Fundamentals of the Monte Carlo method for neutral and charged particle transport Alex F Bielajew The University of Michigan Department of Nuclear Engineering and Radiological Sciences 2927 Cooley Building (North Campus) 2355 Bonisteel Boulevard Ann Arbor, Michigan 48109-2104 U. S. A. Tel: 734 764 6364 Fax: 734 763 4540 email: [email protected]

c 1998—2001 Alex F Bielajew

c 1998—2001 The University of Michigan

September 17, 2001

2

Contents 1 What is the Monte Carlo method?

1

1.1

Why is Monte Carlo? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7

1.2

Some history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11

2 Elementary probability theory 2.1

2.2

Continuous random variables

15 . . . . . . . . . . . . . . . . . . . . . . . . . .

15

2.1.1

One-dimensional probability distributions

. . . . . . . . . . . . . . .

15

2.1.2

Two-dimensional probability distributions . . . . . . . . . . . . . . .

17

2.1.3

Cumulative probability distributions . . . . . . . . . . . . . . . . . .

20

Discrete random variables . . . . . . . . . . . . . . . . . . . . . . . . . . . .

21

3 Random Number Generation

25

3.1

Linear congruential random number generators . . . . . . . . . . . . . . . . .

26

3.2

Long sequence random number generators . . . . . . . . . . . . . . . . . . .

30

4 Sampling Theory

35

4.1

Invertible cumulative distribution functions (direct method) . . . . . . . . .

36

4.2

Rejection method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

40

4.3

Mixed methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

43

4.4

Examples of sampling techniques . . . . . . . . . . . . . . . . . . . . . . . .

44

4.4.1

Circularly collimated parallel beam . . . . . . . . . . . . . . . . . . .

44

4.4.2

Point source collimated to a planar circle . . . . . . . . . . . . . . . .

46

4.4.3

Mixed method example . . . . . . . . . . . . . . . . . . . . . . . . . .

47

iii

iv

CONTENTS 4.4.4

Multi-dimensional example . . . . . . . . . . . . . . . . . . . . . . . .

5 Error estimation

49 53

5.1

Direct error estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

56

5.2

Batch statistics error estimation . . . . . . . . . . . . . . . . . . . . . . . . .

57

5.3

Combining errors of independent runs . . . . . . . . . . . . . . . . . . . . . .

58

5.4

Error estimation for binary scoring . . . . . . . . . . . . . . . . . . . . . . .

59

5.5

Relationships between Sx2 and s2x , Sx2 and s2x . . . . . . . . . . . . . . . . . .

59

6 Oddities: Random number and precision problems

63

6.1

Random number artefacts . . . . . . . . . . . . . . . . . . . . . . . . . . . .

63

6.2

Accumulation errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

70

7 Ray tracing and rotations

75

7.1

Displacements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

76

7.2

Rotation of coordinate systems . . . . . . . . . . . . . . . . . . . . . . . . .

76

7.3

Changes of direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

79

7.4

Putting it all together . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

80

8 Transport in media, interaction models 8.1 Interaction probability in an infinite medium . . . . . . . . . . . . . . . . . . 8.1.1

85 85

Uniform, infinite, homogeneous media . . . . . . . . . . . . . . . . . .

86

8.2

Finite media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

87

8.3

Regions of different scattering characteristics . . . . . . . . . . . . . . . . . .

87

8.4

Obtaining µ from microscopic cross sections . . . . . . . . . . . . . . . . . .

90

8.5

Compounds and mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . .

93

8.6

Branching ratios

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

94

8.7

Other pathlength schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . .

94

8.8

Model interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

95

8.8.1

Isotropic scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . .

95

8.8.2

Semi-isotropic or P1 scattering . . . . . . . . . . . . . . . . . . . . . .

95

CONTENTS

v

8.8.3

Rutherfordian scattering . . . . . . . . . . . . . . . . . . . . . . . . .

96

8.8.4

Rutherfordian scattering—small angle form

96

9 Lewis theory

. . . . . . . . . . . . . .

99

9.1

The formal solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

9.2

Isotropic scattering from uniform atomic targets . . . . . . . . . . . . . . . . 102

10 Geometry

107

10.1 Boundary crossing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 10.2 Solutions for simple surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 10.2.1 Planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 10.3 General solution for an arbitrary quadric . . . . . . . . . . . . . . . . . . . . 114 10.3.1 Intercept to an arbitrary quadric surface? . . . . . . . . . . . . . . . . 117 10.3.2 Spheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 10.3.3 Circular Cylinders . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 10.3.4 Circular Cones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 10.4 Using surfaces to make objects . . . . . . . . . . . . . . . . . . . . . . . . . . 125 10.4.1 Elemental volumes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 10.5 Tracking in an elemental volume . . . . . . . . . . . . . . . . . . . . . . . . . 132 10.6 Using elemental volumes to make objects . . . . . . . . . . . . . . . . . . . . 135 10.6.1 Simply-connected elements . . . . . . . . . . . . . . . . . . . . . . . . 135 10.6.2 Multiply-connected elements . . . . . . . . . . . . . . . . . . . . . . . 140 10.6.3 Combinatorial geometry . . . . . . . . . . . . . . . . . . . . . . . . . 142 10.7 Law of reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 11 Monte Carlo and Numerical Quadrature

151

11.1 The dimensionality of deterministic methods . . . . . . . . . . . . . . . . . . 151 11.2 Convergence of Deterministic Solutions . . . . . . . . . . . . . . . . . . . . . 154 11.2.1 One dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 11.2.2 Two dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

vi

CONTENTS 11.2.3 D dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 11.3 Convergence of Monte Carlo solutions . . . . . . . . . . . . . . . . . . . . . . 156 11.4 Comparison between Monte Carlo and Numerical Quadrature . . . . . . . . 156

12 Photon Monte Carlo Simulation

161

12.1 Basic photon interaction processes . . . . . . . . . . . . . . . . . . . . . . . . 161 12.1.1 Pair production in the nuclear field . . . . . . . . . . . . . . . . . . . 162 12.1.2 The Compton interaction (incoherent scattering)

. . . . . . . . . . . 165

12.1.3 Photoelectric interaction . . . . . . . . . . . . . . . . . . . . . . . . . 166 12.1.4 Rayleigh (coherent) interaction . . . . . . . . . . . . . . . . . . . . . 169 12.1.5 Relative importance of various processes . . . . . . . . . . . . . . . . 170 12.2 Photon transport logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 13 Electron Monte Carlo Simulation

179

13.1 Catastrophic interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 13.1.1 Hard bremsstrahlung production . . . . . . . . . . . . . . . . . . . . 180 13.1.2 Møller (Bhabha) scattering . . . . . . . . . . . . . . . . . . . . . . . . 180 13.1.3 Positron annihilation . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 13.2 Statistically grouped interactions . . . . . . . . . . . . . . . . . . . . . . . . 181 13.2.1 “Continuous” energy loss . . . . . . . . . . . . . . . . . . . . . . . . . 181 13.2.2 Multiple scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 13.3 Electron transport “mechanics” . . . . . . . . . . . . . . . . . . . . . . . . . 183 13.3.1 Typical electron tracks . . . . . . . . . . . . . . . . . . . . . . . . . . 183 13.3.2 Typical multiple scattering substeps . . . . . . . . . . . . . . . . . . . 183 13.4 Examples of electron transport

. . . . . . . . . . . . . . . . . . . . . . . . . 184

13.4.1 Effect of physical modeling on a 20 MeV e− depth-dose curve . . . . 184 13.5 Electron transport logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 14 Electron step-size artefacts and PRESTA

203

14.1 Electron step-size artefacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

CONTENTS

vii

14.1.1 What is an electron step-size artefact? . . . . . . . . . . . . . . . . . 203 14.1.2 Path-length correction . . . . . . . . . . . . . . . . . . . . . . . . . . 209 14.1.3 Lateral deflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 14.1.4 Boundary crossing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 14.2 PRESTA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 14.2.1 The elements of PRESTA . . . . . . . . . . . . . . . . . . . . . . . . 216 14.2.2 Constraints of the Moli`ere Theory . . . . . . . . . . . . . . . . . . . . 218 14.2.3 PRESTA’s path-length correction . . . . . . . . . . . . . . . . . . . . 223 14.2.4 PRESTA’s lateral correlation algorithm . . . . . . . . . . . . . . . . . 226 14.2.5 Accounting for energy loss . . . . . . . . . . . . . . . . . . . . . . . . 228 14.2.6 PRESTA’s boundary crossing algorithm . . . . . . . . . . . . . . . . 231 14.2.7 Caveat Emptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 15 Advanced electron transport algorithms

237

15.1 What does condensed history Monte Carlo do? . . . . . . . . . . . . . . . . . 240 15.1.1 Numerics’ step-size constraints . . . . . . . . . . . . . . . . . . . . . . 240 15.1.2 Physics’ step-size constraints . . . . . . . . . . . . . . . . . . . . . . . 243 15.1.3 Boundary step-size constraints . . . . . . . . . . . . . . . . . . . . . . 244 15.2 The new multiple-scattering theory . . . . . . . . . . . . . . . . . . . . . . . 245 15.3 Longitudinal and lateral distributions . . . . . . . . . . . . . . . . . . . . . . 247 15.4 The future of condensed history algorithms . . . . . . . . . . . . . . . . . . . 249 16 Electron Transport in Electric and Magnetic Fields

257

16.1 Equations of motion in a vacuum . . . . . . . . . . . . . . . . . . . . . . . . 258 ~ =constant, B ~ = 0; B ~ =constant, E ~ = 0 . . . . . . . . 259 16.1.1 Special cases: E 16.2 Transport in a medium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 16.3 Application to Monte Carlo, Benchmarks . . . . . . . . . . . . . . . . . . . . 264 17 Variance reduction techniques

275

17.0.1 Variance reduction or efficiency increase? . . . . . . . . . . . . . . . . 275

viii

CONTENTS 17.1 Electron-specific methods

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

17.1.1 Geometry interrogation reduction . . . . . . . . . . . . . . . . . . . . 277 17.1.2 Discard within a zone . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 17.1.3 PRESTA! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 17.1.4 Range rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 17.2 Photon-specific methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 17.2.1 Interaction forcing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 17.2.2 Exponential transform, russian roulette, and particle splitting . . . . 287 17.2.3 Exponential transform with interaction forcing . . . . . . . . . . . . . 290 17.3 General methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291 17.3.1 Secondary particle enhancement . . . . . . . . . . . . . . . . . . . . . 291 17.3.2 Sectioned problems, use of pre-computed results . . . . . . . . . . . . 292 17.3.3 Geometry equivalence theorem . . . . . . . . . . . . . . . . . . . . . . 293 17.3.4 Use of geometry symmetry . . . . . . . . . . . . . . . . . . . . . . . . 294 18 Code Library

299

18.1 Utility/General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300 18.2 Subroutines for random number generation . . . . . . . . . . . . . . . . . . . 302 18.3 Subroutines for particle transport and deflection . . . . . . . . . . . . . . . . 321 18.4 Subroutines for modeling interactions . . . . . . . . . . . . . . . . . . . . . . 325 18.5 Subroutines for modeling geometry . . . . . . . . . . . . . . . . . . . . . . . 328 18.6 Test routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

Fundamentals of the Monte Carlo method for neutral ...

Sep 17, 2001 - Fax: 734 763 4540 email: [email protected] cс 1998—2001 Alex F .... 11.3 Convergence of Monte Carlo solutions . . . . . . . . . . . . . . . . . . . . . .

218KB Sizes 2 Downloads 252 Views

Recommend Documents

A quasi-Monte Carlo method for computing areas ... - Semantic Scholar
Our method operates directly on the point cloud without any surface ... by counting the number of intersection points between the point cloud and a set of.

A Sequential Monte Carlo Method for Bayesian ...
Sep 15, 2002 - to Bayesian logistic regression and yields a 98% reduction in data .... posterior, f(θ|x), and appeal to the law of large numbers to estimate.

A Monte-Carlo-based method for the estimation of ...
Aug 13, 2008 - Analogously to the definition of a random variable, this mapping can be used .... sions in the specification of C (and also in the posterior calculation of FLP and .... denoted in this document as PΓ ≡ µC), then PΓ can also be ...

A Monte-Carlo-based method for the estimation of ...
Aug 13, 2008 - Corresponding author. Tel.: +43+512-5076825. Fax: +43+512-5072941. Email address: [email protected] (Diego A. Alvarez).

Monte Carlo Simulation for the Structure of Polyolefins ...
unsaturated (usually vinyl) groups can be incorporated by the. CGC into a ... broaden the molecular weight distribution, since chains formed at the second site will .... to published experimental data for a lab-scale synthesis of a dual catalyst ...

Hamiltonian Monte Carlo for Hierarchical Models
Dec 3, 2013 - eigenvalues, which encode the direction and magnitudes of the local deviation from isotropy. data, latent mean µ set to zero, and a log-normal ...

Monte Carlo Simulation
You are going to use simulation elsewhere in the .... If we use Monte Carlo simulation to price a. European ...... Do not put all of your “business logic” in your GUI.

Using the Direct Simulation Monte Carlo Approach for ...
The viability of using the Direct Simulation Monte Carlo (DSMC) approach to study the blast-impact ... by computing load definition for two model geometries - a box and an 'I' shaped beam. ... On the other hand, particle methods do not make the conti

Copy of CMG14 monte-carlo methodology for network capacity ...
Quality of Service (QoS) = a generic term describing the performance of a system ... We have: 1. A network a. Topology, including Possible Points of Failure b.

Monte Carlo simulations for a model of amphiphiles ...
Available online at www.sciencedirect.com. Physica A 319 (2003) .... many sites. The amphiphiles possess internal degrees of freedom with n different states.

a monte carlo study
Mar 22, 2005 - We confirm this result using simulated data for a wide range of specifications by ...... Federal Reserve Bank of Kansas City and University of Missouri. ... Clements M.P., Krolzig H.$M. (1998), lA Comparison of the Forecast ...

Sequential Monte Carlo multiple testing
Oct 13, 2011 - can be reproduced through a Galaxy Pages document at: ... Then, in Section 3, we show on both simulated and real data that this method can ...

Statistical Modeling for Monte Carlo Simulation using Hspice - CiteSeerX
To enable Monte Carlo methods, a statistical model is needed. This is a model ..... However, it is difficult to determine the correlation without a lot of statistical data. The best case .... [3] HSPICE Simulation and Analysis User Guide. March 2005.

A Non-Resampling Sequential Monte Carlo Detector for ... - IEEE Xplore
SMC methods are traditionally built on the techniques of sequential importance sampling (SIS) and resampling. In this paper, we apply the SMC methodology.

accelerated monte carlo for kullback-leibler divergence ...
When using ˜Dts a (x) with antithetical variates, errors in the odd-order terms cancel, significantly improving efficiency. 9. VARIATIONAL IMPORTANCE ...

Introduction to Monte Carlo Simulation
Crystal Ball Global Business Unit ... Simulation is the application of models to predict future outcomes ... As an experimenter increases the number of cases to.

Sequential Monte Carlo multiple testing
Oct 13, 2011 - An example of such a local analysis is the study of how the relation ... and then perform a statistical test of a null hypothesis H0 versus. ∗To whom ... resampling risk (Gandy, 2009), and prediction of P-values using. Random ...

Monte Carlo Null Models for Genomic Data - Project Euclid
To the rescue comes Monte Carlo testing, which may ap- pear deceptively ... order the null models by increasing preservation of the data characteristics, and we ...

Introduction to Monte Carlo Simulation - PDFKUL.COM
Monte Carlo Simulation Steps. • Following are the important steps for Monte Carlo simulation: 1. Deterministic model generation. 2. Input distribution identification. 3. Random number generation. 4. Analysis and decision making ..... perform output

Particle-fixed Monte Carlo model for optical coherence ...
Mar 21, 2005 - Y. Pan, R. Birngruber, J. Rosperich, and R. Engelhardt, ..... complex partitioning schemes may be possible (like oct-tree or kd-tree [17]), they help little ..... its cluster and Dr. Tony Travis for the tip of programming on the cluste

Monte Carlo null models for genomic data - Semantic Scholar
Section 3 presents null model preservation hierarchies and signifi- cance orderings. Sections 4–6 ... A Galaxy Pages (Goecks et al., 2010) document allowing for ...

Dead Reckoning for Monte Carlo Localization in Low ...
Especially in scenar- ios with low seed densities, we find SA-MCL to significantly outperform MCL. S. S. S. S. S. Figure 6: Setup of demo with seeds and RC cars.