Estimating the Yield Curve Using Calibrated Radial Basis Function Networks Gyusik Han, Daewon Lee, and Jaewook Lee Department of Industrial and Management Engineering Pohang University of Science and Technology Pohang, Kyungbuk 790-784, Korea {swallow,woosuhan,jaewookl}

Abstract. Nonparametric approaches of estimating the yield curve have been widely used as alternative approaches that supplement parametric approaches. In this paper, we propose a novel yield curve estimating algorithm based on radial basis function networks, which is a nonparametric approach. The proposed method is devised to improve accuracy and smoothness of the fitted curve. Numerical experiments are conducted for 57 U.S. Treasury securities with different maturities and demonstrate a significant performance improvement to reduce test error compared to other existing algorithms.



Along with stocks and loans, bonds are the main asset class with which the government or a private enterprise can raise money. The term structure of interest rates plays a key role in the reasonable bond-pricing. Because it is based on an interest rate model, the model need be calibrated before using it. The fundamental object to calibrate against is the yield curve of bonds. The fitting techniques of yield curves to yield data or maturity data are divided into two categories, parametric approaches and nonparametric approaches. A popular parametric approach is a family of Nelson-Siegel curves [2]. Despite its simple structure, many parametric approach, however, revealed poor performance in yield curve fitting. As alternative approaches, nonparametric approaches have recently been widely used. Especially, cubic B-splines, which are the kernel functions for estimating a bond yield, are popularly chosen among various nonparametric approaches [3], [5], [13], [14]. In this paper, we propose a novel fitting method for the yield curve. The proposed method comprises two phases. The first phase finds an initial yield curve using a radial basis function network (RBFN) whose inputs are maturities of bonds and outputs are their yields. In the second phase, the initial yield curve predicted by the RBFN in the first phase is calibrated to minimize bond-pricing error. The performance of the proposed algorithm is verified concerned with improving the curve-fitting accuracy and regularization by applying it to notes and bonds issued by U.S. Treasury Department. J. Wang, X. Liao, and Z. Yi (Eds.): ISNN 2005, LNCS 3497, pp. 885–890, 2005. c Springer-Verlag Berlin Heidelberg 2005 



Gyusik Han, Daewon Lee, and Jaewook Lee

Existing Yield Curve Fitting Algorithms

To verify the merits of our proposed nonparametric and computational method for fitting the yield curve, the performance of this method needs to be measured against widely used alternative models. In this paper, a smoothed spline model is used for this purpose. It assumes that the forward rate curve, δ, is a linear combination of basis functions. Cubic B-splines, a linear nonparametric interpolation method, are considered as basis. Let {Pi }1≤i≤N be the ith bond price at settlement date. δ is chosen to minimize the following objective function N 

 {Pi − Pˆi (δ)}2 + θ


[δ  (t)] dt 2




over the space of all cubic B-splines with knot points(time) τ0 < τ0 < · · · < τK . Pˆi (δ) is the ith theoretical bond price from the estimated yield curve [14]. Another approach to be considered is Nelson and Siegel curves [1], [2]. The forward rate curve modeled by Nelson and Siegel is δ(τ ) = β0 + (β1 + β2 τ )e−kτ


where β0 , β1 , β2 , and k are parameters to be estimated in the following way:   N  ∗ ∗ ∗ ∗ 2 Υ |Υ = (β0 , β1 , β2 , k ) = arg min [Pi − Pˆi (δ)] (β0 , β1 , β2 , k)

3 3.1


The Proposed Method Phase I: RBFN-Based Initial Curve-Fitting Phase

In the first phase, we train a RBFN to estimate the spot rate curve with a given bond information on prices and maturities. A (generalized) radial basis function network (RBFN) involves searching for a suboptimal solution in a lower-dimensional space that approximates the interpolation solution where the approximated solution F ∗ (w) can be expressed as follows: F ∗ (w; τi , T, L) =


wj Φj (τi )



l  j=1

wj φ(

τi − tj  ) λj


where the set of RBF centers, T = {tj |j = 1, . . . , l}, and the set of scale parameters, L = {λj |j = 1, . . . , l}, are given [7]. Hence the training procedure of the GRBFNs is composed of selecting centers of the hidden neurons and estimating the weights that connect the hidden and the output layers. Once centers have

Estimating the Yield Curve


been fixed, the network weights will be directly estimated by using the least squares algorithm. To apply RBFNs to estimate the spot rate, we first calculate the spot rate (ri ) with respect to maturity (τi ) on the basis of bootstrapping through bond information. Then an initial yield curve is fitted as minimizing the criterion function N 1 ri − F ∗ (w; τi , T, L)2 . (4) J(w) = 2 i=1 The network weights can be directly estimated by using the pseudo-inverse, w = (ΦT Φ + λΦ0 )−1 ΦT R


where R is the vector of the spot rates obtained from the bootstrapping method, Φ = [φ(τi , tj )]i=1,...,N, j=1,...,K , Φ0 = [φ(τi , tj )]i,j=1,...,K and λ is a regularization parameter of the generalized RBFN [9]. The estimated spot rates, obtained from the trained RBFN, can be used to predict bond prices. Because the ultimate aim of the yield curve fitting is to construct a bond pricing model, in the second phase, we have to additionally optimize the weights of the trained RBFN to minimize bond pricing error. 3.2

Phase II: Trust Region-Based Optimal Yield Curve Search

The second phase solves an unconstrained nonlinear programming to minimize the bond pricing error as follows: min E(w; R, T, L) = w

N  2  Pi (r(τ )) − Pˆi (F ∗ (τ ; w, T, L))



where Pi is the ith bond price for the true spot rate r(τ ) at time τ and Pˆi is the ith bond price for the spot rate F ∗ (w) obtained from the initially trained RBFN in the first phase. To minimize Eq. (6) the second phase employs a trust region algorithm as follows. For a given weight vector w(n), the quadratic apˆ is defined by the first two terms of the Taylor approximation to proximation E E at w(n); 1 ˆ E(s) = E(w(n)) + g(n)T s + sT H(n)s 2


where g(n) is the local gradient vector and H(n) is the local Hessian matrix. A trial step s(n) is then computed by minimizing (or approximately minimizing) the trust region subproblem stated by ˆ subject to min E(s) s

s2 ≤ ∆n


where ∆n > 0 is a trust-region parameter. According to the agreement between predicted and actual reduction in the function E as measured by the ratio ρn =

E(w(n)) − E(w(n) + s(n)) , ˆ ˆ E(0) − E(s(n))



Gyusik Han, Daewon Lee, and Jaewook Lee

∆n is adjusted between iterations as follows:   s(n)2 /4 if ρn < 0.25 if ρn > 0.75 and ∆n = s(n)2 ∆n+1 = 2∆n  ∆n otherwise


The decision to accept the step is then given by

w(n + 1) =

w(n) + s(n) if ρn ≥ 0 w(n) otherwise


which means that the current weight vector is updated to be w(n) + s(n) if E(w(n) + s(n)) < E(w(n)); Otherwise, it remains unchanged and the trust region parameter ∆n is shrunk and the trial step computation is repeated [8], [10], [11]. The proposed method has several advantages. At first, since RBFN has a universal property of approximating an arbitrary curve, it can provide a good fitting for the true yield curve. In addition, the use of a trust region-based search procedure makes much better estimation for the curve fitted by RBFN.


Experimental Results

In this section, we verify how well the proposed method works compared with three existing fitting algorithms of the yield curve which include – Cubic B-splines (Fisher’s method; FM): [14] – Nelson-Siegel curve (NS): [1], [2] – MLP method (MM) : [4], [6], [8], [9] The data used in the empirical analysis are 57 U.S. Treasury securities settled on November 3, 1997. U.S Treasury securities are semiannual-coupon bonds issued in order for U.S. Treasury Department to finance government borrowing needs at the lowest cost over time. The 57 securities have two quoted prices, bid price quotes and asked price quotes. We regard bid price quotes as real clean prices of the securities and use them in the empirical analysis. We used the spot rates bootstrapped from 50 of the 57 securities for training models, and the remaining 7 bonds for testing them. The kernel function for the proposed method is the Gaussian kernel function. The MLP method employed a multilayer-perceptron network instead of RBFN in Phase I. Simulation results are shown in Table 1 and Fig 1. The fitting performance measures are the training error and the test error for bond pricing. Not surprisingly, NS, a parametric approach, provides the poorest performance because error is relatively severe. In effect, NS is used when good accuracy is not required. The proposed method shows a better performance compared to the others in terms of accuracy.

Estimating the Yield Curve


0.068 NS curve

Bootstrapped spot rate


FM’s curve



0.062 0.06 Proposed 0.058 0.056 0.054

MM’s curve

0.052 0.05




15 Time(τ): year




Fig. 1. Comparison of results for the fitting of the yield curve Table 1. Simulation Result using four yield-curve fitting techniques. (b.p.(basis point)=0.01%) Algorithm Training Error Test Error NS 1438 b.p. 97 b.p. FM 253 b.p. 73 b.p. MM 1219 b.p. 80 b.p. Proposed 287 b.p. 56 b.p.



In this paper, we’ve proposed a novel yield curve fitting algorithm to mitigate pricing errors and improve a generalization performance for estimating the yield curve. The proposed method consists of a RBFN-based initial curve-fitting phase and a trust region-based optimal yield curve search phase. In order to show the effectiveness of the proposed algorithm, we’ve conducted experiments with 57 U.S. Treasury securities. The experimental results demonstrate that the new algorithm not only successfully improves generalization but also has better pricing accuracy compared with the existing algorithms for the fitting of the yield curve. An application of the methods to other assets’ yield curve estimation remains to be further investigated.


Gyusik Han, Daewon Lee, and Jaewook Lee

Acknowledgement This work was supported by the Korea Research Foundation under grant number KRF-2004-041-D00785.

References 1. James, J., Webber, N.: Interest Rate Modeling. John Wiley & Sons Ltd, London (2000) 2. Nelson, C.R., Siegel, A.F.: Parsimonious Modeling of Yield Curves. The Journal of Business, 60 (1987) 473-489 3. de Boor, C.: A Practical Guide to Splines. Springer-Verlag, Berlin Heidelberg New York (1978) 4. Lee, D.-W., Choi, H.-J., Lee J.: A Regularized Line Search Tunneling for Efficient Neural Network Learning. Lecture Notes in Computer Science, Springer-Verlag, Berlin Heidelberg New York 3173 (2004) 239-243 5. Dierckx, P.: Curve and Surface with Splines. Oxford Science Publications, New York (1995) 6. Choi, H.-J., Lee, H.-S., Han, G.-S., Lee, J.: Efficient Option Pricing via a Globally Regularized Neural Network. Lecture Notes in Computer Science, Springer-Verlag, Berlin Heidelberg New York 3174 (2004) 988-993 7. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistcal Learning: Data Mining, Inference, and Prediction. Springer-Verlag, Berlin Heidelberg New York (2001) 8. Lee, J.: Attractor-Based Trust-Region Algorithm for Efficient Training of Multilayer Perceptrons. Electronics Letters, 39 (2003) 71-72 9. Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice-Hall, New York (1999) 10. Lee, J., Chiang, H.-D.: A Dynamical Trajectory-Based Methodology for Systematically Computing Multiple Optimal Solutions of General Nonlinear Programming Problems. IEEE Transactions on Automatic Control, 49 (2004) 888-899 11. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer-Verlag, Berlin Heidelberg New York (1999) 12. Bliss, R.R.: Testing Term Structure Estimation Methods. Advances in Futures and Options Research, 9 (1997) 197-231 13. McCulloch, J.H.: The Tax Adjusted Yield Curve. Journal of Finance, 30 (1975) 811-830 14. Fisher, M., Nychka, D., Zervos D.: Fitting the Term Structure of Interest Rates with Smoothing Splines. Working Paper 95-1, Finance and Economics Discussion Series, Federal Reserve Board, Washington (1995)

Estimating the Yield Curve Using Calibrated Radial ...

Pohang University of Science and Technology. Pohang ... A (generalized) radial ba- sis function .... Lecture Notes in Computer Science, Springer-Verlag,.

165KB Sizes 0 Downloads 124 Views

Recommend Documents

Estimating the Yield Curve Using Calibrated Radial ...
Pohang University of Science and Technology ..... Lecture Notes in Computer Science, Springer-Verlag, ... Series, Federal Reserve Board, Washington (1995).

Mortgage Risk and the Yield Curve
MAN Institute, Toulouse School of Economics, Luxembourg School of Finance, ..... The ability of financial institutions to trade across different bond maturities .... for approximately 6% of the total amount outstanding in 2014), to the best of our ..

A New Method of Estimating the Pollen Dispersal Curve ... - Genetics
perform the estimations for a single simulation repli- cate. For this reason, we performed a limited ...... should cover as many pairwise-distance classes as possi-.

A New Method of Estimating the Pollen Dispersal Curve ... - Genetics
perform the estimations for a single simulation repli- cate. For this reason, we performed a limited ...... should cover as many pairwise-distance classes as possi-.

Yield Curve and Volatility: Lessons from Eurodollar ...
London Business School, Finance Area, Sussex Place, Regent's Park, ..... lend themselves t easy valuation in the affine framework after conversion to their.

Estimating irrigation use and effects on maize yield ...
Available online 22 September 2009. Keywords: Irrigation .... information to the CORINE agricultural land use classes respecting regional crop areas. ... program developed at the Texas agricultural experimental station at regional level.

Estimating incidence of the French BSE infection using ...
Bovine Spongiform Encephalopathy (BSE) clinical surveillance data were .... where pa is the proportion of animals in the population that are of age a, and aa reflects the rel- ...... This work was funded by a grant from GIS ''Infection a` Prions''.

The Bell Curve
Dec 6, 2004 - years old; patients at the top center typically lived .... thirty-one CF centers in the United States .... phone call, Campbell released the names of.

Increasing Product Quality and Yield Using Machine Learning - Intel
Verifiable engineering lead improvements with process diagnostics ... With a growing market comes increased pressure to deliver products to market faster.

Increasing Product Quality and Yield Using Machine Learning
scientific measures specific to the wafer production process and how to visually interpret data. ... stakeholder, proving the project value to management. .... Data Integration. Data Visualization. Data Mining. Machine Learning. Predictive Metrology