            

 2H 2H H     !

  E)E

  #  C)9    

   1 

1#. .  C)9   

      & 

    

 &)  # '$%((   ) $%(( ) 

 

Text and page layout copyright Martin Cunningham, 2005. Majority of clipart copyright www.clipart.com, 2005.

1) CLASSICAL WAVE THEORY We have seen that electromagnetic energy (such as light) behaves as a continuous wave - It can be reflected, refracted and diffracted. More importantly, it can produce interference (which is the test for wave motion). 3 4  

λ

A continuous electromagnetic wave is shown:

    

Such a continuous electromagnetic wave has a velocity (v) of 3 x 108 m s-1 in air, a frequency (f) measured in hertz and wavelength (λ λ) measured in metres. The equation

# λ

applies to the wave.

2) QUANTUM THEORY In the early years of the 20 th century (about 100 years ago), scientists Max Planck and Albert Einstein proposed an alternative theory for electromagnetic energy - The quantum theory: 7 

5% 6

Clipart copyright S.S.E.R. Ltd

Clipart copyright S.S.E.R. Ltd

Electromagnetic energy is a stream of tiny, individual "wave packets" called quanta or photons:

λ

7 As with classical wave theory, each photon has a velocity (v) of 3 x 108 m s-1 in air, a frequency (f) measured in hertz and wavelength (λ λ) measured in metres. The equation

# λ

applies to each photon.

However, the energy of a photon does not depend on amplitude. The energy (E) of a photon is directly proportional to its frequency (f):



α

 # 

The constant is named after Max Planck (Planck's constant) and is given the symbol h:  !F 

#

 !2G

C)9 #==< $:
Example In air, a photon of yellow light has a wavelength of 589 nm (i.e., 589 x 10-9 m). Calculate: (a) the frequency of the photon;

(b) the energy of the photon.

 #λ λ  ##< $:H#>:A $:$? 2G ##==< $::A $:$?  

λ

>HA $:A#<<@ $:$A F



 $, &#(!( &#(!(() "$-#! $-#!#% #% *+""-!# $, $,  &#(!(()5 ()5 " $-#!#% *+""-!#() *+""-!#()6B4 ()6B4' 6B4' >$3"36B4 >$3"36B4< 6B4< 4I'3    !"/ > !#"),"0 !#"&#(!(@ &#(!(@>>5!#" !#"&#(!(3 >!#" >!#" ),"0 "1 ()!#" ()!#" &#(!(@ !#""",-1 !#""",-1 ()!#" ()!#" &#(!(3

2> !#""",-1 "",-1 2> !"!#" !"!#" "",-1$ $$, $$,() $,() ()&#(!( &#(!(()/ &#(!(()/ >>$," ,"$-#!@ $-#!@>>$$ $$ -,"" -,""$-#!@ $-#!@>>$$$ $$$ +$("! +$("!$-#!3  ," $-#!@  -,"" $-#!@  +$("! $-#!3 >*+""-!# >*+""-!#?44 >*+""-!#?44' ?44' '>*+""-!# >*+""-!#.64 >*+""-!#.64' .64' '>*+""-!# >*+""-!#644 >*+""-!#644' 644' '

 > !#"+$%$5" ' *#$# #%!#" !#"#$-#"%! #$-#"%! "",-19 >5 !#" !#" +$%$5" %&"!, ' *#$#(( *#$#(( ,() ,()$-#! ()$-#!#% $-#!#% !#" "",-19

  &#(!( &#(!(() &#(!(() !,+$("! ,$!$( #% ),"0 $$,3  ),"0 "1() "1()?3FI ()?3FI< ?3FI< 46 7 $ $,3 !"!#" !#""",-1  !" !#""",-1 ()!#$% ()!#$%&#(!( !#$%&#(!( $$,/ $$,/

&#(!( &#(!(() 6 $, $, $, &#(!(()$),," ()$),," ,$!$( #% "",-1 "",-1 ()3II #% ()3II< 3II< 424 C3  !"!#" !"!#"),"0 !#"),"0 "1 ()!#$% ()!#$% &#(!($ $$,/ $,/ &#(!($

Irradiance of Electromagnetic Radiation The irradiance (1) of electromagnetic radiation falling on any surface is given by the equation:  !+

1#. 



(

!2G

   +",1 +",1%"( %"(2 +",1 %"(2< 2< 4I &#(!(%() &#(!(%() $-#!*$!# "1() () $-#!*$!# *$!#),"0 ),"0 "1 6 ?3.< ?3.< 4 7 )( )("# ("#%0 "#%0 ," '"!,"() () !"!#" !#" '"!," ())((,3 )((,3 )((,3 !" $,,$" ()!#" !#"$-#! $-#!( (!#" !#")((,3 ()!#" $-#!( !#")((,3

C)9 #==< $:
3) THE PHOTOELECTRIC EFFECT WORK FUNCTION On the surface of metals, there are tiny particles called electrons. The electrons are held on the metal surface by attractive forces. If an electron is to escape from the metal surface, it must overcome these attractive forces. The work function of a metal is the energy which must be supplied to enable an electron to escape from the metal surface. PHOTOELECTRIC EFFECT / PHOTOELECTRIC EMISSION If one photon of electromagnetic energy (E = hf) strikes a metal surface, it causes one electron to be emitted from the metal surface if the photon's energy (hf) is equal to or greater than the work function of the metal, part of the photon's energy being used to enable the electron to escape. The rest of the photon's energy is given to the emitted electron as kinetic energy. The photon then no longer exists - This is known as the photoelectric effect and the emission of the electron is known as photoelectric emission or photoemission. THRESHOLD FREQUENCY (fo) A photon must have a minimum energy equal to the work function of a metal and hence a minimum frequency (fo) to emit an electron from the metal surface. This minimum frequency (fo) is called the threshold frequency for the metal. Each metal has its own unique value of threshold frequency (fo). /.  /.     #       +/*D -8.0"1/. ) 

D#) 



Work function = h fo

EINSTEIN'S PHOTOELECTRIC EQUATION:

 ) I ' #   )

 C)9 # ==< $:
'



#

D 

Clipart copyright S.S.E.R. Ltd

Photoelectric emission is described by

$%((





C)9



#



==< $:
I





#A$$ $:<$ )

 

This apparatus is used to investigate the photoelectric effect: When electromagnetic radiation of sufficient energy/frequency strikes the metal surface, electrons are emitted from the metal surface (1 electron per photon). The emitted electrons are attracted to the positively-charged plate through the vacuum (there are no air molecules to stop them) - An electric current (known as a photoelectric current) is thus created in the circuit, so the ammeter displays a current reading. [The constant voltage supply is used to give the plates inside the vacuum their - and + electric charge].

0- * 

Photoelectric current/ A

-

fo sodium

vacuum

+

01 * Photoelectric current/ A

 

calcium

sodium

0

electrically-charged plates

fo calcium

Frequency of

0

Irradiance of radiation/ W m-2

radiation/ Hz

8+9 &*:  4 7+&*   &* 4  ;4 + &*

)+    4"  

Laboratory Demonstration of the Photoelectric Effect 7   &G  * 4$4 &* ' $ < $4)   $

electrons

stem

$ 4  )4 4$ $

)  & @ 4 *$6 <$4  )  $ )$4 464  )   )    =+ 

<&$ <&$!#" !#")((*$- <&$ !#")((*$-!",'%/ )((*$-!",'%/ > >*(,;  >*(,;) *(,;) !$(() !$(() ()'"!/ '"!/

>>5&#(!(""!,$ &#(!(""!,$"'$%%$( "'$%%$(   8  &#(!(""!,$ "'$%%$(    8 / /



> >!#,"%#( !#,"%#(),"0  >!#,"%#( ),"0 "1/

2 #$%&&,! #$%&&,! %$% %$% %"!( %"!($+"%!$-!" !($+"%!$-!" !#"&#(!(""!,$ &#(!(""!,$ "))"!3 !#" "))"!3

-

#"'"! '*#$# *#$# #" '"! %"$% %"$%"%$ $%"%$ ' "'$!%""!,(% ""!,(%*#" *#"""!,('-"!$ "'$!% ""!,(% *#"""!,('-"!$ ,$!$(() "1"0 "0 !( ,$!$(() ()),"0 ),"0 "1 !((, !((, 5(+"63.I 63.I< < 46 7 %!,$;"%$!3 5(+" 63.I %!,$;"%$!3

vacuum

+

>('&"!" ('&"!"!#" !#")((*$- )((*$--,&#%/ >('&"!" !#" )((*$--,&#%/

0- * Photoelectric

01 * 



Photoelectric

current/ A

0

current/ A

x fo

0

Frequency of radiation/ Hz



Irradiance of radiation/ W m-2

>5 #1 ," ( ""!,(% "'$!!" ),(' !#" "%$ ' '"! *#" &#(!(% () "15"(* 5"(* )( %!,$;"$!% ),"0 "1 %!,$;"$!%% $!%% ,)"9EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE > <&$ *#1 $,"%$- !#" $,,$" () !#" ""!,('-"!$ ,$!$( $,"%"%!#" '5",() ()""!,(% "'$!!"),(' ),('!#" !#""%$ '% % ,)"/ $,"%"%!#" !#" '5", ()""!,(%"'$!!" ""!,(%"'$!!" ),(' !#""%$ ' EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

>  !"!#" !#"*(,; *(,; ) !$( ()!#" !#""%$ ''"!/ !"!#" ()!#" "%$ ' '"!/

 #! #!),"0 "1() ()&#(!( ),"0 "1 ()&#(!($% &#(!($%,"0 $%,"0 $," !(DD %! ,""%"  ""!,( ""!,(),(' ),('!#" !#" !( ""!,(),(' % ,)"() '"!!#! !#!#% #% *(,; ,)"() ()'"! '"! !#!#% *(,; !$(() ()63. ) !$( ()63.< 63.< 4IC9

6

'"! '"!#% #% *(,; *(,;) !$(() '"! #% *(,;) !$( () 23F< !#"'$$' 23F < 4I C3  !"!#" !"!#" '$$' ' ),"0 "1 &#(!( &#(!(' %!#+" #+"$ "1 &#(!(' %! #+"$ (,",!( (,",!( !("'$! "'$! ""!,( ""!,(),(' ),('!#" "'$!""!,(),('!#" '"!% % ,)"3 '"!

.,$!" ,$!"(* (*G G H H$ $*(,% %1'5(%// .,$!" (*G  H $*(,% %1'5(% %1'5(%

#" &#(!( &#(!(() ()""!,('-"!$ ""!,('-"!$,$!$( ,$!$(() ()),"0  &#(!( () ""!,('-"!$ ,$!$( () ),"0 "1?3. "1?3.< ?3.< 46 7 %!,$;"% F #" '"! '"!% % ,)" ""!,( ""!,($% ),('!#" !#"'"! '"!% % ,)"*$!#  '"! ,)" ""!,($%"D"!" $%"D"!"),(' "D"!"),(' !#" '"! ,)"*$!# *$!# ';$"!$ ;$"!$"",-1 '<$' ' ;$"!$"",-1() "",-1()3F ()3F< 3F< 4I C3 !#"*(,; *(,; ) !$( ()!#$%  !"!#" !"!#" ()!#$%'"!3 !#$%'"!3

?#" #"*(,; *(,;) !$(() ()'"! '"!= =$% ?#" *(,;) !$( ()'"! =$%3. $%3.< 3.< 424 C3 > >&#(!( "134< %!,$;"%!#" !#"% % ,)"() ,)"()'"! '"!= = &#(!(() &#(!(()),"0 ()),"0 "134 34< 4 7 %!,$;"%!#" ()'"!  %$-(" "'$!!"),(' ),('!#" !#"'"! '"!% % ,)"3 %$-("""!,( ("""!,(!( ""!,(!(5" !(5""'$!!" 5""'$!!" ),(' !#" '"! "!",'$"!#" !#"'<$' "'$!!"""!,(3 ""!,(3 "!",'$" !#" '<$' ' ;$"!$ "",-1 ()!#$% ()!#$%"'$!!" !#$%"'$!!" >5 !#"'<$' !#""'$!!" "'$!!"""!,(3  !"!#" !"!#" '<$' ' +"($!1 ()!#" ()!#" "'$!!" ""!,(3

higher physics - with mr mackenzie

(ii) green light; ... them) - An electric current (known as a ... light (which contains photons of all 7 colours of the visible spectrum - red, orange, yellow, green, blue,.

2MB Sizes 0 Downloads 367 Views

Recommend Documents

SQA Advanced Higher Physics Unit 2: Electrical ... - with mr mackenzie
performing a detailed calculation, sketch a graph to show how the force on the third charge varies ...... particles. Discovered in 1958 after the Explorer 1 mission.

SQA Advanced Higher Physics Unit 1: Mechanics - with mr mackenzie
5.4 Angular momentum and kinetic energy . . . . . . . . . . . . . . . . . . . 78 ... 7.2 Gravitational potential and potential energy . ...... order for it to land on the green.

SQA Higher Physics Unit 1: Mechanics and ... - with mr mackenzie
There are many practical examples that we will be able to analyse, such as ..... a diagram, list the data and select the appropriate kinematic relationship.

SQA Advanced Higher Physics Unit 2: Electrical ... - with mr mackenzie
1.5 Summary . ..... Electric forces act on static and moving electric charges. We will be using the ..... Q8: A 50.0 N C-1 electric field acts in the positive x-direction.

SQA Advanced Higher Physics Unit 1: Mechanics - with mr mackenzie
3. Finally in part 3 we are asked to find s, given u, a and t, so we will again use ...... Q16: A planet in a distant galaxy has mass 6.07 × 1025 kg and radius 4.02 ...

CfE Higher Physics Unit 3: Electricity - with mr mackenzie
The electricity supply to our homes, schools and factories from the National Grid is an ..... In this next online activity, observe the effect on the alternating current through a ...... http://phet.colorado.edu/en/simulation/circuit-construction-kit

SQA Advanced Higher Physics Unit 3: Wave ... - with mr mackenzie
Radian measurement of angles (Mechanics topic 3). • Simple harmonic motion (Mechanics topic 8). Learning .... All references in the hints are to online ..... We could, of course, have calculated f using f = v/λ which gives the same answer. ..... T

CfE Higher Physics Unit 3: Electricity - with mr mackenzie
with d.c. and a.c. sources to compare peak and r.m.s. values; .... would expect a 12 V supply to transform 12 joules of energy for every coulomb of charge that flows through ...... An alternative name for the depletion layer is the junction region.

SQA Higher Physics Unit 1: Mechanics and ... - with mr mackenzie
6. TOPIC 1. VECTORS. Adding collinear vectors. 20 min. Online simulation ...... cliff edge. What is the vertical velocity of the car when it strikes the ground?

Waves - with mr mackenzie
ultrasound procedure. Why is this? Good contact is important. ..... For example in a telephone system? .... The distance from the centre of the lens to the principal ...

Download - with mr mackenzie
Page 6 ... A galaxy is a group of stars, gases and dust held together by gravity. • The universe is all existing matter and space considered as a whole.

Download - with mr mackenzie
Page 3 .... A galaxy is a group of stars, gases and dust held together by gravity. • The universe is all existing matter and space considered as a whole.

Vectors - with mr mackenzie
National 5 Physics Summary Notes. Dynamics & Space. 3. F. Kastelein ..... galaxy. Universe everything we know to exist, all stars planets and galaxies. Scale of ...

Vectors - with mr mackenzie
beyond the limits of our solar system. Space exploration may also refer simply to the use of satellites, placed in orbit around the. Earth. Satellites. The Moon is a ...

SQA Higher Physics Unit 3: Radiation and Matter - with mr mackenzie
any wave transmits energy from the source of the waves to any other point ..... We can list interference along with refraction, reflection and diffraction as ...... Q2: The irradiance of light hitting a solar panel measuring 2 m x 5 m is found, on.

CfE Higher Physics Unit 2: Particles and Waves - with mr mackenzie
SCHOLAR Study Guide Unit 2: CfE Higher Physics. 1. ... 2 Forces on charged particles. 23 ...... http://www.exploratorium.edu/origins/cern/ideas/standard3.html.

CfE Higher Physics Unit 2: Particles and Waves - with mr mackenzie
Under the heading “Big Data, bigger Universe”, zoom to where you sit in the scale of ...... The synchrotron is a more powerful and more advanced design of circular ...... Here, only three beams are considered for simplicity but the analysis can.

Forces Weight - with mr mackenzie
F = ma. Example. A toy car of mass 3 kg accelerates at 5 ms-2. Calculate the force acting on the car. Solution: Use F=ma. Know m = 3 kg a = 5 ms-2 so F = 3 x 5.

CfE Advanced Higher Physics Unit 2: Quanta and ... - with mr mackenzie
graph shows the irradiance plotted against wavelength and it can be seen that ...... Sketch graphs showing: ...... Discovered in 1958 after the Explorer 1 mission.

SQA Higher Physics Unit 3: Radiation and Matter - with mr mackenzie
John McCabe. St Aidan's High School ... Tynecastle High School ...... with the use of optical fibres for the transmission of information by means of laser ...... of the body, although the body can repair damaged cells and so normal radiation levels.

Using Excel in AH Physics Investigations - simple ... - with mr mackenzie
Use the Excel formula builder to produce calculations for each empty cell in the 1st row of ... You can access tutorials on LINEST on my site via the following link.

CfE Advanced Higher Physics Unit 2: Quanta and ... - with mr mackenzie
The solar wind consists of mostly electrons and protons with energies ...... Optically active materials can change the plane of polarisation of a beam of light. This.

Using Excel in AH Physics Investigations - simple ... - with mr mackenzie
uncertainties) on lines of best fit. Data for this activity was obtained by finding the period of oscillation for a simple pendulum over a range of pendulum lengths.

S3 Resistance Homework - with mr mackenzie
S3 Resistance Homework. Answer these questions in your homework jotter, showing full working. 1. The same three resistors are connected in different ways, as.