝑑𝑷 𝑷 ∈ π‘ͺ . Proof: 𝑫1 = 𝒂 ∈ 𝑩 𝑰 𝒂 > 1 , 𝑫2 = π‘π‘œπ‘›π‘£ 𝒂 ∈ 𝑩 𝒂 ≦ 1βˆ— βˆͺ 𝒂 ∈ 𝑩 𝒂 ≦ 𝒃 𝑰 𝒃 . Use separation theorem, thus 𝒑𝒃 𝒃 = 𝑰 𝒃 . Then there exists a finitely additive probability measure 𝑷𝒃 on Ζ© such that 𝒑𝒃 𝒂 = ∫ 𝒂 𝑑𝑷 for all 𝒂 ∈ 𝑩. π‘ͺ ≑ 𝑷𝒃 𝑰 𝒃 > 0 Β° β‡’ 𝑰 𝒂 ≦ min

𝒂 𝑑𝑷 𝑷 ∈ π‘ͺ .

Step 2: Then we will proof that (a) and (b). The uniqueness of π“Š up to positive linear transformation is implied is implied by Lemma 3.1. If A.6 does not hold, π‘ͺ can be any non-empty closed and convex set. If A.6 is hold, consider non-empty, closed and convex π‘ͺ1, π‘ͺ2, such that the two functions on 𝑳0 : 𝙅1 𝒇 = min ∫ π“Š 𝒇 𝑑𝑷 𝑷 ∈ π‘ͺ1 , 𝙅2 𝒇 = min ∫ π“Š 𝒇 𝑑𝑷 𝑷 ∈ π‘ͺ2 , Both represent ≧. Use separation theorem, there exists 𝒇 ∈ 𝑳0 , such that 𝙅1 𝒇 ≦ 𝙅2 𝒇 . Let π’š ∈ 𝒀 satisfy π’š ≃ 𝒀, we get 𝙅1 π’š = 𝙅1 𝒇 ≦ 𝙅2 𝒇 = 𝙅2 π’š a contradiction.

Example Consider the gamble 3.

π“Š π‘₯ = π‘₯, which π‘₯ is the quantity of money π‘ͺ=

𝓅, 1 βˆ’ 𝓅 𝓅 ∈ 0,1 , 𝓅 𝑖𝑠 π‘‘β„Žπ‘’ π‘π‘Ÿπ‘œπ‘π‘Žπ‘π‘–π‘™π‘–π‘‘π‘¦ π‘œπ‘“ π‘Ÿπ‘’π‘‘ π‘π‘Žπ‘™π‘™ π‘œπ‘π‘π‘’π‘Ÿ

Then a measure on π‘ͺ is like probability π›‘π™πŸ 𝑠 = πœ‹π™πŸ 𝑠 =

0, 𝓅 𝓅 ∈ 0,1 100,1 βˆ’ 𝓅

Then we can consider this case as: π‘šπ‘Žπ‘₯ π‘šπ‘–π‘›π™‹ ∈π‘ͺ

π“Š ∘ 𝛑𝑑𝑒𝑑𝙋

π™πŸ ≃ π‘©πŸ > π™πŸ ≃ π‘©πŸ ⇔ πŸ“πŸŽ = π‘šπ‘–π‘›π™‹ ∈π‘ͺ

π‘šπ‘–π‘›π™‹ ∈π‘ͺ

π“Š ∘ π›‘π™πŸ 𝑑𝑒𝑑𝙋 = π‘šπ‘–π‘›π™‹ ∈π‘ͺ

π“Š ∘ π›‘π™πŸ 𝑑𝑒𝑑𝙋 = π‘šπ‘–π‘›π™‹ ∈π‘ͺ

π“Š ∘ π›‘π‘©πŸ 𝑑𝑒𝑑𝙋 >

π“Š ∘ π›‘π‘©πŸ 𝑑𝑒𝑑𝙋 = 𝟎

Proposition

Proposition 4.1. β€’ Suppose that a preference relation ≧ over 𝑳0 satisfies assumptions A.1-A.5. then it has a unique extension to 𝑳 ≧ which satisfies the same assumptions π‘œπ‘£π‘’π‘Ÿ 𝑳 ≧ . Remark. In view of proposition 4.1, ≧ may be represented as in Theorem 1 on 𝑳 ∩ 𝑳 ≧ .

Independent β€’ βˆ€ 𝒇, π’ˆ ∈ 𝑳 satisfy: β€’ (1) There exists 𝑷0 ∈ π‘ͺ such that ∫ π“Š ∘ 𝒇 𝑑𝑷0 = min ∫ π“Š ∘ 𝒇 𝑑𝑷 𝑷 ∈ π‘ͺ , and ∫ π“Š ∘ π’ˆ 𝑑𝑷0 = min ∫ π“Š ∘ π’ˆ 𝑑𝑷 𝑷 ∈ π‘ͺ ; β€’ (2) π“Š ∘ 𝒇 and π“Š ∘ π’ˆ are two stochastically independent random variables with respect any extreme point of π‘ͺ [ for short: 𝐸π‘₯𝑑 π‘ͺ ].

Definition non-unique probability space: 𝑺, Ζ©, π‘ͺ is the product of π‘Ίπ’Š , Ζ©π’Š, π‘ͺπ’Š , which 𝑺 = 𝑺1 Γ— 𝑺2 , Ζ© = Ζ©1 ⨂Ʃ2 and π‘ͺ = π‘π‘œπ‘›π‘£ 𝑷1 ⨂𝑷2 𝑷1 ∈ π‘ͺ1 , 𝑷2 ∈ π‘ͺ2 . The ≧ on 𝑳 define as ≧=≧1 ⨂ ≧2 which β‰§π’Š on π‘³π’Š = π‘³π’Š β‰§π’Š , then it satisfies A.1-A.6. Give π’‡π’Š ∈ π‘³π’Š, π’‡π’Š ∈ 𝑳 is a unique trivial extension.

Proposition 4.2. β€’ Given 𝑳1 , ≧1 , 𝑳2, ≧2 and 𝑳 as above, ≧ is the unique preference

relation over 𝑳 satisfying: β€’ (1) assumptions A1-A.6; β€’ (2) for all π’‡π’Š, π’ˆπ’Š ∈ π‘³π’Š , π’‡π’Š β‰§π’Š π’ˆπ’Š iff π’‡π’Š ≧ π’ˆπ’Š π’Š = 1,2 ; β€’ (3) for all 𝒇 ∈ 𝑳1 and π’ˆ ∈ 𝑳2 , 𝒇 and π’ˆ are independent.

Note The set π‘ͺ is only depend on axiom The set π‘ͺ is not identical to the set of probabilities that can`t be ruled out based on hard evidence Compare to Choquet expected utility

More intuitive More degrees of freedom

Maxmin Expected Utility with Non-unique Prior

(b) The set C in (2) is unique iff assumption A.6 is add to (1). ... Proof: This is immediate from the von Neumann-Morgenstern theorem.(C- ... degree 1).

901KB Sizes 2 Downloads 293 Views

Recommend Documents

Dynamic Random Subjective Expected Utility
Jun 23, 2018 - only on the information available to the agent at the moment of her choice. .... Then continue inductively by defining Xt = Z × At+1, where At+1 is.

Maximising Expected Utility - PRE-CogSci 2009
2009) discussed the application of Game Theory to NLG de- cision problems (utility based decision making). In this paper, we extend the reinforcement learningΒ ...

An Expected Utility Approach to Active Feature-value ...
be represented by the matrix F, where Fi,j corresponds to the value of the j-th ..... Learning Tools and Techniques with Java Implementations. Morgan KaufmannΒ ...

Scalarization Methods and Expected Multi-Utility ...
Oct 28, 2013 - E-mail: [email protected], Phone: +7 (495) 9569508, Fax: +7 (499) 1293722. October .... The main finding of the present paper is an expected multi-utility representation the- orem that ...... the system of equalities E(p, v) = ҈«. U.

On the existence of expected multi-utility representations
Mar 25, 2007 - If the prize space is σ-compact and lotteries have compact support, a ..... This in turn implies that for a u ҈ˆ [P] the set ÎΒ₯({u}) = {αu + θ1X : (α,θ)Β ...

The Expected Utility Model: Its Variants, Purposes ...
and studies on the effect of pension plans on private savings. .... A B and B C imphes A C. In its. (weak) stochastic .... Jacques Dr^ze (1974). Other discussions ofΒ ...

EXPONENTIAL UTILITY WITH NON-NEGATIVE ...
Utility maximization constitutes a primary field of research in financial math- ematics, since it offers a well-posed methodology for studying decision making under uncertainty. The most ... (2008), Henderson (2009), and Frei et al. (2011)), incomple

Robust Utility Maximization with Unbounded Random ...
pirical Analysis in Social Sciences (G-COE Hi-Stat)Ҁ of Hitotsubashi University is greatly ... Graduate School of Economics, The University of Tokyo ...... Tech. Rep. 12, Dept. Matematica per le Decisioni,. University of Florence. 15. Goll, T., and

Sensor Data Collection with Expected Reliability ...
data collection protocol, which provides expected reliabil- ... the same number of data items sent by the sensor. ..... routing and duplicate insensitive sketches.

Stronger 2H expected - CIMB Group
May 12, 2015 - Financial Services Commission and Financial Supervisory Service .... domiciled or to Indonesia residents except in compliance with applicableΒ ...

Summary of Prior Year's Obligations and Unpaid Prior Year's ...
Retrying... Summary of Prior Year's Obligations and Unpaid Prior Year's Obligations.pdf. Summary of Prior Year's Obligations and Unpaid Prior Year's Obligations.pdf. Open. Extract. Open with. Sign In. Main menu. Displaying Summary of Prior Year's Obl

Saliency Detection based on Extended Boundary Prior with Foci of ...
Page 1 of 5. SALIENCY DETECTION BASED ON EXTENDED BOUNDARY. PRIOR WITH FOCI OF ATTENTION. Yijun Li1. , Keren Fu1. , Lei Zhou1. , Yu Qiao1. , Jie Yang1Γ’ΒˆΒ—. , and Bai Li2. 1. Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong Uni

Choosing Prior Hyperparameters: With Applications To ...
Mar 15, 2018 - rameters. We now show how to incorporate this idea into our framework. ..... of persistence such as the R2 measure from Cogley et al. (2010)Β ...

Appendices For Choosing Prior Hyperparameters: With ...
Nov 14, 2017 - Table 1: Monte Carlo results for DGP1 with random walk evolution of parameters. Relative RMSE. [In-sample fit of parameter paths θt evaluated at posterior median]. Parameter. iG half-Cauchy half-t. Fixed. ¡t. 0.7037. 0.7326. 0.7519.

Saliency Detection based on Extended Boundary Prior with Foci of ...
K) and its mean position and mean color in. LAB color space are denoted as pi and ci respectively (both. normalized to the range [0,1]). 2.1. Graph Construction.

Prior Art
... helpful comments. Ҁ Email: [email protected] and [email protected]. 1 .... 2008), available at http://www.patentlyo.com/patent/2008/04/tafas%v%dudas%p.html. 3 ...... propensity to add assignee%assignee self citations. According to SampatΒ ...

Prior Knowledge Driven Domain Adaptation
The performance of a natural language sys- ... ral language processing (NLP) tasks, statistical mod- ..... http://bioie.ldc.upenn.edu/wiki/index.php/POS_tags.

A utility representation theorem with weaker continuity ...
Sep 10, 2009 - We prove that a mixture continuous preference relation has a utility represen- tation if its domain is a convex subset of a finite dimensionalΒ ...

A utility representation theorem with weaker continuity condition
Sep 4, 2008 - The main step in the proof of our utility representation theorem is to show ...... If k Γ’Β‰Β₯ 3, we can apply Lemma 1 again to D ҈© co({x0} ҈Βͺ Y Ρ/(kΓ’ΒˆΒ’1).

Interpreting Utility Patent Claims
Jul 11, 2016 - The diagram below depicts the scope that may be available ... oppositions, trademark cancellations and domain name disputes; and preparing.

Utility Belt
Manage existing AdWords campaigns. 4. Analyse trends using the performance graph. 5. Use the keywords tab to find data fast. 6. Bid changes are now easier.

Utility Belt
Manage existing AdWords campaigns. 4. Analyse trends using the performance graph. 5. Use the keywords tab to find data fast. 6. Bid changes are now easier.