y  ax  b P  P  1

ba ba 100% , 100% a a

180o  n  2 

1 S L   p  a , S L   Ra 2 1 1 V  SB h , V   R 2h 3 3

Pt  Po 1  r 

a

4 S  4 R 2 , V   R 3 3

d1 / / d 2  a  a

a 3 d a 2 , h 2

x

 x2  x1    y2  y1  2

x1 f1  x2 f 2  ...  xn f n f1  f 2  ...  f

y2  y1 x2  x1

y  y A yB  y A  x  x A xB  x A

4 S  4 R 2 , V   R 3 3

AB 

t

d1  d 2  a  a  1 2

a 3  b3   a  b   a 2

ab  b 2 

:

I. :

II.

:

III.

:

IV. :

V.

:

VI. VII.

:

៩។

 (C.U) ២០១២

GarmÖkfa sYsþI elakRKÚGñkRKÚ b¥Ún²sisSanusisS nigmitþGñksikSaTUeTARKb;mCÄdæan CaTIeKarBRsLaj;rab;Gan. mnusSmñak;²Edl)anekItmkehIy EtgEtcg;)annUvsuPmgÁleTAtammhictarbs;eKerog²xøÜn ehIyedIm,ITTYl )ansuPmgÁl luHRtaEteKmanPaBeCaKC½ykñúgdMeNIrCIvitrbs;eK. y:agNamij ´k¾minxusEbøkBInak;TaMgenaH Edr KW´cg;)andMeNIrCIviteCaKC½yeTAéf¶GnaKt. sBVéf¶enH´CaRKUbeRgónKNitviTüamñak; dUcenH´)anxitxM RsavRCav nigsresremeronEdlTak;TgnwgKNitviTüaCaeRcIn Cak;EsþgdUcCaesovePA EdlGñkkMBugkan;Gan kñúgédenH KWCaKeRmagFMTI4 ehIyesovePAenHmaneQµaHfa { KNitviTüa Gan> Kit> yl; fñak;TI9 } . crit lkçN³énesovePAenH KWRbmUlpþMúemeron lMhat; viBaØasa nigcMNucepSg²EdlTak;TgnwgKNitviTüafñak;TI9 . eTaHbICa´)anRtÜtBinitümuneBle)aHBum< nig)ane)aHBum
´EdlCaGñkeroberogsgÇwmfa elakGñkmitþGñkGannwgeRbIR)as;esovePAenH eFVICaÉksarCMnYykñúg karsikSaKNitviTüa minEmneRbIR)as;esovePAenH edIm,IebIkcmøgeBlRbLgeLIy. sUmmitþGñkGanRbwgERbg bnþeTot edIm,IeFVI[KNitviTüakm<úCamanPaBrIkceRmIn edaysarsm,ÚrGñkmancMeNHdwgEpñkKNitviTüa. sUmmitþGñkGan mansuxPaBl¥ suvtßiPaBRKb;eBl ehIyeronsURt)anBUEk nigTTYl)aneCaKC½ykñgú dMeNIrCIvit . sVayerog> éf¶TI 12 Ex FñÚ qñaM 2012 yuvnisSit ÉkeTsKNitviTüa

esckþIEføgGMNrKuN sUmGrKuNCUndl;elakk«Buk Ca cMerIn nigGñkmþay eBRC esaP½NÐ EdlelakTaMgBIr)anpþl;kMeNIt dl;kUn ehIybI)ac;EfrkSaciBa©wmkUn CYy[kUn)ansikSarhUt)ankøayCaRKÚbeRgónmñak;. sUmCUnBrelakTaMgBIr manRBHCnµynW yUr RbkbedaysuxPaBl¥ edIm,ICYypþl;PaBkk;ekþAdl;kUnecACMnan;eRkay. GrKuNdl;bgb¥Ún RbusRsITaMg 4 nak; Edl)anCYypÁt;pÁg; nigeRCamERCgkareronsURtrbs;´ TaMgfvikar nigsmÖar³ CaBiessKW kMuBüÚT½r eFVI[´GacBRgwg nigBRgIkcMeNHdwgEpñkviTüasaRsþ)anRbesIrCagmun. CUnBrdl;dl;bgb¥ÚnTaMg 4 man suxPaBl¥ nigRbkbrbrkak;kbekIncMNUl. sUmGrKuNdl;elakRKU Kg; Narin sBVéf¶Canaykén GnuviTüal½y eKakRBIg EdlelakRKÚ )anxitxM RbwgERbgminsþaykmøaMgkñúgkarbgðat;beRgón´ k¾dUcCasisSdéTeTotenAkñúgfñak;. ´Kitfa cMeNHdwgKNitviTüa kRmitbzmPUmirbs;´CaeRcIn )anedaysarkarRbwgERbg nigBüayamsþab;karbgðat;beRgónrbs;elakRKU. dUcenH´sUmTTYlsÁal;KuNd¾FMeFgenH Edl´minGacbMePøc)aneTAéf¶GnaKt. sUmCUnBrdl;elakRKU nigRkum RKÜsar sUmmansuxPaBl¥ nigsuvtßiPaBRKb;eBlevla . sUmGrRBHKuNdl;RBHetCKuN Pwm suPNÐ CaRKÚecAGFikarvtþéRBrMdYl EdlRBHGgÁ)anGnuBaØati[´ RBHkruNa sñak;GaRs½yenAkñúgvtþ nigeRbIR)as;GKÁisnI kñúgkarerobcMemeron RBmTaMg)anCYypÁt;pÁg;xagPsþúPa b¤smÖa³epSg². sUmRbeKnBrdl;RBHetCKuNmanRBHCnµyWnyUr. sUmGrKuNdl;GñkRKÚ Niko CaGñksµ½RKcitþCnCatiCb:un EdlGñkRKÚ)anpþl;kmøaMgcitþ nigelIkTwkcitþdl; rUb´kñúgkarRbkbrbrCaRKÚbeRgón nigCYy]btßmdl;rbU ´nUvfvikamYycMnYnFM. sUmCUnBrGñkRKÚmansuxPaBl¥ CaBiessenHeBlGñkRKÚeFVIdMeNIrmatuPUminivtþn_eTAkan;RbeTsCb:unvij sUmmansuvtßiPaBx elak Gan suxKn§a 2> kBaØa pl RsIFa 3> kBaØa qay suKn§amMu 4> kBaØa pat; suvNÑarI 5> kBaØa sinu suKn§a 6> elak suxa kuslü 7> elak Ém suxsuvNÑ 8> kBaØa Kg; r½tñFI 9> elak kun Git 10 elak yn; m:ar:U 11 elak Gul eGn 12 elak Kwm pan;Na 13 kBaØa v:an; cnßa 14 kBaØa søkw y:at 15> kBaØa sumw sIuNat 16 elak BUk suxsanþ 17> elak etg sarI 18 elak Cwm sar:at; 19 elak raC vutßa 20> elak vn lINa 21 elak mas Parmü 22 kBaØa ey:ak bu)aö 23 elak hYn siuj 24 KrusisS eRbIs dar:a .



CakarBitkarsikSaKNitviTüa vaBMuEmnCakargayRsYlenaHeT CaBiessKWkarsikSaedIm,I[køayxøÜnCasisS BUEkEtmþg. vaTamTar[eyIgmankarts‘U Büayam GMNt; Gt;Fµt; CaeRcInTaMgkay nigcitþ EtBMuEmnmann½yfa eyIgminGaceFVI)anenaHeT. eBlsikSaeyIgRtUvEck[dac;fa {etIeyIgeronykecH b¤eronykCab; ?} . kalNa eyIgcg;køayxøÜneTACasisSBUEkKNitviTüa eyIgRtUveronykecH KWmann½yfaeyIgRtUvyl;[c,as; GMBIemeron rUbmnþ b¤lMhat;EdleyIg)aneronrYc minEmneronbnøMbgáÚvxøÜnÉgenaHeT. kareronbnøMxøÜnÉg nwgeFV[I eyIg køayeTACa mnusSsÞak;esÞrI rhUtdl;maneBlxøH minh‘anfaxøÜnÉgxus b¤RtUv k¾man. skmµPaBEbbenH nwgeFVI[eyIgTTYl)an braC½ykñúgkarsikSa naM[eyIgmanGnaKtminl¥. kñúgnamCaGñkFøab;qøgkat;karsikSa ehIyk¾Føab;TTYl)anTaMgbraC½y nigeCaKC½y kñúgkarsikSaEpñk KNitviTüa ´sUmbgðajGMBbI TBiesaFn_braC½yrbs;´dUcteTA ³ -minyl;BIrebobénkarRbLg b¤rebobénkarsresrviBaØasa. -min)anBRgwgsmtßPaBxøÜnÉg elIlMhat;nImYy²[)anc,as;las; ¬emIlgaylMhat;¦. -caMEtTTYlkarbgðat;beRgónBIRKU min)ansV½ysikSa min)aneFVIkarRsavRCavelIlMhat;epSg². -manemaTnPaBRCulelIxøÜnÉg >>>. skmµPaBTaMgGs;xagelIenHehIy EdleFVI[´TTYl)anbraC½ykñúgkarsikSaKNitviTüa . sUmkMue)aHbg;ecalkartaMgcitþ enAeBlEdleyIgcab;epþImdMbUg ehIyeyIgCYblMhat;sisSBUEksuT§EtlM)ak enaHvaCaerOgFmµtaeT eRBaHeyIgminTan;manbTBiesaFn_RKab;RKan;edIm,IedaHRsayva. eyIgRtUvKitkñúgcitþfa {lMhat;EdleFVIecj KWCalMhat;EdlFøab;CYb } . XøaenHKWcg;mann½yfa sisSBUEkKNitviTüaesÞIrEtTaMgGs;suT§Et CaGñkmanbTBiesaFn_Føab;CYblMhat;eRcIn dUcenHeFVI[eKGacdwgGMBIviFI l,ic b¤bec©keTsedIm,IedaHRsaylMhat; TaMgenaH . kalNaeyIgedaHRsaylMhat;sisSBUEk)ankan;EteRcIn enaHeFVI[eyIgdwgBIviFIedaHRsaykan;EteRcIn Edr. edIm,IkøayxøÜneTACasisSBUEkKNitviTüa GñkminRtUvmanKMnitdUcxageRkam ³ -eKeronecHmkBIeKCakUnGñkman manluyeronKY b¤CYlRKUbeRgón . -lMhat;eKCYbl¥² TajecjBIGIunF½reNt rIÉeyIgKµanlT§PaBdUceK . -eKCamnusSmandugtaMgBIkMeNIt . -suxPaBeKl¥ >>>. sUmkMumanKMnitEbbenH vaKµanRbeyaCn_GVIsRmab;eyIgeT eRkABIeFVI[eyIgtUccitþelIxøÜnÉg. cab;BIeBlenHteTAeyIgRtUvxMeronsURtbEnßmeTot RtUvRsavRCav edaHRsaylMhat;[)aneRcIn ecosvag karx¢il. bisacx¢ilxøackareFVIkargarCaTmøab;Nas; dUcenHsUmkM[u bisacx¢ilcUlxøÜnrbs;eyIg KWeyIgRtUvman EpnkareronsURt[)anc,as;las; ehIyGnuvtþkareronsURtTaMgenaH[køayeTACaTmøab;. CacugeRkaysUmCUnBrdl;mti þGñkGanTaMgGs; mansuxPaBl¥ edIm,IeronsURtkøayeTACamnusSmansmtßPaB nigTTYl)aneCaKC½y edIm,IGPivDÆRbeTsCatieyIg[manPaBrIkceRmIn.

CIvRbvtþisegçbrbs;Gñkeroberog eRbIs dar:a ³ 04 ³

.

PROEUS DARA

1988

24

1989 )។ ។ ។ ។

5

2

³ 090 250 667 ។

4។

³ 011 50 70 65 / 0977 65 70 50 ។ ³ E-mail : [email protected] ។ ³



2009 ។

³

។ ។

³ ³





³ 2003-2009 ³ ³ 2009-2011 ³ 2011³ 1997-2003

99999999999

3

(RUPP)

(KU)

³

I

> cMnYnGsniTan ............................................001 2> smamaRt ..................................................002 3> kenSamBICKNit .........................................003 4> smIkardWeRkTI 1manmYyGBaØat ..................004 5> vismIkardWeRkTI 1manmYyGBaØat ..................005 6> bMENgEckeRbkg; ......................................006 7> mFümsßiti ..................................................007 8> RbU)ab ........................................................008 9> cm¶ayrvagBIrcMNuc ....................................008

> smIkarénbnÞat; ....................................... 008 11> RbB½n§smIkardWeRkTI 1manBIrGBaØat ......... 009 12> RTwsþIbTBItaK½r ........................................ 009 13> rgVg; nigbnÞat; .......................................... 010 14> lkçN³mMuénrgVg; ...................................... 011 15> RTwsþIbTtaEls ....................................... 013 16> RtIekaNdUcKña ......................................... 014 17> BhuekaN ............................................... 016 18> sUlIt ..................................................... 017

1

II

10

³

-ផ្ផែក ប្បធានលំហាត់ប្បតប ិ តតិ

-ផ្ផែក កំផ្ែលំហាត់ប្បតប ិ តតិ

1

1

> cMnYnGsniTan ............................................018 2> smamaRt ..................................................019 3> kenSamBICKNit .........................................020 4> smIkardWeRkTI 1manmYyGBaØat ..................021 5> vismIkardWeRkTI 1manmYyGBaØat ..................022 6> bMENgEckeRbkg; ......................................023 7> mFümsßiti ..................................................024 8> RbU)ab ........................................................025 9> cm¶ayrvagBIrcMNuc ....................................026 10> smIkarénbnÞat; ........................................027 11> RbB½n§smIkardWeRkTI 1manBIrGBaØat ..........028 12> RTwsþIbTBItaK½r .........................................029 13> rgVg; nigbnÞat; ...........................................030 14> lkçN³mMuénrgVg; .......................................031 15> RTwsþIbTtaEls .......................................033 16> RtIekaNdUcKña ..........................................034 17> BhuekaN ................................................035 18> sUlIt ......................................................036

> cMnYnGsniTan ........................................... 037 2> smamaRt ................................................. 039 3> kenSamBICKNit ........................................ 040 4> smIkardWeRkTI 1manmYyGBaØat ................. 042 5> vismIkardWeRkTI 1manmYyGBaØat.................. 044 6> bMENgEckeRbkg; ..................................... 046 7> mFümsßiti ................................................. 048 8> RbU)ab ........................................................ 050 9> cm¶ayrvagBIrcMNuc ................................... 051 10> smIkarénbnÞat; ....................................... 052 11> RbB½n§smIkardWeRkTI 1manBIrGBaØat ......... 055 12> RTwsþIbTBItaK½r ........................................ 057 13> rgVg; nigbnÞat; .......................................... 058 14> lkçN³mMuénrgVg; ...................................... 060 15> RTwsþIbTtaEls ....................................... 062 16> RtIekaNdUcKña ......................................... 063 17> BhuekaN ............................................... 065 18> sUlIt ..................................................... 066 i

III

³

> cMnYnGsniTan ............................................068 2> smamaRt ..................................................082 3> kenSamBICKNit .........................................085 4> smIkardWeRkTI 1manmYyGBaØat ..................097 5> vismIkardWeRkTI 1manmYyGBaØat ..................106 6> bMENgEckeRbkg; ......................................115 7> mFümsßiti ..................................................122 8> RbU)ab ........................................................129 9> cm¶ayrvagBIrcMNuc ....................................137

> smIkarénbnÞat; ....................................... 149 11> RbB½n§smIkardWeRkTI 1manBIrGBaØat ......... 162 12> RTwsþIbTBItaK½r ........................................ 176 13> rgVg; nigbnÞat; .......................................... 181 14> lkçN³mMuénrgVg; ...................................... 189 15> RTwsþIbTtaEls ....................................... 196 16> RtIekaNdUcKña ......................................... 203 17> BhuekaN ............................................... 217 18> sUlIt ...................................................... 225

1

IV

10

³

ផ្ផែកលំ

ផ្ផែកចម្លយ ើ ននលំ

....238

V

ផ្ែលបាន

............. 309

³

> DIsbøÚmqñaM 1981 ........................................352 2> DIsbøÚmqñaM 1982 ........................................356 3> DIsbøÚmqñaM 1983 .......................................360 4> DIsbøÚmqñaM 1984 ........................................362 5> DIsbøÚmqñaM 1985 ........................................366 6> DIsbøÚmqñaM 1986 .......................................370 7> DIsbøÚmqñaM 1987 .......................................374 8> DIsbøÚmqñaM 1988 ........................................378 9> DIsbøÚmqñaM 1989 ........................................382 10> DIsbøÚmqñaM 1990 ......................................386 11> DIsbøÚmqñaM 1991 ......................................390 12> DIsbøÚmqñaM 1992 ......................................394

> DIsbøÚmqñaM 1993 ..................................... 398 14> DIsbøÚmqñaM 1994 ...................................... 400 15> DIsbøÚmqñaM 1995 (មលើកទ១ ី ) ...................... 404 16> DIsbøÚmqñaM 1995 (មលើកទ២ ី ) ..................... 408 17> DIsbøÚmqñaM 1996 (មលើកទី១) ..................... 412 18> DIsbøÚmqñaM 1996 (មលើកទី២) .................... 416 19> DIsbøÚmqñaM 1997 (មលើកទី១)...................... 420 20> DIsbøÚmqñaM 1997 (មលើកទី២) ..................... 420 21> DIsbøÚmqñaM 1998 (មលើកទី១) ...................... 422 22> DIsbøÚmqñaM 1998 (មលើកទី២) ..................... 424 23> DIsbøÚmqñaM 1999 (មលើកទី១) .................... 428 24> DIsbøÚmqñaM 1999 (មលើកទ២ ី ) ...................... 432

1

13

ii

> DIsbøÚmqñaM 2000 .....................................436 26> DIsbøÚmqñaM 2001 .....................................440 27> DIsbøÚmqñaM 2002 .....................................444 28> DIsbøÚmqñaM 2003 ....................................448 29> DIsbøÚmqñaM 2004 ......................................454 30> DIsbøÚmqñaM 2005 ......................................458 31> DIsbøÚmqñaM 2006 ......................................462

> DIsbøÚmqñaM 2007 ..................................... 466 33> DIsbøÚmqñaM 2008 ..................................... 470 34> DIsbøÚmqñaM 2009 ..................................... 474 35> DIsbøÚmqñaM 2010 ..................................... 478 36> DIsbøÚmqñaM 2011 .................................... 482 37> DIsbøÚmqñaM 2012 ..................................... 486

25

VI

32

³

> sisSBUqñaM 1986 ¬elIkTI1¦ ......................490 2> sisSBUqñaM 1986 ¬elIkTI2¦ ........................491 3> sisSBUqñaM 1987 ¬elIkTI1¦ .......................492 4> sisSBUqñaM 1987 ¬elIkTI2¦ .......................493 5> sisSBUqñaM 1988 ¬elIkTI1¦........................494 6> sisSBUqñaM 1988 ¬elIkTI2¦ ........................495 7> sisSBUqñaM 1989 ¬elIkTI1¦ ........................496 8> sisSBUqñaM 1989 ¬elIkTI2¦ ........................497 9> sisSBUqñaM 1990 ¬elIkTI1¦ ........................498 10> sisSBUqñaM 1990 ¬elIkTI2¦ ......................499 11> sisSBUqñaM 1991 ¬elIkTI1¦ .....................500 12> sisSBUqñaM 1991 ¬elIkTI2¦ .....................501 13> sisSBUqñaM 1992 ¬elIkTI1¦......................502 14> sisSBUqñaM 1992 ¬elIkTI2¦......................503 15> sisSBUqñaM 1993 ¬elIkTI1¦ .....................504 16> sisSBUqñaM 1993 ¬elIkTI2¦ .....................505 17> sisSBUqñaM 1994 ¬elIkTI1¦ ......................506 18> sisSBUqñaM 1994 ¬elIkTI2¦ ......................507

> sisSBUqñaM 1995 ¬elIkTI1¦ ..................... 508 20> sisSBUqñaM 1995 ¬elIkTI2¦ ..................... 509 21> sisSBUqñaM 1996 ¬elIkTI1¦ ..................... 510 22> sisSBUqñaM 1996 ¬elIkTI2¦ ..................... 511 23> sisSBUqñaM 1997 ¬elIkTI1¦..................... 512 24> sisSBUqñaM 1997 ¬elIkTI2¦ ..................... 513 25> sisSBUqñaM 1998 ¬elIkTI1¦ ..................... 514 26> sisSBUqñaM 1998 ¬elIkTI2¦ ..................... 515 27> sisSBUqñaM 1999 ¬elIkTI1¦ ..................... 516 28> sisSBUqñaM 1999 ¬elIkTI2¦ ..................... 517 29> sisSBUqñaM 2000 ¬elIkTI1¦ ..................... 518 30> sisSBUqñaM 2000 ¬elIkTI2¦ ..................... 519 31> sisSBUqñaM 2001 ¬elIkTI1¦ .................... 520 32> sisSBUqñaM 2001 ¬elIkTI2¦ .................... 521 33> sisSBUqñaM 2002 ¬elIkTI1¦ .................... 522 34> sisSBUqñaM 2002 ¬elIkTI2¦ .................... 523 35> sisSBUqñaM 2003 ¬elIkTI1¦ .................... 524 36> sisSBUqñaM 2003 ¬elIkTI2¦ .................... 525

1

19

iii

> sisSBUqñaM 2004 ¬elIkTI1¦......................526 38> sisSBUqñaM 2004 ¬elIkTI2¦ ......................527 39> sisSBUqñaM 2005 ¬elIkTI1¦ ......................528 40> sisSBUqñaM 2005 ¬elIkTI2¦ ......................529 41> sisSBUqñaM 2006 ¬elIkTI1¦......................530 42> sisSBUqñaM 2006 ¬elIkTI2¦......................531 43> sisSBUqñaM 2007 ¬elIkTI1¦ .....................532 44> sisSBUqñaM 2007 ¬elIkTI2¦ .....................533 45> sisSBUqñaM 2008 ¬elIkTI1¦......................534 46> sisSBUqñaM 2008 ¬elIkTI2¦......................535

> sisSBUqñaM 2009 ¬elIkTI1¦ ..................... 536 48> sisSBUqñaM 2009 ¬elIkTI2¦ ..................... 537 49> sisSBUqñaM 2010 ¬elIkTI1¦ .................... 538 50> sisSBUqñaM 2010 ¬elIkTI2¦ .................... 539 51> sisSBUqñaM 2011 ¬elIkTI1¦ .................... 540 52> sisSBUqñaM 2011 ¬elIkTI2¦ .................... 541 53> sisSBUqñaM 2012 ¬elIkTI1¦ .................... 542 54> sisSBUqñaM 2012 ¬elIkTI2¦ .................... 544 55> វញ្ញ ិ ា សាម្ែើប្បឡង្ិ្សពូផ្ក........................ 545 56> វញ្ញ ិ ា សាធាលប់ប្បឡង្ិ្សពូផ្កតា្មេតត .......... 625

37

VII 1

47

³

> EpñkRbFanlMhat;l¥² .................................645 VIII

2

> EpñkcemøIyénlMhat;l¥²

............................ 669

³

> 2> ចម្លយ ..........................787 ិ ើ ននក្ានតគែិតវទា 3> បរមាប្ត នផៃប្កឡា នង ិ ិ មាឌរូបធរែីមាប្ត .........793

> 5> តារាងតន្លផលមធៀបប្តមី ោែមាប្ត ............... 798 6> ខ្នែតននរង្វវ្់រង្វវល់មផសងៗ ........................... 799

1 ក្ានតគែិតវទា ........................................781 ិ

4 តារាង្វ័យគុែ និងឫ្ទី n ....................... 796



3 iv

sYsþI¡ elakGñkmitþGñkGanCaTIRsLaj;rab;Gan enAkñúgEpñkenHelakGñknwg)aneXIj KNitviTüafñak;TI9 Gacniyay)anfaCaEpñksMxan;énemeronnImYy² . cMNucénemeronnImyY ² erobtamlMdab;lMeday Epñk vaCYysRmÜldl; ៩

RbsinebIelakGñkmanbBaða b¤cm¶l;Rtg;cMNucNa EdlmanenAkñúgEpñkenH elakGñkGacTak;Tg;eTAkan; RKU b¤mitþPkþirbs;GñkEdlmansmtßPaB b¤GñkeroberogesovePAenHkñúgeBlevlaKYsm . …

i



œ

œ





៣៣

x2  a

-

³

a0

x a

a0

x0

៣៤

a0

x



x3 a

x3  a



:



x a 3

a ៣៥

³ 3

3

 a



៣.

:

៣១ ៣៦

 a  b  ab

a0

 3 a 3 b  3 ab

a ,b

b0

៣២

a  a  a , 3 b  3 b2  b -

a a  b b

 

3 3

a 3 a  b b

a0



nig b  0

a b





a  b  a b

-

b0

 

1



3

a3b



3

a2

3



ab  3 b2  a  b



D

E





a c  b d

ad  bc

1 mile

= 1.609 km

1 inch

= 2.54 cm

1 feet

= 0.3048 m

1 lb

= 0.453 kg

២.

a

a 100% b

b

៣.

ឬថ

-

a

b

ba 100% a

-

a

b ba  100% b

៤.

/r

Po

/

t

P  P  rP  P 1  r  ១ ២ P  P  rP  P 1  r   P 1  r  ៣ P  P  rP  P 1  r   P 1  r  >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> t P  P 1  r  1

o

o

o

2

2

1

1

3

2

2

t

o

1

o

3

2

o

t



2













២.៤





A  x 2  2x  8

a  bc  d   ac  ad  bc  bd

A  x 2  2x  8





 x 2  2x  1 1  8



 x  1  9 2

:

 x  1  3x  1  3  x  4x  2

1. a  b a  b   a 2  b 2 2. a  b a  b   a 2  2ab  b 2

A  x 2  2 x  8  x  4x  2

3. a  b a  b   a 2  2ab  b 2

 5. a  b a

  a

4. a  b  a 2  ab  b 2  a 3  b 3 2

 ab  b

2

3



 b3

៣១

២.

³ -

២.១

-

ka  kb  k a  b  , k

-

២.២

rUbmnþ

1. a 2  b 2  a  b a  b 

៣២

2. a 2  2ab  b 2  a  b a  b  3. a 2  2ab  b 2  a  b a  b 

³ -

២.៣

-

A  x2   a  b  x  ab

-

x a x   ab x b ax  bx   a  b  x 2

A   x  a  x  b 



3





„ ១

៤ ១

៤.

eyIgGacedaHRsaysmIkardWeRkTI1 manmYy GBaØat edayeRbIlkçN³smPaBdUcxageRkam ³ -ebI a  b enaH a  c  b  c -ebI a  b enaH a  c  b  c -ebI a  b enaH a  c  b  c -ebI a  b enaH ac  bc , c  0 



៥.



edIm,IedaHRsaycMeNaTsmIkardWeRkTI1man mYyGBaØat GñkRtUveFVItamCMhandUcxageRkam ³ -smµtikmµ ³ ¬GVI²EdleK[ b¤eKR)ab;¦ -sMNYr ³ ¬GVIEdleK cg;[eyIgrk¦ -tagGBaØat ³¬eRCIserIsGBaØattagGVIEdleKsYr¦ -KMnitbEnßm ³ ¬ebIcMeNHdwg edIm,IP¢ab;TnM ak;TMng rvagGVIEdleKR)ab; nigGVIEdleKsYr >>>¦ -smIkar ³¬sresrsmIkartamTMnak;TMngxagelI¦ -edaHRsaysmIkar ³ ¬rkb£sénsmIkar¦ -epÞógpÞat;cemøIy ³ ¬BinitüeLIgvij¦

២.

edIm,IedaHRsaysmIkardWeRkTI1manmYyGBaØat EdlmanPaKEbgCaelx eKRtUv ³ -tRmÚvPaKEbgrYménGgÁTaMgBIrrbs;smIkarrYclub PaKEbgrYmenaHecal -elIktYEdlmanGBaØatmkGgÁmçag nigtYEdlKµan GBaØateTAGgÁmçageTot ehIytYNabþÚrGgÁ RtUv bþÚrsBaØatYenaH rYceFVIRbmaNviFI . ១

BinitütaragplKuNénktþaesµIsUnüxageRkam ³ A 4 0 0 A=0

B 0 4 0

A×B 0 0 0 A×B

B=0





edIm,IedaHRsaysmIkarmanmYyGBaØat EdlGgÁ TI1manGBaØatCadWeRkTI2 eKRtUvsresrGgÁTI1 CaplKuNktþaéndWeRkTI1 .

:

៣.



1

4





Û





២.

១១

xageRkamCarebobbkRsaycemøIyelIRkab ³ a -krNI x  a ³ ( a -krNI x  a ³ ) a -krNI x  a ³ [ a - krNI x  a ³ ]  : eyIgeRbIvg;RkckEbrrkcemøy I ebI vismIkarFMCag b¤tUcCagdac;xat KWmansBaØa  ,  mann½yfa a minEmnCacemøyI . ebIvismmIkarFMCag b¤esµI b¤ tUcCagb¤esµI eyIgeRbI XñabCMnYsvij.



ebIeKKuN b¤EckcMnYn viC¢man EtmYyelIGgÁ TaMgBIrén vismPaB enaHeK)anvismPaBfµIEdl manTisedA dUc vismPaBedIm . -cMeBaH c  0 ebI a  b enaH a  c  b  c -cMeBaH c  0 ebI a  b enaH a  c  b  c ១៣



២.១



ebIeKbUk b¤dkcMnYnEtmYyelIGgÁTaMgBIrén vismPaB enaHeK)anvismPaBfµIEdlmanTisedA dUcvismPaBedIm . -ebI a  b enaH a  c  b  c -ebI a  b enaH a  c  b  c ១២

Ù

1

២.២

eyIgedaHRsayvismIkar edayeRbIlkçN³vismPaB ៣.



edIm,IedaHRsayRbB½n§vismIkardWeRkTI1man mYyGBaØat eyIgRtUvedaHRsayvismIkarnImYy² rYcykcemøIyénvismIkarTaMgenaHRbsBVKañ .

ebIeKKuN b¤EckcMnYn GviC¢man EtmYyelIGgÁ TaMgBIrén vismPaB enaHeK)anvismPaBfµIEdl manTisedA pÞúy BIvismPaBedIm . -cMeBaH c  0 ebI a  b enaH a  c  b  c -cMeBaH c  0 ebI a  b enaH a  c  b  c





៤.

5





¬

¬





៣.

CaFmµta enAeBlEdleKRbmUl)anTinñn½yepSg² eKEtgEtCYbRbTHfaTinñn½yxøHtUc xøHFM xøHtic xøHeRcIn ehIysßitenAkñúgPaBray):ayBIKña EdlCamUlehtu Bi)akkñúgkarsikSaTinñn½yTaMgenaH . dUcenH eKRtUvpþúMTinñn½yTaMgenaH eTAtamcMnYndg rbs;va ehIykareFVIEbbenH ehAfakarRbmUlpþúMTinñn½y CaeRbkg; . elIsBIenHeTot eKk¾GaceRbóbeFob eRbkg; eTAnwgeRbkg;srub edIm,IKitCaPaKryehAfa eRbkg;eFob .

cMeBaHTinñn½yxøH eKmankarlM)akkñúgkarRbmUlpþúMva eTAtameRbkg; edaysarTinñn½ynImYy²BMumancMnYndg eRcIn. mü:agvijeTotTinñny½ xøHmanKmøatKñaq¶ayeBk rvagRbePTTinñn½yEdltUcCageK nigTinñn½yEdlFM CageK . dUcenH edIm,I[gayRsYl eKbegáItkarpþMú Tinñn½yCafñak; . RkabssrenACab;²Kña ehAfa GIusþÚRkam . enAeBlxøH eKeRbItémøkNþalénfñak; mktag[ témøénfñak; EdltémøkNþalenH ehAfa p©iténfñak; vaCamFüméncugfñak;TaMgBIr . mü:agvijeTot ebIeKP¢ab;p©itfñak;bnþbnÞab; enaHeK )anExSkac; ehAfa RkabénBhuekaN .

eRbkg;eFobéntémømYyCapleFobrvag eRbkg;éntémøenaH nigeRbkg;srub . ២. ២ ១.

eRbkg;ekIn CaeRbkg;Edl)aneday bUkeRbkg; bnþbnÞab;BIelIcuHeRkam . ២ ២.



eRbkg;fy CaeRbkg;Edl)aneday dkeRbkg; srubCamYyeRbkg;bnþbnÞab; BIelIcuHeRkam . 

:

eKtag ³

-eRbkg; eday f -eRbkg;ekIn eday -eRbkg;fy eday

f

f

-eRbkg;Fob eday f % -eRbkg;ekIneFob eday f -eRbkg;ថ eFobeday f

 



%

%

6





{

|





 -

x

x1 f1  x2 f 2  x3 f3  ...  xn f n f1  f 2  f 3  ...  f n

50  60

50  60  55 ) 2

-



x -

n

n 1 2 

n



n



:

me

៣.

៤.

 -

-

x

x1 f1  x2 f 2  x3 f3  ...  xn f n f1  f 2  f 3  ...  f n

-



7



x1 f1  x2 f 2  x3 f3  ...  xn f n f1  f 2  f 3  ...  f n



Í

Í







P'

P

P

P  P' 1

cnMYnkrNRIsb cnMnYkrNGIac

Ê

Ê







A  x1 , y1  AB 

B  x2 , y2 

 x2  x1    y2  y1  2

n

A  x1 , y1 

B  x2 , y2 

y  y2  x x M 1 2 , 1  2   2

2

n

១០

១ ១១

 xh

oy ox

y

xh

 yk

x

y  ax  b



ox

oy

a

yk





A  x1 , y1 

B  x2 , y2  a

a

y2  y1 x2  x1

d1 : y  ax  b

១២



y  ax  b



y  ax

yy



d1 / / d 2

a  a



d1  d 2

a  a  1

xx



8

d 2 : y  ax  b





r

១១

s







 y  ax  b 1   y  ax  b  2 

1  2





edIm,IedaHRsaycMeNaTRbB½ smIkardWeRkTI1man GBaØat GñkRtUveFVItamCMhandUcxageRkam ³ -smµtikmµ ³ ¬GVI²EdleK[ b¤eKR)ab;¦ -sMNYr ³ ¬GVIEdleK cg;[eyIgrk¦ -tagGBaØat ³¬eRCIserIsGBaØattagGVIEdleKsYr¦ -KMnitbEnßm ³ ¬ebIcMeNHdwg edIm,IP¢ab;TnM ak;TMng rvagGVIEdleKR)ab; nigGVIEdleKsYr >>>¦ -RbB½ smIkar ³¬sresr smIkar¦ -edaHRsay smIkar ³ ¬rk ¦ -epÞógpÞat;cemøIy ³ ¬BinitüeLIgvij¦

:

-



1  2

;

;

១២



-

c  a b 2

2

a

a

a 3 h 2

a

c

a

h a

2

b ២

-

y x, y,z

a

-

d a

d a 2

t  x y z 2

a



9



2

x 2

z

t



?

?

១៣



A

១១

B

C

B



o 

A C



OBA  OCA  90o

o



AB  AC ១២



OAB  OAC COA  BOA 



o



B

A AB  CD  BC  AD

o

D ៥

o

៥ ១



២ ៣

o

៤ ៥



10



C



S

S

១៤



២៤

b

-

AB  AC

-

AOB  AOC

AOB  AOC

b





a

a

b



a

AB  AC -

B

o

a

b a  2b

A C

b

a 2





a  90o

២១

a 

o -

BAC

B

A 



o

៤១

C ២២

A B -

BAC 

B

A 

BC 2

o

o D C

៤២

២៣

A -

A  C B

B  D

C

A C

B

A  C  180o

o

o

b  d  180o D

D



11



C

 ៥

p  q, r  s p s

o

q

r

៥ ៦១

C

A

I 

AB  CD 2

I

o

D

B ៦២

A

C

AB  CD P  2

o

P D

B ៧

B A

X -

o P

Y

XPA  PBA



12





R

T

១៥





-

AE AF EF   AB AC BC

 d1  / /  d2  / /  d3  / /  d4  AB  BC  CD

A

E

B

EF  FG  GH

A

 BC  / /  EF 

-

E

F C

B

d1

F

C

៣១

d2

G

d3

H d 4

D



-

A

A

 d1  / /  d2  / /  d3 

B

B

AB AB  BC BC  AB BC  AB BC 

d1 D

d2

E

C d 3

C

A

៣ ៣១

EF

ABC AE AF  AB AC

EF / / BC AE AF  AB AC A

EF / / BC

A F

E E B

B

F C

E

A

C

F

B

C



13



E

C

D

F B

A

F C

B



¤

¤

១៦



2

១១

-

AB AC  BC    AB AC BC ABC ABC

-

-







ABC 

ABC . ABC

ABC

A

A

B

ABC ABC



AB AC BC   k AB AC BC

A

C

B

1

1

C

C

B B   B  BC  BC  C  C 

១២

A

C

B

B  B C  C 

A

A

1 B

C

2

2

B

C

A

A A

-

B

C  C ABC

C

B

A

B  B

A

ABC

A

C

B

B

C

B

A

2

3 B -

AB AC  AB AC  ABC ABC

C

B

C

AB  AB AC  AC  BC  BC 

A  A



14





C

A

3

C B



C

AB AC BC   AB AC  BC 

 ៣



AC 2  BC  HC

AB2  BC  HB



HA2  HB  HC 

AB  AC  BC  AH 

BC 2  AB 2  AC 2 

1 1 1   2 2 AC AB AH 2

A b

c

h m

B

n

H

C

a

១ AC  BC  HC

b2  an

AB2  BC  HB

c2  am

២ HA  HB  HC

h2  mn



bc  ah

2

2

AB  AC  BC  AH

៤ BC  AB  AC 2



2

2

1 1 1   2 2 AC AB AH 2

a 2  b2  c 2

1 1 1  2 2 2 b c h



15









១៧





n I

A

B

N

E C

D

M



K

J

 n  2 180o

L

360o

 -

3

-

4

-

5

-

6

-

7

-

8

-

9

-

 n  2  180o

10

n

-

12



 

-.......................................................



16



n



១៨ ១

២.

១១

២១

២២

1 SL   p  a 2 (

p:

a:

-

S L   Ra ( R

a

-

ST   Ra   R2   R  a  R 

-

S  4 R2 ( R ១២

1 V  SB h 3

-

SB

h

1 V   R2h 3

-

R

h

4 V   R3 3

-

R



17



sYsþI¡ elakGñkmitþGñkGanCaTIRsLaj;rab;Gan enAkñúgEpñkenHelakGñknwg)aneXIj BIkarEkRKb; lMhat;RbtibtþiénRKb;emeron EdlmanenAkñúgesovePABum
ii



œ -

03 :

-

05 :

-

06 :

-

07 :

-

08 :

-

09 :

-

11 :



0.04 , 0.01 , 5 ,  1 ,





.

3

10  3 0.1 ។

7 28



12 :

3

. ង

.

,

3

5 0.2

10 1 000

.

2 8

ខ.

1 3

ខ.

3

81 3

.

1 3 3

ឃ.

12

. 53

3 3

100 0.1

ឃ.

3

3 3 53 4

,

3

,

3

‹‹Â……

3



18



ង.

 P  0

72a  3 98a ។

3 2 2 3 12  18

81



2 2 3 121 ឃ. 11 7 25

5P  3 45P3

48 x  27 x ,

12 x  12  27 x  27 , -

3

ខ.

5 50  8 32 ,

1 5 2

25 , 0.1 ។ 36

0.008 ,  0.001 , 0.08 ,  0.4 ។

10  0.1 ,



œ



3 ។ 43 2

,

50 ច. ។

2 ។ 25



 -



19 :



240 000mile ។

186 000 mile ង -

21 :

-

23 :



1 800 $



1







3%

4 200 ។

4 800

800 ច

25 :

ច ។

ច .





ខ. -







ងច ង 10%។



605 000 ។

500 000 ង



‹‹Â……

3



19





 -

30 :







A  2  x  2    x 2  x  3   2 x  1 x  2 

B   x  1  x  2   x  x  1 2

-

31 :



2



2



A  6x2  x 1  2x  x  1 B  3  x  1 x  2    x 2  x   x  2  ។ -



33 :

A  x2  x 1  4x  x 1  4x  4 B   3x  6  4 x2  1   2 x  4   4 x2  4 x  1 ។ -

34 :





x 2  4x  5 x 2  2x  8

, ,

x 2  2 x  15 x 2  5 x  14

, ,

x 2  11x  30 2 x 2  5x  3 ។

-

35 :



-

36 :



1



x2 x2  b a2 a3  a 2 A 2  , B 2  ។ x  25 x 2  20 x  25 a b a  a  2   a  2

-

37 :

x2  6 x  7 , 1 2  x x 1

,

x2  5x  6



x 2  x 3x  2 2 x 2  x   ។ x 2  x x  1 x x  1

‹‹Â……

3



20





o -

43 :



o

1



. 6x  2  3x  8

ខ. 3x  5  3x  2

. 6 x  4  2  6x  1 ។

-

44 :



-

45 :





47 :

.

8 ច

ខ.





 2 x 1   x  3

x2  2 x  4 x  8  0 , -

x  7 2x  8   4 6 2

3x x  9   15 , 4 2 2





2

0 ,

3 x 2  9 x  0 , 2 x 2  3x  5  0 ។





ង 38





7









27

‹‹Â……

3



21





។ច







r



-

52 :

a

-

55 :



-

56 :



-

58 :

.



b



។ច

x 27 , 4





2x  3  5 x  5 ,







m។

18m ង

ច ង

1918

1914 ។ ច

‹‹Â……

3



22



0.37x  0.17  3.5 ។

 3x 2 4 x  3  4  3  12 ខ.  ។   2 x  1  3x  4  2

5m ង x ង

a 2  b2 ។

ab

2 x  7  6 x  5 .   4 x  11  4  x

ង ខ.

s

1



x ង 50m ។ 2







ច -





 -



64 :







20



1 2 0 0 1 2 2 1 0 0 4 0 1 1 3 2 1 3 0 1 ច -

-



67 :



x



x f

0



f 1

2









4 16 18 6 6 ច

2

ង ច ។

ខ.



2

ង ច។



kg

200

ង .



ខ.



.



3 4

.

71 :





30-40

40-50

50-60

60-70

35

45

55

65



ង ង

។ ។



50 kg ? ‹‹Â……

3



23













 -

77 :





x

78 :





200 300 350 700 840 950 6 2 2 1 1 1



-

79 :



0 1 2 3 4 3 6 5 2 2

y -













10 8 13 12 7 ។ -

82 :





21-28 28-35 35-42 42-49 49-56 56-63 63-70 ង

3

7

12

15

12

‹‹Â……

3



24



7

3





 -

89 :





4 ងឃ

.

ងច



ឃ ច

-

2។



.





ង។ ច

ឃ ច

90 :



250



ង។ .ច .ច



ខ ច

។ ង

ង 10 ។

‹‹Â……

3



25



ខ ។

92 :







។ -









50



 -

99 :







៩ ង





.

A  0 , 0 ង B 8 , 15

ខ.

A  2 , 6 ង B  3 ,  6

.

A  3 ,  5 ង B  1 ,  8

ឃ.

A5 , 3 ង B 11 , 11 ។

‹‹Â……

3



26





 -

108 :

.ច



.ច





១០

y ច



x ។ 2

A 0 , 1 ង

.ច -

110 : ច





x  4 , y2 2

y

ខ -

111 : ច

-

113 : ច

-

ច ច

.



ខ.





1 ។ 3

A  2 , 0 ង B  1 , 4 ។

x4 ង ង





ង 12 ង។



y  3x  1 ។



x  3y  9 ។



A  2 ,  1

ង ង

 1 A ,  2

ង ង

 0 





 0 , 0 ច  6 , 3 ច

ខ.

 2 , 7 ,  2 , 7



115 : ច

117 :







ង ។

.

-



ង ង



2 y  x 1  0 ។ y  2x ។



40o ។







26o ។

‹‹Â……

3





27







2o









១១ 4 x  3 y  4 ។  3x  y  2

-

123 : ច

-

125 : ច

.

 y  6  3x  9 x  2 y  3

-

128 : ច

.

 4x  3 y  9  3x  5 y  7

-

131 :

.

ច ច

ខ.

ច ងច ង ង

ង 50



1 2

3 ងច

ខ.

1  2

3 x  4 y  8  4 x  y  17



7 x  3  y  3  5  x  y  ។  7  x  1  6 y  5  x  y 

ខ. 

1 ង2 ង ច

2

ង 60 ។

។ ង ច

ង 158m ។ ង។

‹‹Â……

3



28







5m ច



 -

138 : ច



១២ x



cm

1



x

1 1

-

139 : ច

-

140 :





ង ង





ង ង

8m

2m ច

ង ង

ង ។ ។

m ។

2 , 2 ,1

8m

2m

‹‹Â……

3



29









១៣

B

-

145 :

ងង ង AB  25 cm

O ច



។ច



ង BQ  6.5 cm

C

Q o

P

AP ង BC ។ A

M

-



147 :



ងង

O

A

OA  OB  5.5cm ង MN  9cm ។ ច -





B P

O ង



ងង។ ច

ងច ង -

NP ។

ងង

148 :

150 : ST







AB  OB ។ ច



ងង

 A

AC ។

ង ងង

RT

o 

ង ងង

O ង



C 

2cm ។ A

A

B ង

C។ ង

 o

N

O

TQ  10 cm ច

 B

ST  RT  20 cm ។

152 :





B

ABC

A។ ច

-

ងង -

ង ង



ងង

155 : ច ច



 o

r  5cm , r '  3cm ។ OO ' ង

ខ ងង

 O

AB ។

A

C

B

r

 r  O

O ង O ' ។ ងង ង ង



R

 Q

A ង B ។ច





A

BR  RC ។

ងង

153 :

TQO

ងង OQ ។ P

-

l

4cm ង









1cm ច

។ 1 cm

 O

 O 4 cm

‹‹Â……

3 

30



  O O







( -

ងង

160 :

)

១៤

O ង B





AC ។ ច

AOB  COB ។ P B

-



161:

ង ងង D

C B

-

ង ងង

ABC

162:



O

ច A

ABC ។

O ច

ABC 

1 AC 2





o

C

D

B

-

164:









AC



BD

I។



A

ACB  34o ង CAD  45o ។ ច

-

167:

C

I

AIB ។

ងង

D D E

AOB  60o ។ ច

O

ACB , ADB



AEB ច ង

o 

C

60 o



A

B D

-



169 :

ងង

O ង ង

AD  DC ។ ច

AC

z

A

x, y , z។

y

 o

C

x

B 92o

-



171:



a



b ។

112o b

a

B

-



173:

ABCD

AB  BC ។

ង ងង

CD

A

E

76o

ACE  27o ង ADE  76o ។ ច .

ACB

ខ.

27

C

BAD ។



31



o

D

E

 A -

CMD

174: ង

ង ងង

CAD  60o



O ច





60o o

ង ADB  75 ។ o

B

M 75o

CMD ។

D C

P -

175:



D ង



260o S



o

100o

D

R -

ងង

178:

ងង

O ង SET ង

E។



D

DE  DF ង o 

FET  40o ។ ច . ខ.

EOF

F 40o

DES ។

S

‹‹Â……

3



32



E

T



2 -

182 : P

-

184 :



2

១៥





AB ។ ច



AP 2  ។ AB 5

P



x



1

1

1.6

1.5

2

x

y

3



1 ,  2 ,  3 ,  4

y ។

2

4 -



186 :



A ង

។ ង

1m

B

ង ចង

1m ង

ចង



-

188 :

X> g>

F

E





k> x> K>

C



 DE  / /  AB 

ABC

AD 3

DC

។ច







EC

2

BE 6



7

3



5

2



3

4

AD …

DC 8

AC 20

BE …

EC …

BC 15

12



30

9





C

D

‹‹Â……

3 

33



A

E

B



១៦



 A

-

ABC

ABC ង

193 : ច





-

B

ABC ង .ច

-

7

ABC ច





B

C

z

PMN ។

ច។

197 : ច

C

A  80o , B  54o , P  54o ង M  46o ។

PMN

ខ. ច

x

4

3

x, y,z ។

195 :

y

A

1 ង ។ 4

A



AB

CBA ច

CDE ។

B

24 m C

32 m

D 40 m

-

200 :

x



y ។

E

G

A

3m

AE  4cm AD  10cm I

E 6 cm B

D

QR  16cm RT  10cm

20cm

L 3m

C

2m J

x

D

V

120m

100m

B

A

40m x

R S

H K

y

Q

x

C

T

E -



207 : z

x, y ង z

ង x

z  x2  y 2

ង ង

y ។ច





ង ង



‹‹Â……

3 

34



x

y



១៧

 -

8ច

214 :

-

217 : ច

-

219 : ច









ង ង ង





។ច

2





ង 2 700

o

-

220 :





, 3 420o ។



 2

2 3



ង។ ង





2

12o

ង ងច



‹‹Â……

3



35







១៨

 -

226 : ច

ង ង









10 cm 13 cm

5 cm 55cm cm

2 cm

5 cm

a) -

228 :

-

231 : ច

b)

28cm ង





12 mm

c)



13cm ។ ច ង

dm3 ។ ។

3 mm  o

 o

a) -

b)

A

 DE  / /  BC  , AD  3cm , AB  5cm ។

232 :



ADE  6 cm 2 ។

.ច ខ. ច

D

ABC ។ ច

DECB ។

B

‹‹Â……

3



36



E C



œ

œ



-TMB½rTI 3 ³ rkb£skaeréncMnYn ³

-TMB½rTI 5 ³ rkb£sKUbéncMnYn ³

k> b£skaerén 0.04 ³ eday 0.04  0.2 naM[ 0.04  0.2 dUcenH b£skaerén 0.04 KW 0.2 . x> b£skaerén 0.01 ³ eday 0.01  0.1 naM[ 0.01  0.1 dUcenH b£skaerén 0.01 KW 0.1 . K> b£skaerén 5 ³ KµancMnYnsniTanNaEdlkaerrbs;vaesµInwg 5 eT naM[ b£skaerrbs;vaCacMnYnGsniTan dUcenH 5 Cab£skaerén 5 . X> b£skaerén  1 ³ KµancMnYnsniTanNa b¤GsniTanNa Edlkaerrbs;va GviC¢maneT naM[vaKµanb£skaereT dUcenH cMnYn  1 Kµanb£skaerCacMnYnBiteT .

k> b£sKUbén 0.008 ³ eday 0.2  0.008 naM[ 0.008  0.2 dUcenH b£sKUbén 0.008KW 0.2 . x> b£sKUbén  0.001 ³ eday  0.1  0.001 naM[  0.00  0.1 dUcenH b£sKUbén  0.001KW  0.1 . K> b£sKUbén 0.08 ³ KµancMnYnsniTanNa EdlKUbrbs;vaesµInwg 0.08 eT dUcenH b£sKUbén 0.08 KW 0.08 . X> b£sKUbén  0.4 KµancMnYnsniTanNa EdlKUbrbs;vaesµInwg  0.4 eT dUcenH b£sKUbén  0.4 KW  0.4   0.4 . -TMB½rTI 6 ³ KNnaplKuN k> 10  0.1  10  0.1  1  1 x> 10  0.1  10  0.1  1  1 -TMB½rTI 7 ³ KNnaplEck k> 7  287  14   12   12 3

2

3

3

2

g> b£skaerén eday naM[

25 36

3

3

3

³

25  5    36  6 

3

2

3

3

2

25 5  36 6

dUcenH b£skaerén

3

3

 

28

25 36

KW

5 6

x>

.

c> b£skaerén 0.1 ³ KµancMnYnsniTanNa Edlkaerrbs;vaesµInwg 0.1 eT naM[ b£skaerrbs;vaCacMnYnGsniTan dUcenH 0.1 Cab£skaerén 0.1 . 

37

3

5 5 3  0.2 0.2

3

3

25 2

K>

10 10 1 1       1 000 100 1 000  10 

X>

3 3



1 10

100 3 100 3 3   1 000  3 10  10 0.1 0.1

-



-TMB½rTI 8 ³ beBa©jmYycMnYnBIr:aDIkal; k>

2  8

x>

81 3  27  3 33  3

3

K> X> g> c>

2

1 1     4 2

-TMB½rTI 12 ³ sRmÜl 1  5 2

1 2



81  3 27  3  3 33  3  33 3

3 2  2 3 2 2 3  3 2 2 3 2  2 3   2 3   3 2 

2 1 1 2 1  2    2  2 25 25 5 5 5

.

18  12 6  12 12  18 30  12 6  6  52 6

2 3 3 3 2 3 2 3  5   125   5  2  3 10 25 25 25

¬eRBaHrUbmnþ a  ba  b  a

x>

1 1 1 1 3    3 3  3 9 3 3

X>

2

¦

3

1 3

¬RbEhlRbFanKW 3 13 minEmn

3

1 3



2

-TMB½rTI 11 ³ sRmÜl

3

3  5 3 4

5 50  8 32  5 25  2  8 16  2



 25 2  32 2   7 2



3 3 52  3 5  4  3 4 2



3



1  9 P 

3

5P

12 x  12  27 x  27  43x  3  93x  3



3



3

3

 2 3x  3  3 3x  3



72a  3 98a  36  2a  3 49  2a



 6 2a  21 2a   15 2a



38



 3 5  4  3 42

 5   4





3

3

3

2





 ab  b 2  a 3  b 3

3 3 42  3 4  2  3 22

4 3 2





   4   2 3 2 2  2  4  3

3

¦

42  3 4  2  3 22

3

3 3 16  3 8  3 4 3

5 3x  3

2



33 25  33 20  63 2

3

3  4 3 2

3

3

¬eRBaHrUbmnþ a  ba

3x

 5

3 3 25  3 20  3 16



5P  3 45 P 3  5P  3 9 P 2  5P , P  0



5 3 4 3

48x  27 x  16  3x  9  3x

 5P  9 P 5P 

 b 2 nig

2

a  b b  a   a  b 2  a 2  2ab  b 2 .

3

2 3 121 3  2  3 121 3 8 121 3 8        11 7 7 12111 7 77  11 

 4 3x  3 3x 

 

2

2

3

3 3 2 3 3 2



2

1  3



3 2 2 3 3 2 2 3  12  18 2 3  3 2

50  25  2  52  2  5 2

k>

3



5 2 52 5 2  3

-TMB½rTI 9 ³ beBa©ÚlmYycMnYnkñgú r:aDIkal;

K> 5



5 2 5 2 5 2



3

12  4  3  22  3  2 3 3



3

3

3

42 2 6  23 3  3 12 6 3

-





a

-TMB½rTI 19 ³ rkry³eBlEdlTTYl)ansBaØaBIPBRBHcnÞ

x> rkcMnYnsisSénqñaMenH tag n CacMnYnsisSsrubbnÞab;BI)anekIneLIg bRmab; ³ cMnYnsisSman 800 nak; ehIyekIneLIg 10% naM[ PaKryénkMeNInKW

tag t Cary³eBlEdlTTYlsBaØaBIPBRBHcnÞ tambRmab; eyIg)an ³ -cm¶ay 186 000 mile eRbIry³eBl 1 s - cm¶ay 240 000 mile eRbIry³eBl t s  000 1  naM[ 186 240 000 t  t

n  800 100%  10% 800 n  800  10 8 n  800  80

240 000  1.29 s 186 000

n  880

dUcenH edIm,ITTYlsBaØaBIPBRBHcnÞeKRtUv eRbIeBl t  1.29 s  1.3 s

dUcenH cMnYnsisSqñaMenHKWman 880 nak; . -TMB½rTI 25 ³ rkGRtakarR)ak;kñúgmYyqñaM edayeRbIrUbmnþ P  P 1 r  bRmab; ³ R)ak;edIm P  500 000 ` R)ak;srub P  605 000 ` ry³eBl t  2 qñaM eyIg)an 605 000  500 000 1  r 

.

-TMB½rTI 21 ³ KNnatémødIEdlRtUvlk;

t

o

tag x CatémødIEdlRtUvlk; ¬KitCa $ ¦ tambRmab; R)ak;kéRm 1 800$ RtUvCa 3% énéfødI naM[ 1800$  3%  x

o

3 x  1 800 100 1 800  100  x 3  60 000 $

dUcenH témødIEdlRtUvlk;KW

2

1  r 2  605 000 500 000

1  r 2  1.21 60 000$

1  r  1.21 , r  0 1  r  1.1 r  0.1 r  10%

.

-TMB½rTI 23 ³ k> KNnaPaKryéneRbgsaMg)ancuHéfø bRmab; ³ eKbBa©úHtémøeRbgsaMgBI 4 800` mk 4 200` naM[ PaKryéntMhyKW

a



epÞógpÞat; ³

2

 500 0001.1

4 800  4 200 100 % 4 800  0.125 100%

2

 500 000  1.21  605 000

 12.5%

Bit

dUcenH GRtakarR)ak;kñúgmYyqñaMKW r  10% .

dUcenH \LÚveRbgsaMg)anbBa©úHtémø 12.5% . 

500 000 1  0.1

39



-



k

k



-TMB½rTI 30 ³ KNna

-TMB½rTI 34 ³ dak;kenSamxageRkamCaplKuNénktþa

    x  2 2 x  x  3   2 x  1 x  2    x  2  2 x  2 x  6   2 x  1 x  2    x  2  2 x  2 x  6  2 x  4 x  x  2

A  2 x  2   x 2  x  3   2 x  1 x  2 

-cMeBaH

2

eday

2

2

  x  2  5 x  4 

dUcenH -cMeBaH

 5 x  4 x  10 x  8 2



 5 x  14 x  8 2

2

eday

2







 x 2  2 x  1 x  2  x x 2  2 x  1

dUcenH -cMeBaH

 x  2x  2x  4x  x  2  x  2x 2  x 3

2

2

3

  2x 2  4x  2

-TMB½rTI 31 ³ dak;kenSamxageRkamCaplKuNktþarYm

eday

A  6 x 2  x  1  2 x x  1



  x  1 6 x 2  2 x



dUcenH -cMeBaH

 2 x x  13 x  1





B  3x  1x  2  x  x x  2  3x  1x  2  xx  1x  2 

2

eday dUcenH -cMeBaH

-TMB½rTI 33 ³ dak;kenSamxageRkamCaplKuNénktþa A  x 2  x  1  4 x x  1  4 x  4

 x 2  x  1  4 x x  1  4 x  1



  x  1 x  4 x  4



eday

  x  1 x  2    x  1 x  2  x  2 



x 2  2 x  15

. tamtaragplKuNExVg



x 5 5 x  3x  2 x

. tamtaragplKuNExVg

x 2  2 x  15  x  3x  5 x 2  11x  30

x 6 x 5  5 x  6 x  11 x

x 2  11x  30  x  6x  5

x 2  2x  8

.

tamtaragplKuNExVg

x 2 2 x  4 x  2 x

. tamtaragplKuNExVg

x 2  2 x  8  x  4x  2 x 2  5 x  14 x 2

2



x 2  4 x  5  x  5x  1

x 4

x  1x  23  x 

2

x 1 x  5 x  4 x

x 3

B  x  1 x  2  xx  1



tamtaragplKuNExVg

x 5

2

2

x 2  4x  5

dUcenH -cMeBaH



B  3x  6 4 x 2  1  2 x  4 4 x 2  4 x  1

 3 x  22 x  12 x  1  2 x  22 x  1  x  22 x  132 x  1  22 x  1  x  22 x  16 x  3  4 x  2   x  22 x  12 x  5

x 2  5 x  14  x  2x  7  2 x 2  5x  3 x

2



x 7 7 x  2x  5x

eday dUcenH 40



. tamtaragplKuNExVg

1

2x 3 3x  2 x  5 x

2 x 2  5 x  3  x  12 x  3

. -



-TMB½rTI 35 ³ dak;kenSamCaplKuNénktþa

-TMB½rTI 37 ³ KNna x2 x2  b  x 2  25 x 2  20 x  25 x2 x 2  20 x  25   x  5x  5 x2  b

x 2  6x  7  x 2  6x  9  9  7

A

 x  3  16 2

 x  3  4x  3  4  x  1x  7 

eRBaH 16  4 nig a  ba  b  a 2

x 2  5x  6  x 2  5x 

2

 b2



.





x 2 x 2  20 x  25 x  5x  5 x 2  b





dUcenH KNna)an A  xx5xx205xx 25 b 

25 25  6 4 4

2

2

2

2

5 1  x   2 4  5 1  5 1    x    x    2 2  2 2   x  3x  2

a2 a3  a2 B 2  a b aa  2  a  2 

a  2   a 2b



-TMB½rTI 36 ³ KNna 1



1 2  x x 1

manPaKEbgrYmKW xx  1



a  2 a  0  a  1

x2 1 xx  1

x 2  x 3x  2 2 x 2  x   x 2  x x  1 x x  1



a  2  0  2 a  0 a  1  0 

dUcenH KNna)an B  b1 .

x 2  x  x  1  2x  xx  1 

1 b

EdlktþasRmÜl

xx  1  x  1  2 x xx  1

a 2 a  1 a  2a  1

PaKEbgrYm xx  1



x 2  x  x3 x  2   2 x 2  x x x  1



x 2  x  3x 2  2 x  2 x 2  x  x x  1 2x 2  2x  x x  1 x  0 x  0 2 x x  1 ,    x x  1 x 1  0  x  1  2 



41



-



o

o



-TMB½rTI 43 ³ edaHRsaysmIkar k>

-TMB½rTI 45 ³ edaHRsaysmIkarxageRkam ³

6x  2  3x  8

x 2  2x  4x  8  0 x x  2   4 x  2   0 x  2x  4  0

2 x  2    x  8  2x  4  x  8 2 x  x  8  4 x  4

x  2  0  x  4  0  x  2 x  4 

dUcenH smIkarmanb£s x  4 . x>

3x  5  3x  2 3x  5  3x  6

dUcenH smIkarmanb£s x  2 , x  4 . 2 x  12  x  32  0 2 x  1  x  32 x  1  x  3  0 x  43x  2  0

3x  3x  6  5 0x  1

Kµantémø x NaEdleFVI[smIkarepÞógpÞat; dUcenH smIkarKµanb£s . K>

 x40  3 x  2  0

6 x  4  2  6x  1 6x  4  2  6x  6 6x  4  6x  4 6 x  6 x  4  4 0x  0

 x4  x  2 / 3 

dUcenH smIkarmanb£s x  4 , x  2 / 3 . 3x 2  9 x  0 3 x  x  3  0

mantémøén x eRcInrab;minGs;EdlepÞógpÞat;smIkar dUcenH smIkarmanb£seRcInrab;minGs; . -TMB½rTI 44 ³ edaHRsaysmIkar -cMeBaH 34x  9  2x  15 ¬manPaKEbgrYmKW 4¦

 x0  x  3  0  x0  x  3 

3x  36  2 x  60

dUcenH smIkarmanb£s x  0 , x  3

3x  2 x  60  36

2 x 2  3x  5  0

x  24

2 x 2  2 x  5x  5  0

dUcenH smIkarmanb£s x  24 . -cMeBaH x 6 7  2x2 8  4 ¬manPaKEbgrYmKW 6¦

2 x x  1  5 x  1  0 x  12 x  5  0

 x 1  0  2 x  5  0 x 1  x  5 / 2 

x  7  32 x  8  24 x  7  6 x  24  24 7 x  7 x  1

dUcenH smIkarmanb£s x  1 .

dUcenH smIkarmanb£s x  1 , 

.

42



.

x  5 / 2 -



-TMB½rTI 47 ³ k> rkGayurbs;bUNa tag x CaGayurbs;bUNa ¬KitCaqñaM¦ naM[ Gayurbs; m:arI KW x  8 ¬KitCaqñaM¦ bRmab; ³ plbUkGayuGñkTaMgBIresµInwg 38 qñaM eyIg)an ³ x  x  8  38 2 x  8  38 2 x  30 x  15

epÞógpÞat; ³ 15  15  8  38 Bit dUcenH Gayurbs;bUNaKW x  15 qñaM . x> rkcMnYnenaH tag x CacMnYnEdlRtUvrkenaH tambRmab;RbFan enaHeyIgsresr)ansmIkarKW ³ 38  38

2 x  7  3x  27 3x  2 x  7  27 x  34

epÞógpÞat; ³

2  34  7  3  34  27

Bit dUcenH cMnYnEdlRtUvrkenaHKW 34 . 75  75



43



-



r

s



-TMB½rTI 52 ³

cMeBaHvismIkarTI 1 ³ eyIg)an cemøIyCaRkabKW 2x  7  6x  5

RsaybBa¢ak;fa ebI a  b eK)an a  b eday a nig b CacMnYnviC¢manminsUnü naM[ a  0 , b  0 cMeBaH a  b  a  ab i  ¬KuNnwg a ¦ ehIy a  b  ab  b ii ¬KuNnwg b ¦ tam i  nig ii eyIg)an ³ a  ab  b naM[ a  b dUcenH ebI a  b enaHeK)an a  b CaR)akd . -TMB½rTI 55 ³ edaHRsayvismIkar x -cMeBaH cemøIyCaRkabKW 27 4 2

2

2x  6x  5  7  4 x  12

2

x  3

2

2

2

x 5 4 x  20

4 x  x  4  11

2



0

x





x

0

x

dUcenH vismIkarmancemøIy x  9 -TMB½rTI 56 ³ edaHRsayRbB½n§vismIkar 7  6 x  5 1 k> 24xx 11  4  x 2





x

5









3 0

x

5

.

3 x  5

i  ii 

cMeBaHvismIkarTI i  ³ eyIg)an 3x 2 4 x  3   4 3 12

x

cemøIyCaRkabKW

9x  8  4x  3 9 x  4 x  3  8 5x  5 x 1



x

 

x

0 1

cMeBaHvismIkarTI ii ³ eyIg)an 3x  4 2x 1  cemøIyCaRkabKW 2



x

0 9

 3x 2 4 x  3  4  3  12  3x  4  2x 1  2 

x>

dUcenH vismIkarmancemøIy x  1/ 3 . -cMeBaH 0.37x  0.17  3.5 cemøIyCaRkabKW 0.37 x  3.33 3.33 x 0.37 x9



0

dUcenH RbB½n§vismIkarmancemøIy



1 3

x

cemøIyrYmCaRbsBVéncemøIyTaMgBIrKW ³

dUcenH vismIkarmancemøIy x  20 . -cMeBaH 2x  3  5x  5 cemøIyCaRkabKW 2 x  6  5x  5 6  5  5x  2 x 1  3x 1 x 3

x

x5

x

20





3x  15

2



x



3 0

cMeBaHvismIkarTI 2 ³ eyIg)an cemøIyCaRkabKW 4x  11  4  x

2

2



x

4 x  2  3x  4



x

4 x  3x  4  2



2 0



x

x  2

.

cemøIyrYmCaRbsBVéncemøIyTaMgBIrKW ³ x



2







0 1

dUcenH RbB½n§vismIkarmancemøIy





44



x

.

 2  x 1 -



-TMB½rTI 58 ³ k> rktémø x EdlRtUvyk

epÞógpÞat; ³

tambRmab;RbFaneyIgcg)anRbB½n§vismIkar ³

638  639  640  1918  638  639  640  1914

2x  5  18 2 x  10  18    5 x  50 5 x  50    2x  8  x  4 1     5 x  50  x  10 2

1917  1918  1917  1914

dUcenH cMnYnKt;tKñaTaMgbIEdlRtUvrkKW

naM[ cemøIyrYmKW 4  x  10 eyIgGacbkRsay cemøIyCaRkab tamvismIkarnImYy² cMeBaHvismIkar 1 : x  4 x  x 

Bit Bit

638 , 639 , 640

.



0 4

cMeBaHvismIkar 2 : x  10



x

0





10 x

cemøIyrYmCaRbsBVéncemøIyénvismIkar 1 & 2 KW x







0 4



10 x

epÞógpÞat; [ x  5 eyIg)an

25  5  18 20  18     5  5  50 25  50

Bit Bit

dUcenH vismIkarmancemøIyKW 4  x  10 . x> rkcMnYnKt;TaMgbIenaH tag x CacMnYnKt;TI 1 naM[ x 1 CacMnYnKt;TI 2 nig x  2 CacMnYnKt;TI 3 tambRmab;RbFan eyIg)an RbB½n§vismIkar³  x  x  1   x  2   1918   x   x  1   x  2   1914

3 x  3  1918   3 x  3  1914 3 x  1915   3 x  1911 3 x  1915   3 x  1911  x  638.33    x  637

cMnYnKt;EdlenAcenøaH 637  x  638.33 manEtmYy Kt;KW x  638 naM[ cMnYnTI2KW x  1  639 / cMnYnTI3 x  2  640 

45



-









-TMB½rTI 64 ³ sg;Rkabssr ³

cMnYnkUn cMnYnRKYsar eRbkg;fy eRbkg;eFob eRbkg;eFob fy f % f% f f x

eyIgmanTinñn½ycMnYnéf¶EdlbuKÁlikmin)anbMeBj kargarkñúgry³eBj 20 éf¶ dUcxageRkam ³



0 1 2 3 4

1 2 0 0 1 2 2 1 0 0 4 0 1 1 3 2 1 3 0 1

eyIg)antaragbMENgEckeRbkg;dUcxageRkam ³ cMnYnbuKÁlik eRbkg; f eRbkg;eFob f % 0 1 2 3 4

6 7 4 2 1

4 16 18 6 6

8 32 36 12 12

100 92 60 24 12

k> rkcMnYnRKYsarEdlmankUn 2nak;y:ageRcIn tamtarageRbkg;ekIn cMnYnRKYsarEdlmankUn 2nak; y:ageRcInKWman 38 RKYsar. x> rkcMnYnRKYsarEdlmankUn 2nak;y:agtic tamtarageRbkg;fy cMnYnRKYsarEdlmankUn 2nak; y:agticKWman 30 RKYsar.

30 35 20 10 5

20 100 srub tamtaragbMENgEckeRbkg; eyIgsg;)anRkabssr ³ eRbkg; f

-TMB½rTI 71 ³ sßitim:assisS 200nak;énviTüal½ymYy

7 6 5 4

m:as kg eRbkg;

30-40

40-50

50-60

60-70

35

45

55

65

k> sg;tarageRbkg;ekIn nigp©itfñak;

3 2 1

1

0

2

3

4

fñak;énm:as eRbkg; eRbkg;ekIn p©itfñak;

cMnYnbuKÁlik

30-40 40-50 50-60 60-70

-TMB½rTI 67 ³ sg;tarageRbkg;ekIn nigeRbkg;fy eyIgmanTinñn½y Edl x CacMnYnkUn nig f CacMnYnRKYsar x f

0 1 2 3 4 4 16 18 6 6

4 20 38 44 50

35 80 135 200

35 45 55 65

eRbkg;ekIn

cMnYnkUn cMnYnRKYsar eRbkg;ekIn eRbkg;eFob eRbkg;eFob ekIn f % f% f f x 4 16 18 6 6

35 45 55 65

x> sg;BhuekaNeRbkg;ekIn

eyIgsg;)antarageRbkg;ekIn ³ 0 1 2 3 4

50 46 30 12 6

8 32 36 12 12



200

8 40 76 88 100

150





135

100



80

50  35

eyIgsg;)antarageRbkg;fy ³



30 40 50 60 70



46



m:as -



K> rkcMnYnsisS Edlmanm:aseRkam 50 kg tamtarageRbkg;ekIn cMnYnsisSEdlmanm:aseRkam 50 kg mancMnYn 35  45  80 nak; . dUcenH cMnYnsisSEdlmanm:aseRkam 50 kg man cMnYn 80 nak; .



47



-









-TMB½rTI 77 ³ KNnamFüméntaragTinñn½yxageRkam ³

-rkemdüan m ³ x 0 1 2 3 4 eyIgerobTinñn½ytamlMdab; 7 8 10 12 13 y 3 6 5 2 2 Tinñn½ymancMnYntYsrubKW n  5 KNnamFüm naM[ TItaMgénemdüanKWtY  5 2 1  3 tamrUbmnþ ³ x  x f fx f f ......fx f / f  y tamTinñn½yerobtamlMdab;rYc tYTI 3 RtUvnwgelx 10 tamtaragTinñn½yxagelIKW ³ 0  3  1 6  2  5  3  2  4  2 dUcenH rk)anemdüanKW m  10 . x 365 2 2 -rkm:Ut m ³ 0  6  10  6  8 30    1.67 18 18 edaym:Ut CatémøEdlmaneRbkg;eRcInCageK . dUcenH mFüménTinñn½yKW x  1.67 . EtTinñn½yxagelImaneRbkg;esµI1 dUcKñaTaMgGs; -TMB½rTI 78 ³ rkemdüanénR)ak;ebovtSn_¬KitCaBan;erol¦ dUcenH Tinñny½ enHKµanm:UteT . R)ak;ebovtSn_ 200 300 350 700 840 950 -TMB½rTI 82 ³ KNnamFüm emdüan nigm:UténTinñn½y ³ 6 2 2 1 1 1 eRbkg; fñak; eyIgsg;)antarageRbkg;dUcxageRkam ³ 1 1

2

1

2

n

2

e

n

n

e

o

R)ak;ebovtSn_ x eRbkg; f eRbkg;ekIn 200 300 350 700 840 950

6 2 2 1 1 1 13

srub

6 8 10 11 12 13

21-28

28-35

35-42

42-49

49-56

56-63

63-70

3

7

12

15

12

7

3

eRbkg;

tamtaragTinñn½y eyIgsg;)antarageRbkg;ekIn ³

xf 1200 600 700 700 840 950 4990

fñak;

edayTinñn½ymancMnYntYsrub n  13 CacMnYness naM[ TItaMgén m KWtY  132 1  142  7 tamtarageRbkg; tYTI 7 RtUvnwgTwkR)ak; 300 Ban;erol dUcenH emdüanénR)ak;ebovtSn_KW m  300 Ban;erol. -TMB½rTI 79 ³ rkmFüm emdüan nigm:Ut énTinñn½y eyIgmanTinñny½ ³ 10 8 13 12 7 -rkmFüm x ³ tamTinñn½y x  10  8  135  12  7  505  10 dUcenH rk)anmFümKW x  10 . e

21-28 28-35 35-42 42-49 49-56 56-63 63-70

3 7 12 15 12 7 3

srub

59

24.5 31.5 38.5 45.5 52.5 59.5 66.5

xf

eRb>ekIn

73.5 220.5 462 682.5 630 416.5 199.5

3 10 22 37 49 56 59

2684.5

-KNnamFüm x ³ .5  45.5 eyIg)an x  2684 59

e



eRbkg; f p©itfñak; x

dUcenH KNna)anmFüm x  45.5 . -KNnaemdüan m ³ emdüan CatémøéntYTI 592  29.5 tamtarageRbkg;ekIntYTI 30 sßitenAkñúgfñak; 42-49 eyIgKNnaemdüantamGaMgETb:ULasüúg e

48



-



naM[ m

e

 42 

49  4229.5  22  45.5 37  22

dUcenH KNna)anemdüan

me  45 .5

.

-KNnam:Ut m ³ m:Ut Catémøp©itfñak;EdlmaneRbkg;eRcInCageK fñak; 42-49 maneRbkg; 15 eRcInCageK ehIyman p©itfñak;esµI 45.5 o

dUcenH KNna)an

x  me  mo  45 .5

.



49



-







-TMB½rTI 89 ³ fg;mYymanXøIBN’exµA 4 nigXøIBN’s 2

-TMB½rTI 92 ³

rkRbU)abEdleQµaH k cab;)anXøIBN’exµA -XøIsrubman 6 naM[ krNIGac  6 -XøIBN’exµAman 4 naM[ krNIRsb  4 R sb tamrUbmnþ P  cMcMnnYnYnkrNI krNIG ac

rkRbU)abEdlecjelxdUcKña -RKab;LúkLak;manmux 6 enaHeKGacpÁÜbKUlT§pl rbs;va)an TaMgGs;cMnYn 6  6  36 rebob naM[ krNIGac  36 -KUEdlmanelxdUcKñaGacCa 1,1 2 , 2 3, 3 4 , 4 5 , 5 nig 6 , 6  man 6krNI naM[ krNIRsb  6

1.

P

1.

XøIBN’exµA   cMnnY krNIRsb  4  2  66 .67 % cMnnY krNIG ac

6

3

dUcenH RbU)ab k cab;)anXøIBN’exµAKW P  66.67% . 2. rkRbU)abEdleQµaH x cab;)anXøIBN’exµA edayeQµaH k cab;)anXøIBN’exµAehIymindak;cUlfg; vij naM[b:HBal;dl;karcab;elIkeRkayrbs;Gñk x -XøITaMgGs;sl;Et 5 naM[ krNIGac  5 -XøIBN’exµAsl;Et 3 naM[ krNIRsb  3 P

dUcenH

P

R sb 6 1   . elxdUcKña   cMcMnnYnYnkrNI krNIG ac 36 6

rkRbU)abEdlplbUkRKab;TaMgBIresµInwg 10 KUénRKab;TaMgBIrmanplbUkesµI 10 GacCa 4 , 6 , 5 , 5 , 6 , 4 manbIkrNI naM[ krNIRsb  3

2.

cMnYnkrNIR sb 3   60 % XøIBN’exµA   cMnYnkrNIG ac



5

dUcenH

dUcenH RbU)ab x cab;)anXøIBN’exµAKW P  0.6 .

P

cMnYnkrNIR sb  plbUkesµI!0   cMnYnkrNIG ac

3 1  36 12

-TMB½rTI 90 ³ rkRbU)abEdleFVIdMeNIredaymFü)aydéT tag P CaRbU)abGñkeFVIdMeNIredayrfynþpÞal;xøÜn -Rkumh‘unmanbuKÁlik 250nak; naM[ krNIGac  250 -GñkCiHrfynþpÞal;xøÜn 50nak; naM[ krNIRsb  50 R sb 50 1    20 % naM[ P  cMcMnnYnYnkrNI krNIG ac 250 5 tag P CaRbU)abénGñkeFVIdMeNIredaymeFüa)aydéT Edl P CaRBwtþikarN_bMeBjKñaCamYyRBwtþikarN_ P naM[ P  1  P  1  15  54  80% dUcenH RbU)abénGñkeFVIdMeNIredaymeFüa)aydéT EdlminCiHrfynþpÞal;xøÜnKW P  80% . 

50



-

.









-TMB½rTI 99 ³ KNnacm¶ayrvagBIrcMNuc eyIgGacKNnacm¶ayrvagBIrcMNuc edayeRbIrUbmnþ ³ xB  x A 2   yB  y A 2 A0 , 0 & B8 ,  15 

AB 

k> naM[ AB 

8  02   15  02

 64  225  289

 17

ÉktaRbEvg .

dUcenH KNna)an

AB  17

ÉktaRbEvg .

x> A 2 , 6 & B3 ,  6 naM[ AB  3  2   6  6 2

2

 25  144  169

ÉktaRbEvg . dUcenH KNna)an AB  13 ÉktaRbEvg . K> A 3 ,  5 & B1 ,  8 naM[ AB  1  3   8  5  13

2

2

 49  13

ÉktaRbEvg .

dUcenH KNna)an

ÉktaRbEvg .

AB  13

X> A5 , 3 & B11 , 11 naM[ AB  11 5  11 3 2

2

 36  64  100

 10

ÉktaRbEvg .

dUcenH KNna)an

AB  10

ÉktaRbEvg .



51



-







១០

-TMB½rTI 110 ³ sg;bnÞat;TaMgbIkñúgbøg;EtmYy

-TMB½rTI 108 ³ !> sg;bnÞat;EdlmansmIkar y   2x cMeBaH x  0 naM[

0 y 0 2

-cMeBaHbnÞat;

Edr CabnÞat;kat;Kl;

y

x4 2



1 y  x2 2 x 0 4 1 y  x2 y 2 0 2

taragtémøelxén KW G½kS . bnÞat;enHmanemKuNR)ab;Tis a   12 mann½yfa -cMeBaHbnÞat; y  2 CabnÞat;edk kat;G½kS  yy  Rtg; 2 ebI x ekInBIrÉkta enaH y fycuHmYyÉkta. -cMeBaHbnÞat; x  4 CabnÞat;Qr kat;G½kS xx Rtg; 4 eyIgsg;bnÞat;)an dUcxageRkam ³ sg;bnÞat;TaMgbIkñúgbøg;EtmYydUcxageRkam ³ y y

x 2

y 1 y x2 2

0

1



x4

x

2 0





4



y2

x

sg;bnÞat;kat;tamcMNuc A0 , 1 nigmanemKuN KNnaRkLaépÞxNÐedaybnÞat;TaMgbIenH R)ab;TisesµI  13 bnÞat;TaMgbIpÁúM)anCaRtIekaNEkgEdlman )atesµI 4 eyIg)anbnÞat;kat;tam A0 , 1 ehIymanemKuNR)ab; ÉktaRbEvg nigkm


¬RbtibtþienHerobcMmin)anl¥ ³ eK[rksmIkarbnÞat;kat;tamBIrcMNuc Et eBl[cMNuc manEtmYycMNuceTAvij KW  2 , 7 dUcKña¦

x

eKGacsg;bnÞat;eRcInrab;minGs;kat;tammYycMNuc dUcenH minGackMNt;)ansmIkarbnÞat;kat;  2 , 7 .

0

-TMB½rTI 113 ³ rksmIkarbnÞat;kat;tammYycMNuc ehIy

KNnaemKuNR)ab;TisénbnÞat;kat;tamBIrcMNuc A 2 , 0 nig B 1 , 4 naM[bnÞat;manemKuNR)ab;Tis y y 40 4 a   4 . x x  1   2  1 3.

B

A

B

A



RsbeTAnwgbnÞat;mYyepSgeTot k> kat;tam 0 , 0 ehIyRsbnwgbnÞat; y  3x  1 tag M x , y  enAelIbnÞat;RtUvrkkat;tam A0 , 0 ehIyRsbnwgbnÞat; y  3x  1 enaHemKuNR)ab;TisesµIKña 52



-



eyIg)an

yM  y A 3 xM  x A y0 3 x0

eyIg)an naM[

y  3x

dUcenH y  3x CasmIkarbnÞat;EdlRtUvrk . karsg;bnÞat;edIm,IepÞógpÞat;

yM  y A 1   1 xM  x A 2 y   1 1   1 x2 2 y  1  2x  2 y  2 x  3

dUcenH smIkarbnÞat;EdlRtUvrkKW karsg;RkabedIm,IepÞógpÞat;

y  3x

y  2 x  3

.

y  3x  1 2 y  x 1  0

x> kat;tam 6 , 3 ehIyRsbnwgbnÞat; x  3 y  3 y  2 x  3 tag M x , y  enAelIbnÞat;RtUvrkkat;tam B6 , 3 ehIyRsbnwgbnÞat; x  3 y  3 b¤bnÞat; y  13 x  1 x> tat;tam A 21 , 0  ehIyEkgnwgbnÞat; y  2x enaHemKuNR)ab;TisesµIKña tag M x , y  enAelIbnÞat;RtUvrkkat;tam   eyIg)an yx  xy  13 ehIyEkgnwgbnÞat; y  2x naM[plKuNemKuNR)ab; y 3 1  TisesµI  1 x6 3 y y 1 1 eyI g )an  2  1 y  3  x  6 naM[ y  x  1 x x

1

A

M

B

M

B

2

3

3

M

A

M

A

 

, 0

y0  2  1  1  x    2 

dUcenH y  13 x  1CasmIkarbnÞat;EdlRtUvrk . karsg;bnÞat;edIm,IepÞógpÞat;

1 2 1 1 y  x 2 4

2 y  x  y

1 x 1 3 y

1 x 1 3

dUcenH smIkarbnÞat;EdlRtUvrkKW y   12 x  14 . karsg;RkabedIm,IepÞógpÞat;

-TMB½rTI 115 ³ rksmIkarbnÞat;kat;tammYycMNuc ehIy EkgeTAnwgbnÞat;mYyepSgeTot k> tat;tam A2 ,  1 ehIyEkgnwgbnÞat; 2 y  x  1  0 tag M x , y  enAelIbnÞat;RtUvrkkat;tam A2 ,  1 ehIyEkgnwgbnÞat; 2 y  x  1  0 b¤ y  12 x  12 naM[ plKuNemKuNR)ab;TisesµI  1 

y  2x 1 1 y  x 2 4

53



-



-TMB½rTI 117 ³ rkeBlevlaEdlsItuNðPaBesµInwg 26

o

tagG½kS xx CaeBlevlaEdlRtUvekIneLIg nigG½kS  yy  CasItuNðPaBEdlnwgRtUvfycuH edaysItuNðPaBfycuHkñúgGRta 2 / h mann½yfa ebIeBlekIn 1h enaH sItuNðPaBfycuH 2 eyIg)anbnÞat;kat;tamcMNuc 12 , 40  manemKuNR)ab; esµInwg  2 . ebI M x , y  CacMNucmYyenAelIbnÞat;enH enaHeyIg)anbERmbRmYlemKuNR)ab;TisKW ³ o

o

y  40  2  x  12 

y  40  2 x  24 y  2 x  64

cMeBaHsItuNðPaB y  26 eyIg)an 26  2x  64 o

2 x  38 x  19

CaeBl 

dUcenH sItuNðPaB 26 RtUvnwgem:ag 19  7 yb; . o



54



-







១១

-TMB½rTI 123 ³ edaHRsayRbB½n§smIkartamRkab eyIgmanRbB½n§smIkar

4 x  3 y  4  3x  y  2

x> 34xx  4yy178

i  ii



-eyIgedaHRsayedayeRbIviFICMnYs tam ii : 4x  y  17  y  17  4x yk iii  CMnYscUlkñúg i  eyIg)an ³

eyIgsg;bnÞat; i  & ii enAkñúgbøg;EtmYy -taragtémøelxén 4x  3 y  4 KW yx 10  24 -taragtémøelxén 3x  y  2 KW

i  :

x 1 0 y 1 2

sg;RkabTaMgBIrenAkñúgbøg;EtmYy eyIg)an ³

3x  417  4 x   8 3x  68  16 x  8 19 x  76 x4

iii : y  17  4  4  1

dUcenH RbB½n§smIkarmanKUcemøIy x , y   4 , 1 . -TMB½rTI 128 ³ edaHRsayRbB½n§smIkar k> 43xx35yy97 12

4x  3 y  4



tamtaragbnÞat;RbsBVKñaRtg;cMNuc  2 , 4 dUcenH RbB½n§smIkarmanKUcemøIy x  2 , y  4 . -TMB½rTI 125 ³ edaHRsayRbB½n§smIkar k> 9yx62y 3x3 12

eyIgedaHRsayedayeRbIviFIbUkbM)at; enaHeyIg)an  4x  3y  9   3 x  5 y  7

-eyIgedaHRsaytamviFICMnYs tam 1 : y  6  3x  y  3x  6 yk 3 CYscUleTAkñúg 2 eyIg)an ³

3 4

 12 x  9 y  27   12 x  20 y  28 11y  55



cMeBaH

3

y5

1 :

 y5

ykCMnYskúñg 1 eyIg)an ³

4x  3  5  9 4 x  24 x6

9 x  23 x  6   3 9 x  6 x  12  3 3 x  9 x  3

dUcenH RbB½n§smIkarmanKUcemøIy x  6 , y  5 . x> 77xx31y63y  55xx  yy

yk x  3 CMnYscUlkñúg 3 3 :

iii

yk x  4 CMnYscUlkñúg iii  eyIg)an ³

3x  y  2

2 :

i  ii 



y  3   3  6  15

eyIg)an

dUcenH RbB½n§smIkarmanKUcemøIy  xy    153 .   

1 2

7 x  3 y  9  5x  5 y  7 x  7  6 y  5 x  5 y





55



-



7 x  3 y  9  5 x  5 y  7 x  7  6 y  5 x  5 y 9 y  2  10 y y  2

yk

CMnYnskñúg

eyIg)an

1 y  2 1 : 7 x  3 2  3  5x  2 7 x  15  5 x  10 2x  5 x  5/ 2

dUcenH RbB½n§smIkarmanKUcemøIy x  5 / 2 , y  2 .

-TMB½rTI 131 ³ k> rkcMnYnTaMgBIrenaH tag x CacMnYnTI! nig y CacMnYnTI@ tambRmab;RbFaneyIgcg)anRbB½n§smIkar  x  y  50 1 eyIgedaHRsaytamviFIbUkbM)at;  3x  2 y  60 2 

 x  y  50  3 x  2 y  60

2

2 x  2 y  100  3 x  2 y  60 5 x  160 x  32

yk x  32 cMnYnkñúg 1 edIm,Irk y eyIg)an ³ 1 :

32  y  50  y  18

dUcenH cMnYnTaMgBIrenaHKW cMnYnTI!= 32 nigcMnYnTI@=18 . x> rkRbEvgTTwg nigbeNþayénctuekaNEkg tag x CaTTwg nig y CabeNþay 0  x  y xñatEm:t tambRmab;RbFaneyIgcg)anRbB½n§smIkar 2x  y   158 edaHRsayedaybUkbM)at;  yx5 

 x  y  79   yx5 2 y  84  y  42

cMeBaH y  42  x  42  5  37 dUcenH ctuekaNEkgman TTwg  37m /beNþay  42m . 

56



-







១២

-TMB½rTI 138 ³ KNnargVas; x KitCa cm énrUb tag ycm CaGIub:UetnusénRtIekaNEkg i  -kúñg   i  ³ tamRTwsþIbTBItaK½r y 2  12  12  2

 ii 

x

-kñúg   ii ³ tamRTwsþIbTBItaK½r

1

2

1

i 

x  y 1  2 1  3 2

2

1

 x  3 cm

dUcenH rgVas;KNna)anKW x 

3 cm

.

-TMB½rTI 139 ³ KNnargVas;Ggát;RTUgénRbelBIEb:tEkg tag y CaRbEvgGgát;RTUgEdlRtUvrk KitCa m cMeBaH   ABC ³ RTwsþIbTBItaK½r x 2  22  12  5

cMeBaH   ACD ³ tamRTwsþIbTBItaK½r

D

y

2

y 2  x 2  22  5  4  9

naM[

C

x

A

1

2

y  9 3m

dUcenH RbEvgGgát;RtUvKNna)anKW 3 m .

-TMB½rTI 140 ³ rkkm


h 2  64  4



h  60  2 15 m

dUcenH km
h  2 15 m  7.75 m

.



57



-







១៣

-TMB½rTI 145 ³ KNnaRbEvg AP nig BC eK[ AB  25 cm

-TMB½rTI 150 ³ KNnakaMénrgVg; OQ 20 cm

C

Q

BQ  6.5 cm

P

dUcrUbxagsþaM

-eday AB  OP Rtg; P naM[ P kNþal AB 25 cm enaH AP  AB   12.5 cm 2 2 -eday BC  OQ Rtg; Q naM[ Q kNþal BC enaH BC  2BQ  2  6.5 cm  13 cm

o

OT 2  OS 2  ST 2

OQ  TQ2  OS 2  ST 2 r  102  r 2  202 r 2  20r  100  r 2  400 20r  300 r  15

dUcenH KNna)an AP  12.5 cm nig BC  13 cm .

-TMB½rTI 147 ³ rkRbEvg NP

dUcenH kaMrgVg;KNna)anKW OQ  r  15 cm .

OA

-TMB½rTI 152 ³ RsaybMPøWfa

M

BR  RC

eyIgman ABC CaRtIekaNsm)at naM[ AB  AC tamRTwsþIbTbnÞat;b:HEdl KUsecjBIcMNucrYmenAeRkArgVg; eyIg)an AP  AQ , BP  BR , CQ  CR cMeBaH AB  AC enaH AP  BP  AQ  CQ eday AP  AQ eyIg)an BP  CQ P

A  o

N

 o

 Q

dUcenH rk)anRbEvg NP  9 cm .

-TMB½rTI 148 ³ KNnargVas; AC

C 

eyIgmanrgVg;p©ti O kaM 2 cm A CacMNucenAeRkArgVg; B CacMNucb:HrgVg; AB  OB  OC  2 cm ¬eRBaH OB CakaMrgVg;¦ kñúg   ABOman OA CaGIub:Uetnus tamRTwsþIbTBItaK½r o 2 cm  2 cm

  A 2 cm B

l

tamTMnak;TMng

BP  BR BP  CQ  BR  CR

dUcenH eyIgbMPøW)anfa BR  RC .

-TMB½rTI 153 ³ KNnaRbEvg

AC  OA  OC  2 2  2  4.83 cm

AB

¬KitCa cm ¦

eyIgman r  5 cm , r   3 cm eyIgKNnaRbEvg AB tamkrNIdUcxageRkam ³

dUcenH RbEvgKNna)anKW AC  4.83 cm . 

.

CQ  CR

OA  AB2  OB2  22  22  2 2 cm

58



B



A

B P

naM[

r

10 cm

o

A

Cacm¶ayBIp©it O eTAGgát; MN OB Cacm¶ayBIp©it O eTAGgát; NP eday OA  OB  5.5 cm naM[ MN  NP  9 cm .

S

eyIgman ST  RT  20 cm r  T ehIy TQ  10 cm Q 20 cm tagkaMrgVg; OS  OQ  r R kñúgRtIekaNEkg TSO man OT CaGIub:Uetnus tamRTwsþIbTBItaK½r eyIg)an ³

B

-

R

C



-krNIrgVg;KµancMNucrYm eyIg)an ³

R  r  4  R  r 1 2R  5

OO  AB  r  r   AB  OO  r  r   OO  5  3  OO  8

-krNIrgVg;b:HKñaxageRkA naM[ A RtYtelI B enaH OO  r  r nig AB  0 -krNIrgVg;kat;Kña)anBIrcMNuc eyIg)an AB  2r b¤ AB  6 cm

A

 O

r

 O

r

 O

-krNIrgVg;b:HKñaxagkñúg eyIg)an AB  2r b¤ AB  6 cm

A B

B

R  2.5 cm

 r O

cMeBaH R  2.5 enaH r  4  R  4  2.5  1.5 cm dUcenH KNna)an kaMrgVg;TaMgBIrKW

 r O

2.5 cm , 1.5 cm

.

B A r r O

B

  Or Or

-krNIrgVg;KµancMNucrYmenAkñúgKña eyIg)an AB  r  r b£ AB  2 cm .

A

r B A  O O r

-TMB½rTI 155 ³ KNnakaMénrgVg;TaMgBIr tag R CakaMrgVg;FM nig r CakaMrgVg;tUc -cMeBaHcm¶ayrvagp©itTaMgBIresµI 4 cm  O

 O 4 cm

krNIenH eyIg)an R  r  4 -cMeBaHcm¶ayrvagp©itTaMgBIresµI 1 cm

1

1 cm

  O O

krNIenH eyIg)an R  r  1 2 tam 1 nig 2 eyIg)anRbB½n§smIkar 

59



-



(

)

១៤

-TMB½rTI 164 ³ KNna AIB

-TMB½rTI 160 ³ bgðajfa AOB  COB eyIgman rgVg;p©it o nig B CacMNuckNþalFñÚ AC mMup©it AOB maFñÚsáat; AB mMup©it COB maFñÚsáat; BC eday B CacMNuckNþalFñÚ AC naM[ FñÚ AB  FñÚ BC eyIg)an mMup©it AOB  COB Edr ¬mMup©itEdlmanFñÚsáat;esµIKña vaCamMub:unKña¦

B

eyIgmanmMu ACB  34 nig CAD  45 . kñúgRtIekaN ADI man ³ CAD  ADB  AIB¬plbUkmMukñúg@esµImMueRkA!¦ Et ACB  ADB  34 ¬manFñÚsáat;rYm AB ¦ naM[ CAD  ACB  AIB o

C

B

C



A

I

o

 O

D

A

o

45o  34o  AIB 79o  AIB

dUcenH KNna)an AIB  79 . o

dUcenH eyIgbgðaj)anfa AOB  COB .

-TMB½rTI 161 ³ rkcMnYnmMucarwkkñúgrgVg; tamry³rUbxagsþaM mMucarwkkñúgrgVg; mancMnYnbImMu rYmman ³ BPC , BPD , CPD

-TMB½rTI 167 ³ KNna ACB , ADB , AEB eyIgman AOB  60 naM[

P

o

B

 AEB

.

D

ACB  ADB o 

AOB  2 o 60   30o 2

D

C

E

-TMB½rTI 162 ³ bgðajfa ABC  12 AC

C

60 o

A

B

¬mMucarwkkñúgrgVg; nigmMup©itmanFñÚsáat;rYm AB ¦

eyIgman ABC CamMucarwk kñúgrgVg;p©it o . A o tamlkçN³én]TahrN_1 C eyIgbgðaj)anfa ³ D 1 1 mMu ABD  2 AD nig mMu CBD  2 CD edaydkGgÁ nigGgÁeyIg)an B

dUcenH

.

ACB  ADB  AEB  30o

-TMB½rTI 169³ KNnargVas;mMu

D

x, y,z

kñúgRtIekaN ADC man³ -RCug AD  DC ¬smµtikmµ¦ -mMu ADC  90 ¬mMucarwkknøHrgVg;Ggát;p©it AC ¦ naM[ ADC CaRtIekaNEkgsm)atRtg;kMBUl D vi)ak mMu)at x  y  45 kñúgRtIekaN ABC man ³ -mMu ABC  x  90 ¬mMucarwkknøHrgVg;Ggát;p©it AC ¦ A

z

 o

y x

B

o

1  ABD  AD   2  CBD  1 CD   2 1 ABC  AC 2

o

o

dUcenH KNna)an x  90

dUcenH eyIgbgðaj)anfa ABC  12 AC . 

60



o

.

, y  z  45 o -

C



-TMB½rTI 171³ KNnargVas;mMu a nig b tamrUb eXIjfactuekaNenHCactuekaN carwkkñúgrgVg; enaHplbUkmMuQmesµI 180 naM[ a  112  180  a  68

eyIg)an CMD  12  AB  CD  ¬mMukñúgrgVg;¦

92o

  dUcenH KNna)anrgVas;mMu CMD  135 . -TMB½rTI 175³ KNnargVas;mMu D énrUbxageRkam ³ mMu PDRCamMueRkArgVg; naM[ PDR  12  PSR  PR 

112o



o

o

o

b

a

o

o

b  92 o  180 o  b  88 o

dUcenH KNna)anrgVas;mMu a  68 nig b  88 . -TMB½rTI 173³ KNnargVas;mMu eyIgman ctuekaN ABCD carwkkñúgrgVg; / AB  BC nigmMu o

o

P

o

B



1  260o  100o 2  80o

A

76o

27 o

ACE  27 o , ADE  76 o

k> KNnargVas;mMu

1 150o  120o  135o 2

E

D

260 S



o

100o

D

R

dUcenH rgVas;mMuKNna)anKW D  80 . -TMB½rTI 178³ KNnargVas;mMu eyIgman DE  DF nigmMu o

C

ACB

D

¬mMuQmctuekaNcarwkkñúgrgVg;¦ ADE  ADC  180 ¬mMubEnßmKña¦ ABC  ADC  180o

o 

o

naM[ ABC  ADE  76 kúñgRtIekaN ABC man AB  BC CaRtIekaNsm)at enaHmMu)at ACB  180 2ABC

F 40o

FET  40o

o

k> KNnamMu EOF mMu EOF CamMup©itmanFñÚsáat; EF naM[ EOF  EF 180  76   52 2 edaymMu FET CamMucarwkBiessmanFñÚsáat; EF eRBaH plbUkmMukñúgénRtIekaNesµI 180 . enaH EF  2  FET  2  40  80 dUcenH KNna)anrgVas;mMu ACB  52 . eyIg)an EOF  EF  80 x> KNnargVas;mMu BAD dUcenH rgVas;mMuKNna)anKW EOF  80 . edaymMu BCD  ACE  ACB  27  52  79 x> KNnargVas;mMu DES ehIy BCD  BAD  180 ¬mMuQmctu>carwkkñúgrgVg;¦ kñúgRtIekaN EDS man DE  DF naM[ BAD  180  BCD  180  79  101 naM[ RtIekaN EDS CaRtIekaNsm)at Edlman mMu EDF  FET  40 ¬mMucarwkmanFñÚsáat;rYm EF ¦ dUcenH KNna)anrgVas;mMu BAD  101 . nigmMu)at DEF  12 180  40   70 -TMB½rTI 174³ KNnargVas;mMu CMD A eyIgman CAD  60 nigmMu B eday DE  DF enaH DE  DF ¬Ggát;FñÚb:unKñaFñÚesµIKña¦ 60 M S

E

T

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

ADB  75o

mMu CAD manFñÚsáat; CD naM[ CD  2  CAD  2  60 mMu ADBmanFñÚsáat; AB naM[ AB  2  ADB  2  75

75o

o

o

ehIy

D

C

 120o

DF 2  DES  DEF  70 o DE DES  2 DEF 

eRBaH DES CamMucarwkBiessmanFñÚsáat; DE dUcenH KNna)anrgVas;mMu DES  70 .

 150o

o



61



-



2

2

១៥

-TMB½rTI 182 ³ sg;cMNuc P

-TMB½rTI 188 ³ bMeBjtaragxageRkam ³

A

sg;Ggát; AB rYcsg; knøHbnÞat; Ax  . RkitknøHbnÞat; Ax  [)an AC  5 ÉktaRbEvg. P¢ab;BI C eTA B ehIyKUsbnÞat;kat; cMNucÉktaepSg²[Rsbnwg CB . RbsBVénbnÞat;ÉktaTI2 nigGgát; AB Ca cMNuc P

kñúgRtIekaN ABC man DE AB eyIg)an pleFobsmamaRt AD DC AC BC b¤   DC EC BE EC eyIgbMeBjtaragedayeRbIsmamaRtxagelI eyIg)an ³ C





 P

D

 

A

C

B

x

dUcenH eyIg)an

k> x>

.

AP 2  AB 5

K>

-TMB½rTI 184 ³ KNnatémøén x nig y eyIgman  ,  ,  ,  CabnÞat;RsbKña enaHeyIg)anGgát;smamaRtKñaKW ³ 1

2

3

-cMeBaH naM[ x  1.5 1.6  2.4 -cMeBaH 11.6  2y naM[

y

X> g>

4

1 1.5 y   1.6 x 2 1 1.5  1.6 x

E

1

1

1.6

1.5

2

x

y

3

B

AD 3

DC

BE

2

6

7

3

35 3

5

2

8 3

3

4

DC 8

AC 20

BE 9

EC 6

BC 15

18

30

9

27 2

45 2

AD 12 12

EC 4

2

4

2  1.25 1.6

dUcenH témøKNna)anKW

x  2.4 , y  1.25

.

-TMB½rTI 186 ³ KNnakm
A

AF CF  BE CE BE  CF AF  CE

B 1m

b¤ AF  CF CE Edl CF CaRbEvgRsemaledImeQI nig CE CaRbEvg BIbegÁaleTAcugRsemal . F

C

E



62



-



១៦





-TMB½rTI 193 ³ KNna x , y , z

-TMB½rTI 197 ³ KNnaRbEvgénTTwgTenø AB

eyIgman ABC dUcnwgRtIekaN ABC manpleFob dMNUcesµInwg 14 eyIg)an smamaRtpleFob

edaybRmab;RbFan CBA

A

4

3

B

C

7

AB AC BC 1    AB AC  BC  4

A

naM[

x

AB 1 3 1     x  12 B  AB 4 x 4 AC 1 4 1     y  16 AC  4 y 4



y

CDE AB CB B 24 m C  ED CD AB 24m  40m 32m 24m  40m AB   30m 32m

32 m

D 40 m

E

enaH

C

z

A



dUcenH RbEvgTTwgTenøKNna)anKW AB  30m .

BC 1 7 1     z  28 BC  4 z 4

-TMB½rTI 200 ³ KNnatémø x nig y -tamrUb AEB ADC tamlkçxNÐ m>m BE AE eday AEB   ADC CD AD

dUcenH KNna)an x  12 , y  16 , z  28 .

A

-TMB½rTI 195 ³ k> bgðajfa ABC dUc PMN RtIekaN ABC man A  80 , B  54 naM[mMu C  180  A  B  o

6 4  y 10 6  10  y  15 cm 4

o

o





 180 o  80 o  54 o  46 o

dUcenH KNna)an

edayRtIekaN ABC nigRtIekaN MNP man -mMu C  M  46 -mMu B  P  54 o

ABC

NPM

JLK

tamlkçxNÐ m>m .

NPM



C

y

AE  4cm AD  10cm

y  15 cm

JK

x 3  3 2 3 3 9  x  m 2 2

x> TajrkpleFobdMNUc eday ABC NPM enaHeyIgTaj)an ³ ABC

D

.

-tamrUb GIH JLK tamlkçxNÐ m>m eday GIH  GH  GI

o

dUcenH

E 6 cm B

G

JL

3m

x

I

H K

L 3m

2m J

dUcenH KNna)an x  4.5 m .

AB AC BC   NP NM PM

dUcenH eyIg)anpleFobdMNUc AB AC BC   NP NM PM

. 

63



-



-tamrUb RQV RTS tamlkçxNÐ m>m QV QR eday RQV sUmEk ST BI   RTS TS TR

20m  20cm

x 16  20 10 16  20  x  32 m 10

dUcenH KNna)an x  32 m . x

Q

QR  16cm RT  10cm

V

R S

-tamrUb eday

T

20cm

BAC

DAE DAE BAC



tamlkçxNÐ m>m

DE DA  BC BA

x 220  40 100 220  40  x  88 m 100

dUcenH KNna)an x  88 m 120m

D

.

100m

B

A

40m x

C

E

-TMB½rTI 207 ³ KNna z nigsg;rUbeLIgvij cMeBaH z  x  y naM[ z  x  y b¤ x  y  z 1 tamTMnak;TMng 1 bBa¢ak;fa RtIekaNEdlmanrgVas; RCug x , y , z CaRtIekaNEkg ehIyman x CaRbEvg GIub:Uetnus nig y , z CaRCugCab;mMuEkg . 2

2

2

2

2

2

2

2

dUcenH RbEvgRCug z  x , y  x . sg;rUb ³

x

y

z  x2  y 2

z



64



-



១៧





-TMB½rTI 214 ³ P¢ab;cMNucTaMg* R)ab;cMnYnRCug nigGgát;RTUg

2  2    2  12o  2  3  360o 12  12o  360o

eyIgman 8 cMNuc eyIgP¢ab;)anrUbdUcxageRkam ³

348o 12   29o



dUcenH eyIgKNna)anmMu   29 . o

BhuekaNenHman 8 RCug nigmanGgát;RTUgcMnYn 20 . -TMB½rTI 220 ³ bBa¢ak; -)anCactuekaNEkg minEmnCaBhuekaNniy½t eRBaH -TMB½rTI 217 ³ rkcMnYnRCugénBhuekaN famMuTaMgbYnrbs;vab:un²Kñak¾BitEmn k¾b:uEnþ RCugrbs;vavij -cMeBaH BhuekaNEdlmanplbUkmMukñúgesµInwg 2 700 b:unKñaEtBIr² minEmnb:unKñaTaMgGs;eT. ebI n CacMnYnRCugénBhuekaNenaH o

tamrUbmnþ

180 o n  2  2 700 o n  2  15

-)anCactuekaNesµI minEmnCaBhuekaNniy½t eRBaHfa RCugTaMgbYnrbs;vab:un²Kñak¾BitEmn k¾b:uEnþ mMurbs;vavij minEmnesµIKñaTaMgGs;eT KWesµIKñaBIr²bu:eNÑaH.

n  17

dUcenH BhuekaNenHmancMnYnRCug n  17 . -cMeBaH BhuekaNEdlmanplbUkmMukñúgesµInwg 3 420 ebI n CacMnYnRCugénBhuekaNenaH tamrUbmnþ 180 n  2  3 420 o

o

o

n  2  19 n  21

dUcenH BhuekaNenHmancMnYnRCug n  21 .

-TMB½rTI 219 ³ KNna  énBhuekaNxageRkam ³ 2

 2

2 3

2

12o

eyIg)an 

65



-



១៨



-TMB½rTI 226 ³ KNnaépÞRkLaxag nigépÞRkLaTaMgGs;



épÞRkLaTaMgGs;

ST  S L  S B

-cMeBaHrUb (a) : épÞRkLaxag

 30 cm 2  6 3 cm 2 

1 pa 2 1  5  4 13 2  130 cm 2 S B  5  5  25 cm 2

SL 

épÞRkLa)at épÞRkLaTaMgGs;

-TMB½rTI 228 ³ KNnamaDekaNKitCa dm

13 cm

ekaNenHman km
5 cm

2

ST  S L  S B

 130 cm 2  25 cm 2

sUmEkkaM)atBI

3

5 m  5 cm

R  13 cm

3

3

 3.14  5  10

3

3

 157 cm 2

10 cm

épÞRkLa)at S B  R 2  3.14  5 2

5 cm

12 mm

 78 .5 cm 2 ST  S L  S B

 157 cm 2  78.5 cm 2  235.5 cm 2

P

-cMeBaHrUb (c) : épÞRkLaxag 1 pa 2 1  2  6  5  30 cm 2 2



3 mm  o

 o

3m

dUcenH pleFobbrimaRtKW

P 4 P

.

pleFobépÞRkLa ebI S CaépÞRkLarUbFM S  CaépÞRkLarUbtUc

SL 

épÞRkLa)at

h  28 cm

eday 1000 cm  1dm naM[ 4952 .83 cm  5dm dUcenH maDrbs;ekaNKW V  5dm . -TMB½rTI 231 ³ sresrpleFobbrimaRt nigpleFobépÞRkLa -cMeBaHrUb (a) : pleFobbrimaRt ebI P CabrimaRtrUbFM P CabrimaRtrUbtUc eyIg)an P  12 mm  4

S L  Ra

épÞRkLaTaMgGs;

3

1 V   3.14  13 2  28 3  4952 .83 cm 3

 155 cm 2

-cMeBaHrUb (b) : épÞRkLaxag

40.39 cm 2

5 cm

2 cm

eyIg)an



1  S B  6  2 2 2  11  2 

2

S  12 mm    4 2  16   S   3 mm 

dUcenH pleFobépÞRkLaKW

 6 3 cm 2 2 cm



66



S  16 S

. -



-cMeBaHrUb (b) :

x> rképÞRkLaénctuekaN DECB épÞctuekaN DECB  S  S

pleFobbrimaRt ebI P CabrimaRtrUbFM P CabrimaRtrUbtUc eyIg)an PP  32

ABC

ADE

 S  S 50 50  18 6 3 3 32  cm 2 3 

dUcenH pleFobbrimaRtKW

.

P 3  P 2

dUcenH épÞRkLaénctuekaN DECB KW 323 cm . 2

pleFobépÞRkLa ebI S CaépÞRkLarUbFM S  CaépÞRkLarUbtUc eyIg)an SS   32   94

(Y)

2

 

dUcenH pleFobépÞRkLaKW

.

S 9  S 4

smÁal; ³ eKGaceRbIpleFobrUbtUcelIrUbFMk¾)an .

-TMB½rTI 232 ³ eyIgman DE BC ehIy

A

AD  3 cm , AB  5cm D

nigépÞRkLaRtIekaN ADE  6cm k> rképÞRkLaRtIekaN ABC B tag S CaépÞRkLaénRtIekaN ABC S  CaépÞRkLaénRtIekaN ADE naM[eyIg)anpleFobKW ³ S  AB  S 5     smmUl S AD 6 3 2

2

  25  6 50 S  cm 2 9 3

dUcenH épÞRkLaRtIekaN

 

ABC

E C

2



25 9

KW S  503 cm . 2



67



-

sYsþI¡ elakGñkmitþGñkGanCaTIRsLaj;rab;Gan enAkñúgEpñkenHelakGñknwg)aneXIj dMeNaHRsay lMhat;tamemeronnImYy² EdlmanenAkñúgesovePAKNitviTüafñak;TI 9 rbs;RksYgGb;rMyuvCn nigkILa e)aHBum< elIkTI 1 qñaM 2011 . enAkñúgEpñkenHmanbgðajTaMgcemøIy nigTaMgRbFanlMhat; eTAtamemeronnImYy²kñgú esovePArbs;RksYg. eTaHbICa´ )aneXIjesovePAkMENKNitviTüa Edldak;lk; enAelITIpSarCaeRcInehIy k¾eday k¾´enAEtbnþbegáItEpñkenHeLIg edIm,IbMeBjlkçN³rbs;esovePAenH [kan; Etsm,ÚrEbb saksmCa esovePAKNitviTüasRmab;RKU nigsisSfñak;TI 9 . RbsinebIelakGñkmanbBaða b¤cm¶l;Rtg;cMNucNa EdlmanenAkñúgEpñkenH elakGñkGacTak;Tg;eTAkan; RKU b¤mitþPkþirbs;GñkEdlmansmtßPaB b¤GñkeroberogesovePAenHkñúgeBlevlasmKYr . …

iii

១ 1.

k> 9 x> Q> 8 j> 3

K> 36 X>  64 g>  100 c> 121 q>  144 C> d>  27 z>  64 D> 125 Z> 216 N> 100 ។

16 3

8

3

3

3

3

625

3

2.

k> q>

3

9 16

x>

K> 

1 8

C>

163

x> 

3

82

C>

642

49 9

X>

64 125

j>

8 27

Q>

3

362

K>

643

Q>

3



3

81 4

3

169 49

g>

512 343

d>

3



g>

3

273

c> 

196 25

400 225

.

216 1000

3.

k> q>

3

3

X> 

 27 

2

3

8



3

c>

3

15



4.

k>

y2

x>

x4

K>

g>

16 x2

c>

100 n4

q>

k> g>

 2x 

16b2  24b  9

k>

18

x> 

54

C> 

3

x2 y 4

X> 

8x3

C> 

64m3 ។

X> C>

 x  3

y6

5. 2

x> c>

3

 5 y 

3

9x2  30x  25

K> q>

4  a

2

4m2  20mn  25n2

3

3

49 x2  112 xy  64 y 2 ។

6.

q>

3

3

48

K>

128

Q>

X>

75 3

j>

192

3

30 49

g>

3m 8n 3

d>

10 121 3

c>

3

40

16x5 ។

7.

k> c>

36a2b3 64x 2 y3

x> q>

27a4b3 3

16m3n3

K> C>

3

k> 5

6

x> 2m

m

K>

g> j>

3 4

54x4b3

x, y, m, n

8.

X>  112a b Q>  128a y

72x5 y 2

3

5 3

80m4n3 3

24 p3q5 ។



p

X> 2

23 y3 68

3

5

g> 2 x

3

4

c>

3

3m ។ 2n

9.

k> K> g>

x> X> c>

3 2 4 2 5 2 3 2 3 15  4 3  3 15  6 3 23 2  83 3  3 2  33 3

5 2 3 3 6 2 5 3 4 3  2 17  3 17  3 3  2 3 83 2  33 3  53 2  23 3 ។

10.

k> 23 X> 5

27  3

x> 14 288  16 72 g> 3 81  12 192

3 48 4

128  3 3 250

3

K> 53 c> 4

3

75  3

2 27 3

54  3 3 128 ។

11.

k> 2 8  3 98  2 200 K> 3 175  2 28  3 63  112 g> 2 16  3 54  2 128 q> 4 54  6 81  4 16  3 24 3

3

3

3

3

3

12.

k> K>



x>  3 50  32  5 200 X> 108  2 27  40  5 160 c> 3 81  12 128  3 192  4 54 C>  2 40  3 135  5 320  8 5 ។ 3

3

3

 

 2 2 12  18  5 3 32  27



3

x> 33 40  X> 23 81  12 3

2 27 4 50 4 18  3 48   3 5 3

3

a, b, x, y

13.

3

3

3

3

3

 

3

135  4 3 320  3 40

3

24 

23 135 33 40  ។ 3 2



z

A  3 32 x  6 8 x

B  2 125x2 z  8x 80z

C  7a b3  b 4a2b  4b

D  8b 49b  7 9b3  a 4a  a3

E  3xy x 2 y  2 x4 y3

F  3a a3b5  2b a5b3  5 a3b3

G  8a 3 54a  6 3 16a4

H  3 3 x4 y  6 x 3 xy 4  2 3 x4 y 4 ។

14.

a5,b3

A

A  ab  ab3  9a3b3  a3b ។ a  3 , b  2។

A  4a  a a2b  b2a  b 9b

15. 16.

k>  2 3 3 2  X>  6 2  12 3  q>  2 3    12 3

3

 2 

x>  4 6  2 5  g> 3 8  3 48  C> 3 2 5 15  3

3

69

K> 3 5 5 3  c>  3 75  2 48  Q>  6 8  3 2  ។ 3



3

17.

x> 3 3 3 6  3 2  K> 12 3  2 48  3 32  g> 4 3  2 6  2 5  c> 2 5 3 3  5 2  C> 3 5  4 20  2 45  ។

k> 3 5  2 18  3 48  X> 32 2  2 18  3 48  q> 3 3 3 8  2 18  3

3

3

3

3

3

3

3

3

3

3

3

18.

x> 3 5  2 10  50  2 80  X>  125  75  80  48  c>  80  2 27  3 20  3 12 

k> 2 3  89  2 5  K>  50  75  32  48  g> 3 18  3 27 2 8  2 12  3

3

3

3

3

3

a  3 5  2 10 , b  5 7  2 10 , c  3 18  3 27

19.

k>

3ab

x> a

2

 b2

K> a

2

X> b

 2b2

2

d  33 6  3 8 ។ 1 c 2  b2 cd 2

g>

 2ab

3

3

c>



q> c

2

 2cd ។

20.

k>

33 11

c> 12 26 3

3

x>  2748

K> 2

q> 5251005

C>  2 728 

X> 2

75  15

2

Q> 63

C

a 2  16ab  64b2 a 2  10ab  25b2

3

3

3

3



3



g> 5 7525 

84 12

5

7 4 3 21 ។  3 6 23 3 3

21.

b2 b2  14b  49

A

49 x 2  56 x  16 36 x 2

B

25b2  10ab  a 2 ។ 16b2  24ab  9a 2

D

22.

k>

x> 3 333

K>

6 48

X>

9 3 10

C> 2 303

Q>

3

j>

k> 36 8 6

x>

g> 92 323

c> 5 84 13 3

q>

3 10 3

3

3

3

18 20

3

8 27

g> 9 184

c> 5 725

7m 36n

d>

z>

3

11 p 49q

3

23.

3 5 3 20 3

3

3

3

3

K>

8 2 75  3 50

X> 2

2 3 80  45

q>

23 6 2 3 27  3 9

C>

23 2 3

16  3 12



24.

k> c>

3 x

15 2a  b

x> q> 2

3a 8ab 7 2x x  3y

K> C>

3 x 5 2 x3 y 3

3

11 2m  3 12n 70

X> Q>

3

73 7 x 3

g>

8a 25ab

x 2  23 y



27 3 m 7 3 m2 n

3 ។ 4y 2

a, b

25.

k> a  3 , b  4 X> c  21 , b  10 26.

c

x> a  5 , b  12 g> b  30 , c  50

k> mn m m x> mm  nn K> n 2

2



2

3

2

2

 2mn ។ n2

3 ។

A  22  288 ។

28. 29.

K> a  6 , b  8

n3 8 5 ។

m3 8 5

27.



c

628000 cm3 ។

r

  3.14

x

r

2r



217  217  218 ។

30.



2 x  2 x3  85 ។

DDCEE

3

71

cUrKNna ³ k> 9  3  3 x> 16  4  4 K> 36  6  6 X>  64   8   8 g>  100   10  10 c> 121  11  11 q>  144   12   12 C> 625  25  25 Q> 8  2  2 j>  8   2   2 d>  27   3   3 z>  64   4   4 D> 125  5  5 Z> 216  6  6 N> 100 minGacbeBa©j)an EtebI 2. cUrKNna ³ k> 169  34   34   34

2

196 14 2 14  14       2 25 5 5 5

g>

1.

2

c> 

2

2

2

400 20 2 20 4  20         2 225 15 3 15  15  3

q>

3

1 3 13 3  1       8 23 2

C>

3

8 23 2 2   3 3  3     27 3 3 3

2

2

2

3

3

Q>

3

2

j>

2

3

3

3

3

3

3.

3

3

3

3

8 7

2

3

3

216 3 27 3  3  3         1000 125 5  5

2 3

2

1000  10

2

2

5

3

2

49 72 7 7      2 9 3 3 3 2

K>

81 92 9 9   2      4 2 2 2

X>

169 132 13  13       2 49 7 7 7

2

3

72

3

3

3

6

3

3

3

3

3 2

3

2

3

3

3

2

3

4

3 2

3

3

3

3

2 3

3

3

3 2

2 2

3

3

3

.

cUrsRmÜlr:aDIkal; ³ k> 16  4   4   4  64 x>  36   6    6   6  6   6 K> 64  8   8   8  512 X>   8    8   8 g>  27   27   27 c> 1  1  1 q> 8  2   2   2  4 C> 64  4   4   4  16 Q>  27  27  3   3   3  3

3

3

x>

4 5

512 3 83 3  8       343 73 7

3

3

3

3

d>

3

3

3

3

64 3 43 3  4       125 53 5

3

3

3

1 2

3

3 2

2

3

2 3

3

2 3

3

2

2

3

3 2

2

3

2 3

2

9

4.

cUrsRmÜlr:aDIkal; ³ k> y  y x> x  x   x K> x y  xy   xy  X>  y   y    y

2

10 1 10 1  10    10  121 121 11  11 

g>

2

2 2

4

2

c> 40  8 5  2  5  2 5 q> 54  27  2  3  2  3 2 C>  128   64 2   4  2   4 Q> 192  64 3  4  3  4 3

2

2 2

4

3 2

6

xy

2

2

3

3

3

3

16 4 4 4      2 x x x  x

g>

2

100  10    2  4 n n 

c>

3

3

2

2

3

3

3

2

2

2

2

2

2

2

2

4 3

2

2 2

5

2

2 2

2

4

3

2

3

2

2

3

3m 2n

3

4 3

5

3

3

3

5

3

2

3

2

2

2

2

2

2 2

2 2

3 3

2

2

2

2

3

3

2 3

3

2

2

3

3

3

2

2

2

2

2

3

3 3

3

3

3

3 3

3

3

3

3

3

3

3

3

2

2

3

2

3

2

2

2

2

K>

2

X>

5

3

2

2

3

3

3m 3 1  1    3m  3    3m  3 3 8n 8n  2n 

3

3 4

2

3

3

3

3

3

3

3

3

3

d> 16x  8x  2x  2x  2x  2x 2x 7. cUrbeBa©jmYycMnYnBIr:aDIkal; ³ k> 36a b  6 a b  b  6 ab b x> 27 a b  3 a  b  3b  3a b 3b K> 72 x y  6 x  y  2x  6x y 2x X>  112 a b   16 a b   7a   4 a b 7a g> 80 m n  16m  n  5n  4m n 5n c> 64x y  8 x y  y  8 xy y q> 16m n  2 m n  2  2mn 2 C>  54x b   3 x b  2x   3bx 2x Q>  128a y   4 a y  2a   4ay 2a j> 24 p q  2 p q  3q  2 pq 3q 8. cUrbBa©l Ú mYycMnYnkñúgr:aDIkal; ³ k> 5 6  5  6  25 6  150 x> 2m m  2m  m  4m  m  4m

q> 8x  2x  2x C>  64m   8m  m   8 m m 5. cUrsRmÜlr:aDIkal; ³ k> 2x  2x  2 x x>  5 y    5 y K> 4  a  4  a X> x  3  x  3 g> 16b  24b  9  4b  3  4b  3 c> 9x  30x  25  3x  5  3x  5 q> 4m  20mn  25n  2m  5n  2m  5n C> 49x 112xy  64 y  7 x  8 y  7 x  8 y 6. cUrbeBa©jmYycMnYnBIr:aDIkal; ³ k> 18  9  2  3  2  3 2 x>  48   16 3   4  3   4 3 K> 75  25 3  5  3  5 3 3

3

3

j>

10 n2

3

3

3

2

3

3

3

3

3

3

23  y3

2

30 1 1 1   30     30  30 49 49 7 7

X> 2

3

73

23

y 

3 2



2

3

23 y6

5  3 23  5  3 8  5 

3

40

g> 2x c> 9.

3

3

4  3 2 x   4  3 8 x 3  4  3

3m 3m 3  2n 2n3

cUrKNna ³ k> 3 2  4

3

3

32x 3

x>

288 

K> 53

75 

3m 8n 3

2 5 2 3 2

 3  4  5  3 2 

x> 14

2 5 2 3 3 6 2 5 3

2 3 2 2 2 27  5 3  3 3 3 5 3 3 2  5 3  3 3 5 3 3 32 3  3

X> 5 128  3 3

5 2 6 2 3 3 5 3

3

 203 2  153 2 

  22 3

81 

c> 4

54  33 128  43 33  2  33 43  2

 3  3 15   4  6 3  2 3

3

4 3  2 17  3 17  3 3  2 3

13 1 192  33 33  3  3 43  3 2 2 1  3  33 3   43 3 2 3 3  9 3  2 3  73 3

 4  33 2  3  43 2

 4 3  3 3  2 3  2 17  3 17

 123 2  123 2  0

 4  3  2 3   2  3 17

cUrKNna ³ k> 2 8  3

  3  17

g>

11.

23 2  83 3  3 2  33 3

98  2 200

 23 2  3 2  33 3  83 3

 2 2 2  2  3 7 2  2  2 102  2

 2  13 2  3  83 3

 4 2  21 2  20 2  4  21  20 2 

 33 2  53 3

c>

x>

83 2  33 3  53 2  23 3

 37 2

 3 50  32  5 200

 83 2  53 2  23 3  33 3

 3 5 2  2  4 2  2  5 102  2

 8  53 2  2  33 3

 15 2  4 2  50 2   15  4  50 2  31 2

 33 2  3 3

cUrKNna ³ k> 23 27  34

53 2

g> 3

3

3 15  4 3  3 15  6 3

 3 15  3 15  4 3  6 3

X>

250  53 43  2  33 53  2  5  43 2  3  53 2

 5  6 2   3  5 3

K>

1 1 1 2 72  122  2  6 2 6 4 6 1 1  12 2   6 2 4 6 3 2 2  2 2

K>

10.

3 175  2 28  3 63  112

 3 5 2  7  2 2 2  7  3 32  7  4 2  7

2 2 3 2 3 3  4 3 3 4 2 3  3 3   4 3 3 4  2 3 3 3   3

48 

 15 7  4 7  9 7  4 7  15  4  9  4 7  16 7

74

X>

x> 33 40  135  4 320  40   33 8  5  27  5   4 64  5  8  5   36 5  3 5  44 5  2 5   33 5   42 5 

108  2 27  40  5 160

3

 6 2  3  2 32  3  2 2 10  5 4 2 10

3

 6 3  6 3  2 10  20 10

g>

K>

2 32  3 4 5 2  2 4 32  2  3 42  3   3 5 3  2 3  12 3  4 2  4 2

13 128  33 192  43 54 2

 2  12 3  4  4  2

1  3 3  3  3 43  2  33 43  3  43 33  2 2 3 3  9 3  2 2  123 3  123 2

  10 3

3

X>

 9  123 3  2  123 2 

q>

23 1 23 135 33 40 81  3 24   3 2 3 2

23 3 1 23 33  5 33 2 3  5 3  3  3 22  3   3 2 3 2 3 3 3 3  2 3  3  2 5 3 5

 33 3  143 2



43 54  63 81  43 16  33 24

 43 33  2  63 33  3  43 23  2  33 23  3

 2  13 3  2  33 5

 123 2  183 3  83 2  63 3



 12  83 2   18  63 3 

C>

3



 4  9  83 2  53 2

3

43 2  123 3

13.

3

3

3

3

3

  4  9  20  83 5  153 5

B  2 125x 2 z  8 x 80 z

12.

2



2

 

2

 2 4 3  3 2  5 12 2  3 3



cUrKNnakenSamxageRkam ³  12 2 x  12 2 x  0

 43 5  93 5  203 5  83 5

cUrKNna ³ k>  22 12  18  53 32  27   22 2  3  3  2  53 4  2 

3 3 5

 3 4 2  2 x  6 2 2  2 x

 2 2  5  3 3  5  5 4  5  8 5 3

3

A  3 32 x  6 8 x

 23 40  33 135  53 320  83 5 3

3

2 27 4 50 4 18  3 48   3 5 3

 43 2  93 2  83 2

33 81 

3

3

 93 5  83 5  173 5

3

 23 23  2  33 33  2  23 43  2

c>

3

3

3

3

2 16  3 54  2 128 3

3

3

3

 6  6 3   2  20 10   22 10 3

3

 2 52 x 2  5z  8x 4 2  5z 3 3 2

 10 x 5 z  32 x 5 z



 10  32x 5 z  42 x 5 z

 8 3  6 2  60 2  15 3

C  7 a b 3  b 4a 2 b  4b

  8  15 3  6  60 2

 7a b 2  b  b 2 2 a 2  b  2 2  b

 7 3  54 2

 7 ab b  2ab b  2 b  7 ab  2ab  2  b 

75

9ab  2

b

D  8b 49b  7 9b 3  a 4a  a 3

15.

 8b 7  b  7 3 b  b  a 2  a  a  a 2

2

2

2

2

A  4a  a a 2 b  b 2 a  b 9b

 56b b  21b b  2a a  a a

 2 a  a 2 b  b a  3b b

 56  21b b  2  1a a 

cUrKNnatémøelxénkenSam A ³ 

35b b  3a a

cMeBaH

enaHeyIg)an ³

 4 3  15 2

 3 xy x 2  y  2 x 4 y 2  y

dUcenH KNna)an

 3x 2 y y  2 x 2 y y  3  2x y y 

a3,b2

A  2  2  3  32  3  2  2

E  3 xy x 2 y  2 x 4 y 3

2



 2  b  a  a 2  3b b

.

A  4 3  15 2

2

x y y

cUrKNna ³ k> 2 3 3 2   2  3 3  2  6 6 x> 4 6  2 5   4   2 6  5   8 30 K> 3 5 5 3   3  5 5  3  15 15 X> 6 2  12 3   6   12  2  3   72 6 g> 3 8  3 48   6 2  12 3    72 6 c>  3 75  2 48    15 3  8 3   360

16.

F  3a a b  2b a b  5 a b 3 5

5 3

3 3

 3a a 2 b 4  ab  2b a 4 b 2  ab  5 a 2 b 2  ab  3a 2 b 2 ab  2a 2 b 2 ab  5ab ab   3  2a 2 b 2 ab  5ab ab 

 5a 2 b 2 ab  5ab ab

G  8a 3 54a  63 16a 4  8a 3 33  2a  63 2 3 a 3  2a  24a 3 2a  12a 3 2a  24  12a 3 2a 

q> 2 3   12 

36a 3 2a

3

H  33 x 4 y  6 x3 xy 4  23 x 4 y 4

3

 3x3 xy  6 xy 3 xy  2 xy 3 xy

3

3

 3x3 xy   6  2xy 3 xy

3 3

3

x>  3 3 3

 ab  b ab  3ab ab  a ab  1  b  3ab  a  ab

enaHeyIg)an ³ A  52 15

K> 12 3 2

>

A  1  3  3  5  3  5 5  3  52 15

dUcenH KNna)an

3

15 3 30

 36 3 2

2  12 3



>

 18 10  36 15

A  ab  ab  9a b  a b

a5,b3

3

cUrKNna ³ k> 3 5 2 18  3 48   3 5 6

cUrKNnatémøelxénkenSam A ³

cMeBaH

3

17.

 3x3 xy  4 xy 3 xy

3

   1  2   2     3 3  2   3 6    2 

C> 3 2 5 15   3  5 2 15  Q> 6 8  3 2   12  3 2  

 33 x 3  xy  6 x3 y 3  xy  23 x 3 y 3  xy

14.

3

. 76



6  3 2  9 18  9 6 

 27 2  9 6



3 8 3  12 2 2



12  6 6

48  3 32 



> 

>

X> 32 2 2



18  3 48  3 36 

9 16  6 2

 18  18 6

c>  80  2 27  3 20  3 12   2 10  6 3 20  3 12  3

>

3

3

3

3

3

3

3

3

3

3

3

19.

>



20  23 45   12 3 100  63 225

>

 50  2 80  10 5 2  8 5 

2



2

70  40

 



2

 175  20 70  40



 2 15 35  6 50  10 70  4 100

2





 215  20 70  30 35  60 2  20 70  80 

295  40 70  30 35  60 2

g> 12 cd  12  18  27 3 6  8  1   18  33 6  2  2 1  3 108  2 18  9 6  6  2 3

3

g> 3 18  3 27 2 8  2 12   3 18  9 4  2 12  3





 2ab



 160  40 15 3

3



 123 18  36  36  183 12 123 18  183 12

77

3

3

3

3

 123 18  63 18  12  36  183 12 

7  2 10

 5 7  2 10  2 3 5  2 10 5 7  2 10

X>  125  75  80  48   5 5  5 3 4 5  4 3   20 5  3  5  3   205  2 15  3

3

2

2

 305  60 2  40 70

X> b

100  40 6

3

2

 85  12 50  350  40 70  40

15 10  120  20 5  80 2

3

2

2

K> a  2b  3 5  2 10   25  45  12 50  40 2175  20

5  2 10

K>  50  75  32  48   5 2  5 3 4 2  4 3   20 2  3  2  3   202  2 6  3 

6 3 8

 300  60 2  20 70

 15 10  24 25  10 20  16 50 

3

x> a  b  3 5  2 10   5 7  2 10   45  12 50  40 175  20 70  40 2

 18 3  4 15  72  16 5



nig d  3

  45 35  90 2  30 70  120

cUrKNna ³ k> 2 3  89  2 5 

 3 5 2

5  2 10 , b  5 7  2 10

c  3 18  3 27

18.

x> 3

eyIgman a  3

cUrKNna ³ k>  3ab  33 5  2 10 5 7  2 10   315 35  6 50  10 70  4 100 

3

 18 3 3  18 3 2

C>  3 5 4

  123 25  123 15  183 20  183 12

3

3

3

3

 63 200  63 120  183 20  183 12

3

3

3

3

3

g>  4 3 2 6  2 5    8 18  8 15 c> 2 5 3 3  5 2   6 15  10 10 q> 3 3 3 8  2 18   3 36  2 9  2  3

3

3

3

93 4 3 93 6  18  3 2 2

3

c> c  b   18  27   5 7  2 10    18  3  5 7  2 10   324  6 18  9  175  20 70  40 2

2

3

2

3

2

3

3

2

2

2

a 2  16ab  64b 2 a  8b  a  8b  C 2     2 a  5b a  10ab  25b  a  5b  2

3



324  63 18  20 70  206

3

25b 2  10ab  a 2 5b  a  5b  a  D     2 2 4b  3a 16b  24ab  9a  4b  3a  2

q> c

 2cd

2

 18  27   2 18  27 3 6  8    18  3  2 18  33 6  2  324  6 18  9  23 108  2 18  9 6  6 

3

2

3

3

2

3

3

3

3

3

3

3

3

3

3

bM)at;r:aDIkal;BIPaKEbg ³ 3 3 10 3 10 k> 10    10  10

22.

3

 33 12  63 18  9  183 4  43 18  183 6  12 

10

33 12  23 18  183 4  183 6  3

x> 3 333  3

cUrKNna ³ k> 1133  1133 ¬GacCa

20.

x>  2748   K> 2

5 5

c> 12 26  12 3

3

q> 5251005  15

3

3

3

3

Q> 63

3

3

21.



3

2

15 3

100  5 3

13 20 5

2 3  9  2 23 18   2 2 4

3

18 2 3

2

b b  b      b7 b  14b  49 b7 2

78

18 6 6 2    3 2 3 2 2 22

2 5 10 5 10   12 2 144

3

3

900 10

C> 2 303  2

3 2 23 102 3   30 10 3 10  3 10 2

3

3

100 5

Q>

3

18 3 9 3 9 3 10 2     20 10 10 10 2

3

900 10

j>

36 6



3 3 9 9  3 102 900    3 2 3 3 3 10 10  10 103

q>

cUrsRmÜlkenSam ³ A

32  2

3

7 43 21 3 7 1 3 3 3 1  2    6 2 21 6 6 23 3

2

92

3

3

3 3 3 11 3 11    33 11 11 112

c> 5 725  5 725 

25 1 5    75 3 5

3 10 10

8 8 8 8 3 8 3     2 2 9 27 3 3 3 3 3 3

g> 9 184 

2 7

2

6 6 6 3 3 3 3      2 48 4 2  3 4 3 2 3 2 32

X>

6  123 3 2

3

C>  2 728 

K>

¦

2 75 75 2  2 5 15 15

84 84  2  12 12

g> 5 7525 

33 33   3 11 11

48 16 4    27 9 3

75  15 

X> 2



49 x 2  56 x  16 7x  4  7x  4      2 6x 36 x  6x 

B

3

3

18

3

20

7m 3 7m 3 6n 2 3 42mn 2     36n 36n 6n 2 63 n 3

d>

3

11 p 11 p 7q 2 77 pq 2 3 3 2  3 3 3  49q 49q 7q 7 q

z>

3

3 3 2y 6y 3 3 3 3 3  2 2 2 y 4y 4y 2 y

3

3

42mn 2 6n 77 pq 2 7q

6y 2y

3

bM)at;r:aDIkal;BIPaKEbg ³ k> 36 8 6  36 8 6 2 2  36

C>

23.



3 5  3 20



K> 





3 3 512  18





3 3 2  30







3

3

3

3

3

3



3

132

3

132



5 4  13  3  13 3

2

3

3

3

8 13 

q>

5 676  3 507 104



12 2



3

3

16  12 512  384  3 288 2 3

3

3a 3a  2ab 3a 2ab 3 2ab    4ab 4b 8ab 8ab  2ab

K>

3 x 5 2x3 y

3



3 5 2x 2 y

g>

2

c>





723 6  123 54  23 486 216  9 723 6  363 2  63 18  207 3 24 6  123 2  23 18  69

2y 3 2y 3   5x 2 y 2 y 10 xy

273 m 73 m 2 n



8a 3 5a 2b 2  5ab

273 m 73 m 2 n

15  2a  b





3

mn 2

3

mn 2



83 5a 2 b 2 5b

273 m 2 n 2 7mn





15 2a  b 2a  b 2a  b





15 2a  15 b 2a  b







3 8a 8a 5a 2b 2 3  25ab 25ab 3 5a 2b 2



23 6 23 6 6 2  63 9  3 9 2  23 27  3 9 6  3 9 6 2  63 9  3 9 2





x>

X>

3



3

bM)at;r:aDIkal;BIPaKEbg EdlGefrCacMnYnviC¢man k> 3x  3x xx  3 x x

2 3 5 2 15   25 5 5 5 3 3 3 3 3 9 3 9 3 2 9 2 6    23 32 23 32 3 2 23 64 93 2  3 6  8

c> 5 84 13 3  5 84 13 3 

3

3

24.



g>

3

2

3

3

3

8 3  3 4 3  6  3 2 3  36 2 3 8  4 6  23 36   4  23 6  3 36 2 

4 2 3 3 2 15 2 3 2 3 2 3   2 80  45 8 5  3 5 5 5





23 2 3 16 2  3 16  12  3 12 2

3



 2  82 

16  3 12

 16  12  16  16 12  2 2  256  192  144  

18 2  3 2

8 2 3 3 2 5 2 3 3 2 2 3 3 2

 82 

3



3 5  5 15  5  3 20  5 3 100 15  5  30 8 8  2 75  3 50 10 3  15 2

x>

X>

2 2 3 4

23 2

q> 2 7x 2x3 y  2 7x 2x32y x2 x 3 y 3 y   79

14 2 x  7 6 xy 4x  3 y

C> 

K> a  6 , b  8 rk c ³ eyIg)an c  a  b  6  8  100 naM[ c  100  10 ÉktaRbEvg . X> c  21 , b  10 rk a ³ eday c  a  b naM[ a  c  b b¤ a  26 10  576 dUcenH a  576  24 ÉktaRbEvg . g> b  30 , c  50 rk a ³ eday c  a  b naM[ a  c  b b¤ a  50  30  1600 dUcenH a  1600  40 ÉktaRbEvg . 26. eyIgman m  3 8  5 nig n  3 8  5 ³ k> KNna mn m m ³

3

3



3

11 2m  3 12n 2 2 3 11 3 2m   3 2m 12n  3 12n     2 2 2m  3 12n  3 2m   3 2m 12n  3 12n    

 11 4m



2

 3mn  2 18n 

11 3 4m 2  3 24mn  3 144n 2  2m  12n 3



3

3

3



Q> 

2

 23 2m  12n

2

2

3

73 7 x 3

x 2  23 y

3

2

4

3

3

3

3

4

2

2

3

2

3

73 7 x 5  143 7 x 3 y  283 7 xy 2  x2  8y 

7 x3 7 x 2  14 x3 7 y  283 7 xy 2 x2  8y

2

2

2

x> KNna

2

2

2

2

2

2

2

2

2

2

2

2

³



K> n

 

2

 2mn 2m 3  1  1 2  2 n n 3 3 8 5 1 2 3 8 5

 

2

2

2



 3 8 5  3 8 5  2 5

8 5 8 5 3 8 5 3 8 5

 

72  6 40  5 72  5 67  2 77  12 10  67  87  24 10  67 1 2

x> a  5 , b  12 rk c ³ eyIg)an c  a  b  5 12  169 naM[ c  169  13 ÉktaRbEvg . 2

2

m2  n2 mn 2 2 m  n m  n   m  n m n  m  n  mn

2

2

2

mn  m 2 mn  m    mn m m 3 8  5 3 8  5  6 8

eyIgman a , b , c CavimaRténRtIekaNEkg Edl c CaRbEvgGIub:Uetnus . KNnaRCugmYy ³ tamRTwsþIbTBItaK½r c a a b  c > b Edl a  0 , b  0 , c  0 k> a  3 , b  4 rk c ³ eyIg)an c  a  b c  3  4 b¤ c  25 naM[ c  25  5 ÉktaRbEvg . 2

2

2

25.

2

2

2

2

2

3

2

2

2

 x 2 x y 4 y   x  2 y  x  2 x y  4 y  73 7 x

2

2

44m 2  23 33mn  23 198n 2 2m  12n

2



2

80



 

cUreRbóbeFobcMnYn 2 nig 3 ³ tag A  2 elIkGgÁTaMgBIrCasV½yKuN 6

k> bgðajfa 2  2  2 ³ eyIgBinitü 2  2  2 1  1

3

27.

6

A6  2 

tag B 

3

2 

3 2

17

30.

17

>

 23  8

 

B6  3 3  3 3

2 3

 2171  218

dUcenH

eday 9  8 naM[ B  A enaH B  A dUcenH eRbóbeFob)an 3  2 . 6

217  217  218

x

sRmÜlkenSam ³

x

 2 x  3  85

³

5

 

5

2 2 x3  215

edaysmIkarmaneKal 2 dUcKña enaHeyIg)an

 22  144  2

2 x  3  15

 22  12 2

3 2   2  3 3 2  2 2

2 x  12

2  2  22

x6

2

dUcenH kMNt;témø)an x  6 .

3 2 2

dUcenH sRmÜlkenSam)an

.

A3 2 2

KNnakaMénsILu aMg ³ sIuLaMgmanmaD tageday V  628 000 cm tamrUbmnþ r

oooo

29.

3



V  r h 2

2r

Et h  2r naM[ V   r  2r  2 r cMeBaH V  2 r Taj)an r  2V eday V  628 000 cm nig   3.14 cm eyIg)an r  6282 000  100000 cm 3.14 b¤ r  1000 100 cm  10 100 cm dUcenH RbEvgkaMsIuLaMgKW r  10 100 cm . 2

3

3

3

3

3

3

3

3

3

x 3

2 x   x 3   2 3

A  22  288



RtUv)anbgðajrYcral; .

x> kMNt;témøén x Edl 2 eyIgman 2  2  8

3



17

 217  2

 32  9

6

18

17

elIkGgÁTaMgBIrCasV½yKuN 6

3 6

28.

17

3

3

3

3

3

81

២ 1.

n

30%

n

25%

28

17 ឃ

48 n

n%

n%

85

150

n

20

400 ។

30%

2.

20

3.



17 25 000

4.



2 400

A



20 000



3 000

B



B ។

A 5.

350 000



60%



6.

60$



80%

7.

20% ។

4 200

8.

16%

9.



4 200 12% ។

1 180 000

400 000 8% ។

70%

80 000

DDCEE



3

82

600 000 14%



10.



២ 1.

KNna n Edl ³ k> 30% én n esµInwg 48 ³ eyIg)an 30%  n  48 30 b¤ 100  n  48 48 100 naM[ enaH n 30

g> n esµInwg 30% én 400 ³ 30 eyIg)an n  100  400 enaH n  120 dUcenH KNna)an n  120 . 2.

n  160

dUcenH KNna)an n  160 . x> 25% én 28 esµInwg n ³ eyIg)an 25%28  n 25 1 enaH n  100  28 b¤ n   28  7 4 dUcenH KNna)an n  7 . K> 17 Ca n % én 85 ³ eyIg)an n%  85  17 n enaH 100  85  17 naM[ n  1785100 enaH

dUcenH PaKryénsMNYrEdleFVIRtUvKW 85% . 3. rkPaKryénkarlk;bBa©úHtémø ³ GavmYyBImunlk;éfø 25 000 erol ehIy\LÚv lk;éfø 20 000 erol naM[ PaKryénkarlk;bBa©úHtémøKW ³

n  20

25000  20000 100%  20% 25000

dUcenH KNna)an n  20 . X> n % én 150 esµInwg 20 ³ eyIg)an n% 150  20 n  150  20 enaH 100 naM[ n  20150100 enaH

n

rkPaKryénsMNYrEdleFVIRtUv ³ sMNYrmancMnYn 20 ehIyeFVIRtUv)ancMnYn 17 -sMNYreFVIRtUv eFobnwgsMNYrTaMgGs; tagedayRbPaK 17 20 -PaKryénsMNYreFVIRtUv eFobnwgsMNYrTaMgGs; n tagedayRbPaK 100 17  100 n 17 n  85 eyIg)an 100 enaH  20 20

dUcenH PaKryénkarlk;bBa©úHtémøKW 20% . 4. rkPaKryénsisSsala A eFobnwgsala B sala A mansisS 2400 nak; nigsala B man sisS 3000 nak; naM[ PaKryénsisSsala A 2400 eFobnwgsala BKW ³ 3000 100%  80%

200 40  15 3

dUcenH KNna)an n  403 .

dUcenH PaKryrk)anKW 83

80%

.

5.

rkcMnYnR)ak;EdlxVHedIm,ITijkg; kg;mantémø 350 000 erol ehIyvNÑaKat;snSM )an 60% énéføkg;rYcehIy naM[ Kat;enAxVHR)ak;cMnYn 40% énéføkg;eTot eyIg)an cMnYnR)ak;xVHKW 40% × 350 000 = 140 000 erol dUcenH cMnYnR)ak;enAxVHKW 140 000 erol .

8.

rktémømunbBa©úHtémø ³ tag x CatémømunbBa©úHtémø eKlk;kñúgtémø 4200 erol eRkayBIbBa©úHtémø16% eyIg)an x  4200 100%  16% x x  4200  0.16 x x  4200  0.16 x 0.84 x  4200 x  5000

rktémørbs;m:asIunft ³ sux snSM)an 60$ RtUvnwg 80% énéføm:asIuft naM[ R)ak; x $ RtUvnwg 100% énéføm:asIuft 80 eyIg)an smmaRt 60x  100 100 Taj)an x  6080  75 $

dUcenH témøBImunKW 5000 erol . 9. rkPaBcMeNj b¤xatrbs;mIgsM ³ -R)ak;cMNayrbs;mIgsM bg;[FnaKar mIgsM x©IR)ak; 1 lanBIFnaKarmankarR)ak; 12% 12 naM[ R)ak;cMNay  100 1000000  120000 ` dUcenH m:asIunftmantémø 75$ . -R)ak;cMNUlrbs;mIgsM R)ak; 600 000 ` cMeNj 180 000 ` nigR)ak; 7. rkcMnYnsisSénqñaMcas; ³ 400000 cMeNj)an 14% EdlRtUvnwg tag x CacMnYnsisSénqñaMcas; ¬Edl x  0 ¦ 14  400000  56000 ` 100 -qñaMenHsalamansisScMnYn 4200 nak; ekInCagqñaM naM[ R)ak;cMNUl  180000  56000  236000` muncMnYn 20% -R)ak;cMeNj = R)ak;cMNUl  R)ak;cMNay tamry³PaKryénkMeNIn eyIg)an 4200  x  236000120000  116000 ` 100%  20% x 4200  x 20 dUcenH enAdMNac;qñaMmIgsMcMeNj 116000erol  x 100 4200  x 10. rkcMnYnsisSEdlTTYl)anGaharUbkrN_  0 .2 x -sisSRbLgCab;man 70% énsisS 80000 nak; 4200  x  0.2 x 1.2 x  4200 sisSRbLgCab;  70%80000  56000nak; 4200 x -sisSTTYlGa>man 8% éncMnYnsisSRbLgCab; 1 .2 x  3500 sisSTTYlGa>  8% 56000  4480nak; dUcenH cMnYnsisSénqñacM as;KW 3500 nak; . dUcenH sisSTTYlGa>mancMnYn 4480 nak; . 6.

84

៣ 1.

2.

A   x  4  x2  4 x  1

B   x  3  x2  4 x  3

C   a  b   a2  2ab  3b2 

D   x  2   x2  5x  1

E   y  5  y 2  3 y  8

F  3n  4 n  5

G   x  3 x  1

H   y  1 y  2

2

2



a

x  a x  8  x 2  12 x  32 2 y  6 y  a   2 y 2  8 y  42



3.

k> 2 x  8x X> 10 x y 15xy q> 4x  2x  14x j> 9xy  3x  4xy D> 12 x y t  4 x yt

x> 7b  21b g> 6 x  9 y C> 3a  9a 15 d> 8abc  4b c 12a bc

4

3

3

2

3

3

2

2

4

3

2

4

2

2

2

3 2

2

2

2

2

K> 8ax 12a x c> 15x  20 y Q> 2x  3x  4x z> 6x yz  2xy z  4xyz 2

2 3

2

3

2

2

2

 8 x 2 t  16 xy ។

4.

k> a  x 1  b  x 1 X> ab  7a  4b  28 q> am  mb  an  nb j> 3ab 12a  b  4

x> z  y  3  2  y  3 g> xy  2x  7 y 14 C> 12xy  15x  4 y  5 d> xy  8x  3 y  24 ។

K> ab  3a  9b  27 c> ap  2 pk  ya  2 yk Q> 2ab  8a  3b 12

5.

A  at  bt  ct  2a  2b  2c C  ax  ay  az  bx  by  bz

B  ax  2ay  3az  4 x  8 y  12 z D  y 2  cy  ay  ac  by  bc ។

A   x  y  z2 2

B   x  y   z  t 

C   x 2  2 xy  y 2   t 2

D   a  b   a  b

6.

7.

2

2

a

k> 4 x  3ay  2 x  9 y 2 x  9 y  x> 16 x  5ay  4 x  5 y 4 x  5 y  2

4

2

2

4

2

2

2



85

2 2



8.

k> x  16 x> y 121 K> y  1 X> 4z  49 g> 3a 12 c> 25b  64 q> 36x  y C> 84x  21 Q> 3x  75 j> 4m 144 d> 8x 160x  800 z> 5x y  500 D> 3t z 147 Z> 2 xy  32 x N> 3a b 192a t> 5ab  20a  30b 120 f> 4cx  4c 12x 12 T> 2xy  2x  4 y  4 ។ 2

2

2

4

2

2

2

2

2

2

2

2

2

2

2 4

2

2

2

2

2 4

2

2

2

9.

k> 9x  1  42 x  3 X> 2 x  5  4 x  25 q> t 1 j> x  x 2

x> 4  y  2  y g> 16 x  3  x  1 C> 4x 16x d> x  y 1  4x ។ 2

2

2

2

2

4

a

2

2

3

2

2

2

2

5

10.

K> 3x  1  x  2x 1 c> x  x Q> x  1  x  1 2 x  2

2

 x 1  2 x2  ax  3

P  2 x3  3x 2  8 x  3

P

1។ 11.

k> x  5x  4 g> t 11t  28 Q> b  6b  7 D> n  4n 12 f> 2x 13x  7 2

2

2

2

2

x> x  5x  6 c> x  7 x  8 j> x  3x  4 Z> a  3a 18 T> 2x  5x  3

K> t  8t  15 q> x  x  6 d> y  y  12 N> x  6x  7

2

X> x 10x  9 C> x 11x 12 z> y  2 y  35 t> 5t  12t  7

2

2

2

2

2

2

2

2

2

2

2



2

12.

k> 2a  24a  70 X> 2x  4x 160

x> 3x  21x  36 g> 4bc 12bc  40b

K> 5a 15a  90 c> 6 xy  18 xy  168 x

k> 3x  x x 2 X> a  3  a 5 1

x> 2x3x 5  3x 1 g> b  5  b 5 5

K> y  3yy44 c> 3n  42nn  53

2

2

2

2

2

4

2

13.

a, b, c

14.

ax  b 



c 2x 2  x  3  ។ x 1 x 1

15.

k> 816xx1  x2x9 X> 2t t 3  3t 2 3 2

10 y  1 5y  x> 100 y  10 y g> x 4 x4x16 4  x44 2

86

2

K> 12111 x  x x 11 c> 164zz2  z 4 4 ។ 2

2



3

16.

k> g> Q> 17.

1 3  x y 4 y 8 9 x 6 y 1 a 1 1 a 1 a a

x> c> j>

2 3  x y 5  x 4 b  a2 a 2  12 a 2

K> q>

1 1  x y 6  5y 3x 7  2 x  49 x  7 1 7  x  7 2 x  14

X> C>

4 5 x 5 y

2b 3  2 b4 b 5 3  2 5b  20 4b  16b



1 c c 1 1 5c 3 2 x  8x A 3 ។ 2 x  8x 2  8x

A

DDCEE

3

87

x  2011 ។

៣ 1.

BnøatkenSamxageRkam ³ 

2.



A  x  4 x 2  4 x  1

 x  4 x  x  4 x  16 x  4 3

2

rk a edIm,I[ ³ k> eyIgman x  a x  8  x

2

x 2   8  a x  8a  x 2  12 x  32

B   x  3 x 2  4 x  3

eyIgpÞwmemKuNRtUvKñaénGBaØat x rbs;GgÁTaMgBIr eyIg)an  88aa 32 12 naM[ a  4



 x 3  4 x 2  3 x  3 x 2  12 x  9



 x3  7x2  9x  9



C  a  b  a 2  2ab  3b 2

dUcenH témørk)anKW a  4 .



 a 3  2a 2 b  3ab 2  a 2 b  2ab 2  3b 3 

x> eyIgman 2 y  6 y  a   2 y

a 3  3a 2 b  ab 2  3b 3





eyIgpÞwmemKuNRtUvKñaénGBaØat y rbs;GgÁTaMgBIr 8 eyIg)an 2a6a 6 42 naM[ a  7

x  3 x  11 x  2 2



E   y  5 y 2  3 y  8





dUcenH témørk)anKW a  7 .

 y 3  3 y 2  8 y  5 y 2  15 y  40 

y  2 y  23 y  40 3

2

3.

F  3n  4 n  5  3n 2  15n  4n  20  3n 2  19n  20

G  x  3x  1

2



dak;kenSamCaplKuNénktþa ³ k> 2x  8x  2 xx  4 x> 7b  21b  7bb  3 K> 8ax 12 a x  4ax 2  3ax X> 10 x y 15 xy  5xy 2x  3 y  g> 6 x  9 y  32 x  3 y  c> 15 x  20 y  53x  4 y  q> 4x  2 x  14 x  2x2x  x  7 C> 3a  9a 15  3a  3a  5 4

3

3

2

2



 x  3 x 2  2 x  1

 x 3  2 x 2  x  3x 2  6 x  3

2

H   y  1 y  2

2



  y  1 y 2  4 y  4



2

3

2

3

2

2

2

y  3y  4 2

88

3

2

4

2

2

2

2

 y3  4 y2  4 y  y2  4 y  4 3

2

3

 x 3  x 2  5x  3



 8 y  42

2 y 2  2a  6 y  6a  2 y 2  8 y  42

 x 3  5 x 2  x  2 x 2  10 x  2 

2

2 y 2  2ay  6 y  6a  2 y 2  8 y  42

D  x  2 x 2  5 x  1 3

 12 x  32

x 2  8 x  ax  8a  x 2  12 x  32

 x 3  15 x  4



2

2

2

4

2

Q> 2x  3x  4x  x2 x  3x  4 j> 9 xy  3x  4 xy  x9 y  3x  4 y  d> 8abc  4b c  12 a bc  4bc2ac  b  3a  z> 6 x yz  2 xy z  4 xyz  2 xyz3x  y  2 D> 12 x y t  4 x yt  8x t  16 xy 3

2

2

2

2

2

2

3 2

3

2

B  ax  2ay  3az  4 x  8 y  12 z

 x  2 y  3z a  4x  2 y  3z 

C  ax  ay  az  bx  by  bz



 a  x  y  z   b x  y  z 

D  y 2  cy  ay  ac  by  bc   y  c  y  a  y  c   b y  c 

6.

b  3a  9 ab  7a  4b  28  ab  7   4b  7 

g> c>

 y  2x  7 ap  2 pk  ya  2 yk  pa  2k   ya  2k 

q>

a  2k  p  y  am  mb  an  nb  ma  b   na  b 

B  x  y   z  t   x  y   z  t x  y   z  t   x  y  z  t x  y  z  t  2



 x  y   t 

2

x  y  t x  y  t 

D  a  b   a  b  2

2

 a  b   a  b a  b   a  b   a  b  a  b a  b  a  b 

a  b m  n  C> 12 xy  15 x  4 y  5  3x4 y  5  4 y  5

 2b 2a   4ab

 4 y  53x  1

7.

Q> 2ab  8a  3b 12  2ab  4  3b  4

rktémøén a edIm,IepÞógpÞat;smPaBxageRkam ³ k> 4 x  3ay  2 x  9 y 2 x  9 y  2

4

2

2

2

 

4 x 2  3ay 4  2 x   9 y 2







2



d>

2

C  x 2  2 xy  y 2  t 2



 b  43a  1 xy  8 x  3 y  24   y  8x  3 y  8

x  y  z x  y  z 

2



j>

dak;kenSamxageRkamCaplKuNénktþa ³ A  x  y   z 2 



b  42a  3 3ab  12 a  b  4  3ab  4  b  4

 y  c  y  a  b 





b  7 a  4 xy  2 x  7 y  14  x y  2  7 y  2

a  bx  y  z 



dak;kenSamxageRkamCaplKuNénktþa ³ k> ax  1  bx  1  x  1a  b x> z y  3  2 y  3   y  3z  2 K> ab  3a  9b  27  ab  3  9b  3 X>

a  4x  2 y  3z 



2



t  2a  b  c 



2

 4 x 3x 3 y 3t 2  x 2 yt 2  2 xt  4 y

4.

 a  b  c t  2a  b  c 

2

4

dak;kenSamxageRkamCaplKuNénktþa ³ A  at  bt  ct  2a  2b  2c

2

2

2

5.

2

4 x 2  3ay 4  4 x 2  81y 4

eyIgpÞwmemKuNRtUvKñaén y enaHeyIg)an ³  81  27  3a  81 naM[ a  3 dUcenH témørk)anKW a  27 . 4

 y  8x  3 89

x>





16 x 2  5ay 4  4 x  5 y 2 4 x  5 y 2

 

16 x 2  5ay 4  4 x   5 y 2 2



t>

5ab 2  20a  30b 2  120



   5a  30b  4 

 5a b 2  4  30 b 2  4

2



2

16 x 2  5ay 4  16 x 2  25 y 4

 5a  6 b  2 b  2 

eyIgpÞwmemKuNRtUvKñaén y enaHeyIg)an ³  25  5 5a  25 naM[ a  5 dUcenH témørk)anKW a  5 . 4

f>

4cx 2  4c  12x 2  12



   4c  12x  1



 4c x 2  1  12 x 2  1 2

8.

 4c  3x  1x  1

dak;kenSamxageRkamCaplKuNénktþa ³ k> x 16  x  4  x  4x  4 x> y 121  y 11   y 11 y  11 K> y  1  y  1   y  1 y  1 X> 4 z  49  2 z   7  2 z  72 z  7 g> 3a 12  3a  2   3a  2a  2 c> 25b  64  5b  8  5b  85b  8 q> 36x  y  6x   y  6x  y6x  y C> 84 x  21  214 x 1  212 x 12x  1 Q> 3x  75  3x  25   3x  5x  5 j> 4m 144  4m  36   4m  6m  6 d> 8x 160 x  800  8x  20 x  100  2

2

2

2

2

2



2

2

2

2



2

x>

K>

 8x  10

2



 500  5 x 2 y 2  100

2

2

2

4

2

3

2

2

 2 y  2  y 2 y  2  y   2 y  4  y 2 y  4  y   y  43 y  4  3x  1  x 2  2 x  1





 3x  1  x 2  2 x  1

X>

2 x  52  4 x 2  25 2  2 x  5  4 x 2  25 2  2 x  5  2 x  52 x  5  2 x  52 x  5  2 x  5   102 x  5

2

2

4

4 y  2   y 2  2 y  2   y 2 y  2   y 

 x  13  x  1  x  12  x 



D> 3t z 147  3t z  49   3tz  7tz  7 Z> 2 xy  32 x  2 xy  16   2 x y  4 y  4 N> 3a b  192 a  3a b  64 a  4

 x  97 x  3

2

 5xy  10 xy  10  2

2

 3x  1  x  1

 8x  10x  10 2

2

 3x  1  22 x  33x  1  22 x  3  3x  3  4 x  63x  3  4 x  6

2

2

2 x  2  y  1 y  1

2

2

2



 32 x  1  2 2 2 x  3

2

2



2

2

2



dak;kenSamxageRkamCaplKuNénktþa ³ k> 9x  1  42 x  3

2

2 2

2

9.

2

2

 

 2 x  4  y 2  1

2

2

z> 5x y



 2x y 2  1  4 y 2  1

2

2

4

2 xy 2  2 x  4 y 2  4

2

2

2

T>

2

4

90

g>

2

2

 4 2 x  3  x  1 2

dak; 2x

2

 4x  3  x  14x  3  x  1  4 x  12  x  14 x  12  x  1

eyIg)an 2 x  5x  3  2 x  1x  3 naM[ P   x 1 2x 1 x  3 dUcenH dak;)an P   x 1 2x 1 x  3 .

c> x  x  xx 1  xx  1x  1 q> t  1  t  1t  1  t 1t  1t  1 C> 4 x  16 x  4 xx  4 Q> x  1  x  1 2 x  2 3

2

2

4

2

2

2

2

2

dak;kenSamxageRkamCaplKuNktþa ³ ¬ebItYkNþalKU eyIgKYredaHRsaytamviFIbMeBj nigbnßytYgayRsYlCag EtebItYkNþaless eyIgKY edaHRsaytamviFIKuNExVgeTIbRsYlCag¦ k> x  5x  4 ¬tamviFIKuNExVg¦

11.

2

 x  1  x  1x  1  2x  1 2

 x  1x  1  x  1  2  x  1x  1  x  1  2 

j> x

5

4x  1



 



2



 x  x x 4 1  x x 2 1 x 2 1



 x 1 x2  4  x 4 4 x  x  5x



 xx  1x  1 x 2  1

d>



x y  1  4 x  x  y  1  4 2

2

 x y  1  2 y  1  2  x y  3 y  1

kMNt;témøén a ³ man P   x 1  2x



dUcenH x> x

2

 ax  3

dUcenH

 2 x 3  a  2x 2   3  a x  3

Et P  2x  3x  8x  3 eyIgpÞwmemKuNRtUvKñaén P enaHeyIg)an ³ a  2  3 naM[ a  5   3  a  8 2

K>

a 5

¬tamviFIKuNExVg¦

x 2  5 x  6  x  2x  3

t 2  8t  15

.

¬tamviFIbMeBjnigbnßytY¦

 t 2  8t  16  16  15  t  4  1 2

 t  4  1t  4  1



dUcenH témøkMNt;)an

.

 x 2 x2  6  x 3 3x  2 x  5 x

 2 x 3  ax 2  3x  2 x 2  ax  3 3

x 2  5 x  4  x  1x  4

 5x  6

10.

2

2

2 x  1 2x2  3 x 3 6 x  x  5x

3x  135x  11



ehIyeyIgnwg  5 x  3 CaplKuNktþatamviFIKuNExVg

P   x  1  2 x2  5x  3

16  x  3   x  1

 t  3t  5

.

dUcenH

-dak; P CaplKuNktþadWeRkTI 1 ³ cMeBaH a  5 enaH P Gacsresr)anCa 91

t 2  8t  15  t  3t  5

.

X>

x 2  10 x  9

¬tamviFIbMeBjnigbnßytY¦

j> x

2

 3x  4

x 4  x2  4  x  1  x  4 x  3x

 x 2  10 x  25  25  9   x  5  16   x  5  4  x  5  4  2

  x  9  x  1

dUcenH g>

t 2  11t  28

dUcenH

.

x 2  10 x  9  x  9x  1

d> y

¬tamviFIKuNExVg¦

 y  12

2

c> x

2

 7x  8

dUcenH

.

z>

¬tamviFIKuNExVg¦

q> x

2

  y  7  y  5

dUcenH

.

D>

¬tamviFIKuNExVg¦

2

x 2  x  6  x  3x  2

 11x  12

y 2  2 y  35   y  7  y  5

n 2  4n  12 2

 n  6n  2

.

dUcenH

¬tamviFIKuNExVg¦

Q>

x 2  11 x  12  x  12 x  1

b 2  6b  7

Z> a

2

n 2  4n  12  n  6n  2

 3a  18

.

dUcenH N> x

¬tamviFIbMeBjnigbnßytY¦

¬tamviFIKuNExVg¦

. ¬tamviFIbMeBjnigbnßytY¦

a 2  3a  18  a  6a  3 2

 6x  7

 x2  6x  9  9  7  x  3  16   x  3  4  x  3  4 

 b  3  16  b  3  4 b  3  4 

2

2

 x  7  x  1

 b  1b  7 

b 2  6b  7  b  1b  7 

.

a  6 a2    18 a 3  3a  6a  3a

 b 2  6b  9  9  7

dUcenH

¬tamviFIbMeBjnigbnßytY¦

 n  2  16  n  2  4n  2  4

 x 12  x2    12  x  1  x  12x  11x

dUcenH

.

 n 2  4n  4  4  12

x 3  x  6  x  2  2 x  3x  x

C> x

¬tamviFIbMeBjnigbnßytY¦

2

2

dUcenH

y 2  2 y  35

.

  y  1  36   y  1  6  y  1  6 

x 2  7 x  8  x  8x  1

 x6

y 2  y  12   y  4 y  3

 y 2  2 y  1  1  35

x 8  x2  8  x  1  x  8x  7 x

dUcenH

¬tamviFIKuNExVg¦

 y  4 y2    12 y 3  3y  4 y   y

t  7 t  28 t  4  4t  7t  11t t 2  11t  28  t  7 t  4

.

x 2  3x  4   x  4 x  1

2

dUcenH

¬tamviFIKuNExVg¦

.

dUcenH 92

x 2  6 x  7  x  7 x  1

.

t> 5t

¬tamviFIKuNExVg¦

 12t  7

2

X>



. ¬tamviFIKuNExVg¦

 13x  7

dUcenH

2 x  1 2x2  7 x 7 14 x  x  13x

dUcenH

2

2 x  1 2x 2  3 x 3 6 x  x  5x

c>

tamviFIKuNExVg naM[ 6 xy  18 xy 4



  6 x y

 2a  5a  7 

dUcenH

 x 4 x2  12  x 3 3x  4 x  7 x



2

3x 2  x  2 x

2 x  5  9 x 2  3x 3x 2 9x  x  5  3x

a  6 a    18 a 3  3a  6a  3a

5a 2  15 a  90  5a  6a  3



x> 2x3x 5  3x 1  2x  5 3x3x3x 1

2



2

dUcenH

6 xy 4  18 xy 2  168 x

13.

dUcenH 3x  21x  36  3x  4x  3 . K> 5a  15a  90  5a  3a  18  tamviFIKuNExVg

2

KNnakenSamsniTanxageRkam ³ k> 3x  x x 2  3x  x xx  2

2

2

 168 x

   7  y  2 y  2 

2

tamviFIKuNExVg

2

 6 x y 2  7  y  2 y  2

dUcenH 2a  24a  70  2a  5a  7 . x> 3x  21x  36  3x  7 x  12  2

>

 6x y 2  7 y 2  4

 2 a  6   1  2a  6  1a  6  1 2



y2 7  y  2   28  y  4  4 y2  7 y2  3y2



. 93

.

6 xy 4  18 xy 2  168 x

4

2





4bc 2  12 bc  40 b  4bc  5c  2

.

dak;kenSamxageRkamCaplKuNénktþa ³ k> 2a  24 a  70  2a  12 a  35 

.

c 5  c2    10 c  2  2c  5c  3c



12.





 12 bc  40 b  4b c 2  3c  10

 6 x y 4  3 y 2  28

2 x 2  5 x  3  2 x  1x  3

 2 a 2  12 a  36  36  35

2

tamviFIKuNExVg

2

2



2

2 x 2  4 x  160  2x  10 x  8

g> 4bc

dUcenH 2 x  13 x  7  2 x  1x  7 . T> 2x  5x  3 ¬tamviFIKuNExVg¦

dUcenH





 2  x  1  81  2 x  1  9  x  1  9   2 x  10  x  8

5t 2  12 t  7  5t  7 t  1 2



 2 x 2  2 x  1  1  80

5t 7 5t 2  7  t 1 5t  7t  12t

dUcenH f> 2x



2 x 2  4 x  160  2 x 2  2 x  80

.

K> y  3yy44  y3 y 3y4 4 y  4 

3y2  4 y  y  4 3y  4



3y  5y  4 3y  4

KNnakenSamsniTanxageRkam ³ k> 816xx1  x2x9

15.

2

6x  1 2x  9  x 9  x  x  9 6 x  1  2 x9  x   9  x 9  x  

2

X> a  3  a 5 1  a  3aa11  5 a 2  a  3a  3  5  a 1 2 a  2a  8  a 1

x>

g> b  5  b 5 5  b  5bb55  5 

c>

3n 

b 2  52  5 b 2  20  b5 b5

2n  3 3n4n  5  2n  3  4n  5 4n  5 2 12 n  15 n  2n  3  4n  5 2 12 n  17 n  3  4n  5

K>

ax 2  ax  bx  b  c  x 1 2 ax   a  b x   b  c   x 1 2 c 2x  x  3 ax  b   x 1 x 1 2 ax   a  b x   b  c  2 x 2  x  3  x 1 x 1

dUcenH kMNt;)an

10 y  1 5y  2 y  10 100  y 10 y  1 5y   10  y 10  y  y  10 10 y  1  5 y 10  y   10  y 10  y 

10 y  1  50 y  5 y 2 10  y 10  y  5 y 2  40 y  1 10  y 10  y 

11 x2  121  x 2 x  11 11 x2   11  x 11  x  x  11



X>

a  2  b  1 c  4 

a  2 , b 1

2 x 2  12 x  1 9  x 9  x 



naM[ eyIgpÞwmemKuNRtUvKñaén x enaHeyIg)an naM[





kMNt;témø a , b nig c ³ eday ax  b  x c1  ax  bxx11  c

a  2   a  b  1  b  c  3 

6 x  1  18 x  2 x 2 9  x 9  x 



14.

ehIy



nig c  4 . 94

11  x 2 11  x  11  x 11  x 

11  11x 2  x 3 11  x 11  x 

t 2  2t  3 3t  3 3t  2 2  6t  3 3t  4  6t  3

g>

c>

16.

4 x  16 4  x  4x  4 x  4 4 x  16  4 x  4   x  4x  4 4 x  16  4 x  16  x  4x  4 32  x  4x  4

c>

q>

4z  2 4  2 z4 16  z 4z  2 4   4  z 4  z  4  z 4 z  2  44  z   4  z 4  z  4 z  2  16  4 z  4  z 4  z   14  4  z 4  z 

sRmÜlkenSamsniTanxageRkam ³

k> x>

2 3 2 y  3x  2 y  3x  x  2 y  3x x y xy      5 5 xy  5y  5   x x

K>

1 1 yx  y  x 5y 5 y  x  x y xy      6 6 xy  6 6x  5y 5y

X> g>

C>

1 3 y  3x  y  3x y y  3x x y xy     4 4 xy 4 4x y y

4 b 4  ab  2 a  a 2  4  ab  a a 2 2  12a 2  12a a2  12 a a 4  ab  2a  12a 2 3x 7 3x 7   x 2  49 x  7   x  7  x  7  x  7 1 7 1 7   x  7 2 x  14 x  7 2 x  7  3 x  7 x  7  x  7 x  7   2 x  7   7  x  7  2 x  7  x  7  3 x  7 x  7  2 x  7  x  7    x  7 x  7  2x  7   7x  7  23 x  7 x  49  2 x  14  7 x  49 20 x  98 20 x  98    5 x  63 63  5 x

2b 3  2 b4 b 5 3  2 5b  20 4b  16b 2b  b 2  3b  4 b 2 b  4  5 3  5b  4 4bb  4 2b 3  3b  12 b 2 b  4  4b  3 4bb  4  

4 4  5x 5 4  5x y 4 y  5 xy x  x    5 5 x 5 5x y y



8 8  9x 9 8  9x y 8 y  9 xy x  x    6 6 x 6 6x y y 95

2b 3  3b  12 4bb  4  b 2 b  4 4b  3



4 2b 3  3b  12 b4b  3



1 1 1 a 1  a 1  a 1 1 1 a a a 2 a 2 1 a 1 a 1 a a a 1 1  3 a  1  a 3 1 a aa a 2 2 a 1 a 1 2 1 a 1   3 a 1 a a2 1  3 a a  1

Q>

j>

2 1 c c 1 1 5c

2



1 5  c  c 1 5c 2 2   1 5c c c 6 6 5c 2 2   6c  5  c 5c  5 6 6 6 12  2  5c  5 5c  5 c

KNnatémøén A ³ eyIgman A  2 x 2x 8x 8x 8x

17.

3

3

A





2x x2  4  2x x2  4x  4 x  2x  2  x  22 x2  x2



cMeBaH

2

x  2011



enaHeyIg)an ³

x  2 2011 2 2013   x  2 2011 2 2009

dUcenH KNna)an

A

2013 2009

. 96





1.

k> 4x  5  2x 14 K> 32 y 1  86  y  g> n  8  4n  23n  4 q> 5 p  8  p  2 4  3  5 p 13 Q> 2  4 2x  31  51  x1  0 d> 67 x  8  76x  4  56  7 x  35x 1

x> x  7  2x  8 X>  z  12   52z 1 c> 2m  3  2m  5  4mm  4  4 C>  k  4k  2  2  2k  7 j> 3x  2  2 x 2  2x 3  3  x 2  z> 83  2 p 161  p  3 p  4  20  3 p ។ 2

2.

x> 2 y3 1  5 4 y  1  3 y6 2 X> 3t 8 5  t 1212  1 c> 1  23n  12  n  1 3 n C> 2.4x  3x 51.6  8.4x2 4.9 j> x  32  4x4 3  1  5x 612

k> 53x  98  76x  163 K> 23z9 8  5z3 3  3z4 8  17 36 x4 x4 3x  1 g> 3  5  2  15 q> 3k  5k2 3  37 Q>  34 x  52    23 x  0.6    127 x  0.3  5.8 d> D>

2x 1 8x  2  3  7 x  3 2 z  22  z z  3  8 z  7 z  1  4 ។ 3 5 15 5

z>

2 y  12  3 y  22 4

6

y y  2 2



3.

k> xx  3  0 X> 4x  1  2 x  3 2

2

x> x  5x 1  0 g> x  6x  0

0

K> x  1  4  0 c> 2x  2  0 ។ 2

2

2

4.

k> x

2

 2x  3  0

x>

K> y

x 2  12 x  32  0

5.

A 2km/h ។

B ។

6. 288km/h ។ 20 480km/h ។ 97

X> x

 14  5 y

2

57 km ។

B

1/3h

2

10/3h ។

 x  3x  12 ។

7.



280 ។

4 8.

ឃ ។

A

50 km ។

B

A



B ។

2.5 9.

40%

70%។

20

70%

50% ? ។

10.

9% 10% ។

8 000 000 4 600 000 ។ 11.

30

22

17

F



3

22  x

F

B x 17  x

3

B

F B ។ ។

12. 1 2

1

3

2

4

3 2។

13.

30%

10%

184 800 ។



DDCEE

3

98



៤ 1.

1

edaHRsaysmIkar ³ k> 4x  5  2x 14

g>

n  8  4n  6n  8  8  3n  6n  8

4 x  20  2 x  14 4 x  2 x  14  20 2x  6 x3

dUcenH smIkarmanb£s x>

 3n  6n  8  8  9n  0 n0

dUcenH smIkarmanb£s

.

x 3

c>

x  7  2x  8

K>

.

2m  32  2m  5  4mm  4  4 4m 2  10m  4  4m 2  16m  4 4m 2  10m  4m 2  16m  4  4  6m  0 m0

x

.

23 3

dUcenH smIkarmanb£s q>

32 y  1  86  y 

6 y  3  48  8 y 6 y  8 y  48  3 14 y  45 45 y 14

X>

C>

 z  12  10 z  5  12  5  10 z  z  7  11z 7 z 11 7 z 11

99

p  2

.

 k  4k  2  2  2k  7 

  3k  2  2k  9 3k  2  2k  9 3k  2k  9  2 k 7

dUcenH smIkarmanb£s

.

.

5 p  8  p  2 4  3  5 p  13  6 p  8  2 5 p  20  6 p  10 p  40  8 16 p  32 p  2

dUcenH smIkarmanb£s

 z  12   52 z  1

m0

5 p  8  p   2 4  3  5 p   13

45 dUcenH smIkarmanb£s y   14 .

dUcenH smIkarmanb£s

n0

4m 2  12m  9  2m  5  4m 2  16m  4

x  7  2 x  16 x  2 x  16  7 3x  23 23 x 3

dUcenH smIkarmanb£s

n  8  4n   23n  4

k 7

.

Q>

2  4 2 x  3 1  51  x   1  0

2.

2  4 2 x  3 1  51  x   1  0

2  4 2 x  3 1  5  5 x   1  0

edaHRsaysmIkar ³ k> 53x  98  76x  163 ¬PaKEbgrYm 48 ¦ 16  5 x 6  9 8  7 x 3  3    16  3 6  8 8  6 3 16 80 x  54  56 x  9

2  4 2 x  12  15 x  1  0

2  4 17 x  11  0 2  68 x  44  0

80 x  56 x  9  54 24 x  45

68 x  42 x

dUcenH smIkarmanb£s j>

x

21 34

42 21  68 34

x

.



3 x  2  2 x 2  2 x 3  3  x 2

dUcenH smIkarmanb£s



 3 x  6  2 3 62 3  3

 6  2 3  3   3  3 

x

6 3 6  2 32 3

dUcenH smIkarmanb£s d>

x  2 32

.

15 8

2 y 1 5  y 3y  2   1 3 4 6 42 y  1 35  y  12 23 y  2    43 3 4 12 26 42 y  1  35  y   12  23 y  2

3 x  2 x 3  2 x 2  2 x 2  6  2 3

x

x

x>

3x  2 3  2 x 2  2 x 3  6  2 x 2

x

45 15  24 8

¬PaKEbgrYm12 ¦

8 y  4  15  3 y  12  6 y  4 5 y  19  8  6 y 5 y  6 y  8  19 11y  11 y  1

.

dUcenH smIkarmanb£s

67 x  8  76 x  4  56  7 x   35x  1

y  1

.

K> 23z9 8  5z3 3  3z4 8  17 36 smIkarmanPaKEbgrYm 36 eRBaH LCM 9 , 3 , 4 , 36   36 eyIg)an ³

42 x  48  42 x  28  30  35x  35x  35 0 x  20  65  0 x 0 x  45

Kµantémø x NaEdlKuNnwg 0 esµInwg 45 eT dUcenH smIkarKµanb£s .

83z  8 60 z  3 27z  8 17    36 36 36 36 83 z  8  60z  3  27z  8  17

24 z  64  60 z  180  27 z  216  17

z> 83  2 p 161  p  3 p  4  20  3 p

 36 z  116  27 z  199

24  16 p  16  16 p  3 p  12  20  3 p 20  3 p  20  3 p  3 p  3 p  20  20 0p  0

116  199  27 z  36 z 63z  315 z5

mantémø x eRcInrab;minGs;EdlepÞógpÞat;smIkar dUcenH smIkarmanb£seRcInrab;minGs; .

dUcenH smIkarmanb£s 100

z 5

.

3t  5 t  12  1 8 12 33t  5 2t  12 24   24 24 24 33t  5  2t  12  24 9t  15  2t  24  24 11t  24  9 15 t 11

X>

¬PaKEbgrYm 24 ¦

dUcenH smIkarmanb£s

t

C>

30 x  9.6  42 x  24.5  9.6  24.5  42 x  30 x

15 11

14.9  12 x 14.9 149 x  12 120

. dUcenH

x4 x4 3x  1   2 3 5 15 5x  4 3x  4 30 3x  1    15 15 15 15 5x  4  3x  4  30  3x  1 5 x  20  3x  12  29  3x 2 x  32  29  3x 32  29  3x  2 x x3

g>

¬PaKEbgrYm 15¦

dUcenH smIkarmanb£s x  3 c>

1

2n 1 1 n  n  3 2 3

.

¬PaKEbgrYm 6¦ dUcenH

Cab£sénsmIkar .

x

159 25

Cab£sénsmIkar .

3 4x  3 5 x  12 x   1 2 4 6 12 x 18 34 x  3 12 25 x  12     12 12 12 12 12 12 x  18  12 x  9  12  10 x  24 27  36  10 x 10 x  36  27 9 x 10

j>

Kµantémø n NaEdlKuNnwg 0 esµInwg 1 eT dUcenH smIkarKµanb£s . 5k  3  37 2

149 120

3 2 7 x  0.4  x  0.6  x  0.3  5.8 4 3 12 3 2 7 x  x  x  0.5  5.8 4 3 12 9 x  8x  7 x  5.3 12 10 x  5.3 12 5.3 12 x 10 31.8 159 x  5 25

0n  1

3k 

x

Q>  34 x  52    23 x  0.6    127 x  0.3  5.8

6 4n 3 6n 21  n      6 6 6 6 6 6  4n  3  6n  21  n  3  2n  2  2n  2n  2n  2  3

q>

3x  1.6 8.4 x  4.9  5 2 24 x 6 x  1.6 58.4 x  4.9   10 10 10 24 x  6 x  9.6  42 x  24.5

2.4 x 

¬PaKEbgrYm 2¦

6k 5k  3 2  37   2 2 2 6k  5k  3  74 11k  77 k 7

dUcenH

dUcenH smIkarmanb£s k  7 . 101

smIkarmanb£s

x

9 10

.

2x 1 3 2 16x  2  6  14 x  2 x  1  6 16 x  32  6  16 x  7 16 x  16 x  7  26 0 x  19

d>

8x  2  3  7 x 

3.



2 y  1

x> x  5x 1  0 naM[ xx 1500 enaH

3 y  2  y y  2  4 6 2 2 2 32 y  1  6 y  2  6 y  y  2

z> 

2





 



K>

12 y 2  12 y  3  6 y 2  24 y  24  6 y 2  12 y 6 y 2  12 y  21  6 y 2  12 y 6 y 2  6 y 2  12 y  12 y  21 0 y  21

x  12  4  0 x  1  2x  1  2  0 x  3x  1  0 x  3  0 x 1  0 

naM[

Kµantémø y NaEdlKuNnwg 0 esµInwg 21 eT dUcenH smIkarKµanb£s .

enaH

x  3  x  1 

dUcenH smIkarmanb£sBIr x  3 , x  1 . X>

D> z 32  zz5 3  8z  157z  1  54 smIkamanPaKEbgrYm 15 eRBaH PPCM 3 , 5 , 15   15

4x  1  2 x  3  0 2

2

2 2 x  1  2 x  3  0 2x  1  2 x  32x  1  2 x  3  0 2 x  2  2 x  32 x  2  2 x  3  0 4 x  5  0 5 x 4

2

2

5 z  2 3z z  3 8 z  7 z  1 12    15 15 15 15 2 5z  2   3z z  3  8 z  7  z  1  12 2



 x  5 x  1 

dUcenH smIkarmanb£sBIr x  5 , x  1 .

3 4 y 2  4 y  1  6 y 2  4 y  4  6 y 2  12 y



x  0  x  3 

dUcenH smIkarmanb£sBIr x  0 , x  3 .

Kµantémø x NaEdlKuNnwg 0 esµInwg 19 eT dUcenH smIkarKµanb£s . 2

edaHRsaysmIkar ³ k> xx  3  0 naM[ xx  30 0 enaH

dUcenH

smIkarmanb£s

2

x

5 z  4 z  4  3z  9 z  8 z  8 z  7 z  7  12 2

2

2

5 z  20 z  20  3 z 2  9 z  8 z 2  z  5

g>

2

8 z  29 z  20  8 z  z  5 2

2

dUcenH smIkarmanb£s

naM[

15 28

z

15 28

.

x 2  6x  0

x  6x  0

8 z  8 z 2  29 z  z  5  20  28z  15 2

z

5 4

x  6  0 x  0 

enaH

x  6 x  0 

dUcenH smIkarmanb£s

. 102

x  6 x  0 

.

c>

naM[

2x 2  2  0





2 x 2 1  0

x  1x  1  0 x 1  0 x 1  0 

enaH

X>

x  1  x  1 

x 2  x  3x  12

eyIgdak;CaplKuNktþa tamviFIKuNExVg  x  6 x2    12 x 2   2 x  6 x  4 x

2

x2  2x  1  1  3  0

enaHeyIg)an x  6x  2  0 naM[  xx  62  00 enaH  yy  62

x  12  2  0

edayRKb;cMnYnBit x enaH x  1 naM[ x  1  2  0 dUcenH smIkarKµanb£s .

2

0



2

x 2  12 x  32  0

x 2  12 x  36  36  32  0

x  62  4  0 x  6  2x  6  2  0 x  8x  4  0 x  8  0 x  4  0 

enaH

dUcenH smIkarmanb£s K>

x  8 x  4  x 8, x 4

.

y  6 , y  2

.

KNnael,Ónrbs;kaNUtpÞal; ³ tag v Cael,Ónrbs;kaNUtpÞal; ¬KitCa km/h¦ naM[ v  2 Cael,ÓnénclnakaNUt eRBaHvaebIk tambeNþaycrnþTwkmanel,Ón 2 km/h tamrUbmnþ el,Óncr × ry³eBlcr = cm¶aycr eday cm¶ay = 57 km , eBlsrub 10/3 h nig eBlsRmakGs; 1/3 h enaHeyIg)ansmIkar ³ v  2 10  1   57  3 3 3v  2   57

y  14  5 y 2

y2  5y 



dUcenH smIkarmanb£s 5.

naM[

.

x 2  4 x  12  0

edaHRsaysmIkar ³ k> x  2x  3  0

x>

y  7 , y  2

x 2  x  3x  12

dUcenH smIkarmanb£s x  1 , x  1 . 4.

y  7  y  2 

enaH

dUcenH smIkarmanb£s

x 2 1  0

naM[

y  7  0 y  2  0 

y 2  5 y  14  0

v  2  19

25 25   14  0 4 4

v  17

epÞógpÞat; el,ÓnkaNUtKW 17  2  19 km/h ry³eBleFVIdMeNIr 103  13  3 h enaHcm¶aycr 19  3  57 km/h Bit dUcenH el,Ónrbs;kaNUtpÞal;KW v  17 km/h .

2

5  81  0 y   2 4  5 9  5 9   y    y     0 2 2  2 2   y  7  y  2  0

103

6.

rkry³eBledIm,I[ynþehaH ehaHTan;]T§mÖacRk³ tag t Cary³eBlEdlynþehaH ehaHtamTan; ]T§mÖacRk ¬KitCanaTI ¦ -cm¶aypøÚvEdl ]T§mÖacRkcr)anKW d  288 t  20  eRBaH ]T§mÖacRkecjmun 20 naTI eTIbynþehAeTAtameRkay - cm¶aypøÚvEdl ynþehaHcr)anKW d  480  t edIm,I[ynþehaH ehaHTan;]T§mÖacRk luHRtaEt ³

- ry³eBlrbs;GñkCiHm:UtURtUvcMNayKW  250.5v h edayGñkCiHm:UtUeTAdl; munGñkCiHkg;mYyem:ag eyIg)an  50v  1   250.5v   1 50 50  2 v 2.5v 2.5  50 50 2  2.5v   2.5v 2.5v 2.5v 125  50  5v 5v  75 v  15

1

2

d1  d 2

naM[ el,Ónm:UtU 2.5v  2.5 15  37.5 km/h dUcenH kg;manel,Ón 15 km/h nig m:UtmU anel,Ón 37.5 km/h .

288t  20  480t 288t  5760  480t 480t  288t  5760 192t  5760 t  30

dUcenH ynþehaHRtUvcMNayeBl 30 naTI eTIbehaHtamTan; ]T§mÖacRk . 7.

9.

kMNt;cMnYnsisSenAkñúgfñak;enaH ³ tag x CacMnYnsisSenAkñúgfñak; ¬KitCanak;¦ bRmab; ³ esovePAman 280 k,al Eck[sisS x ehIymñak;²TTYl)anesovePA 4 k,al 4 eyIg)an 280 x 280 enaH x  70 4

40%  20  70%  V   50%  20  V 

dUcenH sisSenAkñúgfñak;enaHmancMnYn 70 nak; . 8.

kMNt;cMnYnsisSenAkñúgfñak;enaH ³ tag V CamaDénsUluysüúgGasIut 70% -GasIutsuT§ énsUluysüúgGasIut 40% nigman maD 20 l KW 40% 20 - GasIutsuT§ énsUluysüúgGasIut 70% nigman maD V l  KW 70%V - GasIutsuT§ énsUluysüúgGasIutfµI 50% nigman maDfµI 20  V  l KW 50%  20  V  eyIg)ansmmUlGasIutsuT§KW ³ 7 1 V  20  V  10 2 80 7 5  V  20  V  10 10 10 80  7V  520  V  7V  5v  100  80 2V  20  V  10 8

KNnael,ÓnényanTaMgBIr ³ tag v Cael,Ónrbs;kg; enaH 2.5v Cael,Ónm:UtU -ry³eBlrbs;GñkCiHkg;RtUvcMNayKW  50v 1h eRBaH GñkCiHkg;ecjmunGñkCiHm:UtU mYyem:ag

dUcenH maDénsUluysüúgGasIut 70% KW 10 l . 104

rkR)ak;edIménGRtakarR)ak;nImYy² ³ tag x CaR)ak;edIm EdlKat;TTYl)anGRtakar R)ak; 9% ¬KitCaerol¦ naM[ x  8 000 000 CaR)ak;edIm EdlKat;TTYl )anGRtakarR)ak; 10% ¬KitCaerol¦ eday karR)ak;TTYl)anTaMgGs; 4 600 000 ` eyIg)an TMnak;TMngénkarR)ak;rbs;Kat;KW ³

10.

rkcMnYnemédsrub ³ tag n CacMnYnemédsrubEdlRtUvRbKl;[kILakr tambRmab;RbFan eyIgdwgfa ³ -emédRbKl;kñúgéf¶TI1 mancMnYn 2x

12.

-emédRbKl;kñúgéf¶TI2 mancMnYn -emédRbKl;kñúgéf¶TI3 mancMnYn

9% x  10 % x  8 000 000   4 600 000 9 x  10  x  8 000 000   4 60 000 000 9 x  10 x  80 000 000  4 60 000 000 19 x  380 000 000 x  20 000 000

naM[ R)ak;EdlKat;TTYl)anGRtakarR)ak; 10% KW 20000000  8000000  28000000 ` dUcenH -R)ak;edImEdlKat;TTYl)anGRta karR)ak; 9% mancMnYn 20000000 ` -R)ak;edImEdlKat;TTYl)anGRta karR)ak; 10% mancMnYn 28 000 000 `

-emédRbKl;kñúgéf¶TI4 mancMnYn ehIymanemédenAls; 2 eTot eyIg)an 2x  4x  8x  16x  2  x

8 x  4 x  2 x  x  32  16 x 15x  32  16 x x  32

dUcenH emédsrubmancMnYn

.

rktémø Edl)anlk;BImun ³ tag x Catémølk;BImun ¬KitCaerol¦ eKbBa©úHtémø 30% éntémøBImun -naM[ témølk;bnÞab;BbI Ba©úHtémøKW x  30%x -Bn§Garkénéfølk;KitbEnßmKW 10%x  30% x -BUsuxcMNayR)ak;srubKW 184 800 ` eyIg)an éfølk; + éføBn§ = R)ak;cMNay

rkcMnYnsisSEdlelgTaMg)al;Tat; nig)al;e)aH eyIgmansMNMu Edlman x CacMnYnsisSelgTaMg )al;Tat; nig)al;e)aH ehIycMnYnsisS 22  x elg Et)al;Tat;suT§ nig 17  x elgEt)al;e)aHsuT.§ sisSRbussrub 30 nak; F B x 17  x 22  x sisSminelgTaMg)al; 3 Tat; nig)al;e)aH 3 nak; eyIg)an 22  x  x  17  x  30  3

x  30% x   10%x  30% x   184800 x  0.3x  0.1x  0.3x   184800 0.7 x  0.10.7 x   184800

0.7 x  0.07 x  184800 0.77 x  184800 x  240 000

 x  39  27 x  12

sisSelgTaMg)al;Tat; nig )al;e)aH mancMnYn 12 nak;

32

13.

11.

dUcenH

x 2 x 2 4 x 4 x 2 8 x 8  x 2 16

dUcenH TUrsBÞenaHlk;éfø 240 000 ` kalBImun .

. 105





1.

k. x  5  3 x> 5x  10 K. 2 x   13 X. 5 x  1  4 g> 3x  5  x  7 c.  4 x  9  8x  3

,

3  x  7  2x

,

 6x  12

,

 5x  20

,

x 1  7 4

,

 3x 

,

 8x  9  7

,

,

 2x  11  5x  31

9 2

x 1  x  2

1   2 x  1  2 x   2  x 1 2x  3  2 4 x 1 1 3  2x   5 2 2

,

q> 23 x  3  53 x  27

,

C. x  1 42x  1 33x

,

k> 22xx  33  95

,

3x  4  8  3x  4  7

x>

,

2 x  5  5 x  4  x  7  2x  3

,

2 x  1  0   x  2  2  0

2.

K>

 2 x  3  5 x  1   x  4  3x  2  3x 2 4 x  3    4 3 2  3 x  4 2 x  1   4

3.



40

m2

2 m? ។

4. 5.

5

6.

32

7.



30



3 ។ 12

1

។ ។

500

20 ។

25 20 000

500

106

2

1 000 17 500

8.

8



100 90

A 80 ។

B

7

84, 93, 78, 87, 89, 70

81



A B។

B ។

9.

15 m ។

94 m ។



10.

A 32

11.

B

A

B

5



។ ។



72 ។

12. -

80 000

-

13.

400 000

400 1



AB  12 , AC  3cm ។

ABC 3

BC

1 km

BC



14.

8.

15.

3 cm 15 cm

2

24 cm ។



2

DDCEE

3

107

៥ 1.

edaHRsayvismIkar ³ k1> x  5  3 x 55  35

1

K2>

x 1  7 4 x 1 7  7 7 4 7 x 4

cemøIyCaRkab 2

(

x  2

dUcenH vismIkarmancemøIy x  2 . k2> 3  x  7  2x cemøIyCaRkab  x  2x  7  3

K3>

)

10 5 x2

12 6 x  2

X1>

2

cemøIyCaRkab 3 2



[

cemøIyCaRkab 1

(

dUcenH vismIkarmancemøIy x  1 . X2>  8x  9  7 cemøIyCaRkab

(

 8 x  7  9  16 x 8 x2

4

)

2

]

dUcenH vismIkarmancemøIy x  2 . X3> x 1  x  2

dUcenH vismIkarmancemøIy x  4 . K1> 2 x   13 cemøIyCaRkab 

5x  1  4 5x  4  1 5 x 5 x 1

dUcenH vismIkarmancemøIy x  2 . x3>  5x  20 cemøIyCaRkab

1 x 6

(

dUcenH vismIkarmancemøIy x   32 .

2

[

 5 x  20  5 5 x4

9 2

9  3  2 3 x 2

dUcenH vismIkarmancemøIy x  2 . x2>  6x  12 cemøyI CaRkab x

 3x  x

dUcenH vismIkarmancemøIy x  4 . x1> 5x  10 cemøIyCaRkab x

7 4

dUcenH vismIkarmancemøIy x  74 .

4

x4

cemøIyCaRkab

x  x  2 1 0x  3

1 6

mantémø x eRcInrab;minGs; EdlepÞógpÞat; 0x  3 dUcenH vismIkarmancemøIyeRcInrab;mni Gs; .

]

dUcenH vismIkarmancemøIy x   16 . 108

g1>

3x  5  x  7 3x  x  7  5 2 x  12 x6

x 1 2x  3  2 4 2x  1 2 x  3  4 4 2x  2  2x  3

cemøIyCaRkab

q2>

6

)

11  31  5 x  2 x  20  7 x  20 x 7

Kµantémø x NaEdlepÞógpÞat; 0x  5 enaHeLIy dUcenH vismIkarKµancemøIy .

cemøIyCaRkab 

20 7

)

C1>

dUcenH vismIkarmancemøIy x   207 . c1>

 4 x  9  8x  3

cemøIyCaRkab

9  3  8x  4 x

1

[

12  12 x x 1

c2>

 2x  2x  1  1  4x  2 1 x 2

q1>

2 x  9  5 x  81 9  81  5 x  2 x 90  3x x  30

[

x 1 1 3  2x   5 2 2 2 x  1 5 53  2 x    10 10 10 2 x  1  5  53  2 x 

C2>

1 2

]

2 x  2  5  15  10 x 2 x  3  15  10 x

dUcenH vismIkarmancemøIy x   12 . 2 5 x  3  x  27 3 3

18

dUcenH vismIkarmancemøIy x  187 .

cemøIyCaRkab 

1  2 x 1  3x  4 3 12 x 31  2 x  41  3 x    12 12 12 12 x  31  2 x   41  3x  12 x  3  6 x  4  12 x 6 x  12 x  4  3 7 x 18 7 x

cemøIyCaRkab

dUcenH vismIkarmancemøIy x  1 . 1   2 x  1  2 x   2   2x  1  2x  1

0

2 x  2 x  3  2 0 x  5

dUcenH vismIkarmancemøIy x  6 . g2>  2x 11  5x  31

cemøIyCaRkab

2 x  10 x  15  3  8 x  18

cemøIyCaRkab

x

30

)

dUcenH vismIkarmancemøIy x  30 . 109

9 4



9 4

cemøIyCaRkab

[

dUcenH vismIkarmancemøIy

x

9 4

.

2.

edaHRsayRbB½n§vismIkar ³ k1> 22xx  33  95 b¤ 22xx  12 b¤ 2   cemøIyCaRkab -cMeBaH x  6 ³ [ -cMeBaH x  1 ³ -cemøIyénRbB½n§ ³ [

x2> 2x x4335xx21 b¤ 

x  6   x  1

b¤ b¤

6

]

1 1

cemøIyCaRkab -cMeBaH x   23 ³ -cMeBaH x  3 ³ -cemøIyénRbB½n§ ³

6

]

dUcenH RbB½n§vismIkarmancemøIy  1  x  6 . k2> 33xx  44  87 b¤  cemøIyCaRkab -cMeBaH x  4 ³ -cMeBaH x  1 ³ -cemøIyénRbB½n§ ³

3x  12  3x  3



x  4   x  1 4

1

K1>

[ 4

[

]

 3x 2 4 x  3  4  3  2  2 x  1  3 x  4  4

2 x  5  5 x  4  x  7  2x  3

b¤ b¤ b£

cemøIyCaRkab -cMeBaH x  3 ³ -cMeBaH x  4 ³ -cemøIyénRbB½n§ ³

2 3



3

)



b¤ b¤ cemøIyCaRkab -cMeBaH x  23 ³ -cMeBaH x  0 ³ -cemøIyénRbB½n§ ³

3

) 4

( (

3

]



5  4  5 x  2 x   7  3  2 x  x 9  3x   4  x x  3   x  4

4

)



dUcenH RbB½n§vismIkarmancemøIy  1  x  4 . x1>

2 3



dUcenH RbB½n§vismIkarmancemøIy x   23 .

] 1

 3  1  5 x  2 x  4  2  3x  x  2  3x  6  2 x 2  x   3   x  3

3

)

dUcenH RbB½n§vismIkarmancemøIy  4  x  3 .

 9 x 8 64 x  3  12  12  12   42 x  1  3 x  4  4 4 9 x  8  24x  18  8x  4  3x  4  8  18  24x  9 x  8x  3x  4  4 10  15x  5x  0

2  x  3   x  0

2 3

[ 0

( 0

2 3

[

dUcenH RbB½n§vismIkarmancemøIy x  23 . 110

K2>

2 x  1  0   x  2  2  0



2 x  1   x  4  0

cemøIyCaRkab -cMeBaH x   12 ³ -cMeBaH x  4 ³ -cemøIyénRbB½n§ ³





1  x  2   x  4

4.

1 2

) 4

( 

1 2

4

dUcenH RbB½n§vismIkarKµancemøIy . 3.

rképÞRkLaEdlGacmanFMbMput ³ tag x CaRbEvgbeNþay nig y CaRbEvgTTwg éncmáar Edl x nig y KitCa m ehIy x  0, y  0 eKdaMkUneQI 40 edImB½T§CMuvji cmáar EdlkUneQI nImYy²XøatBIKña 2 m naM[ RbEvgbrimaRt P  2  40  80 m eyIg)an x  y  P2  802 b¤ x  y  40 ¬elIkGgÁTaMgBIrCakaer¦ x 2  2 xy  y 2  1600

cMeBaH x  0, y  0 enaH

5.

1

x  y 2  0

x 2  2 xy  y 2  0

2

2 xy  x 2  y 2

-cMeBaH

b  ac



-cMeBaH

c  ab



2a  a  b  c P 1 a 2

bb  a c b 2b  a  b  c P 2 b 2 cc  abc 2c  a  b  c P 3 c 2

tam 1 , 2 nig 3 eXIjfaRbEvgRCugnImYy² énRtIekaN tUcCagknøHbrimaRt )anbgðajrYc dUcenH kñúgRtIekaNmYy RbEvgRCugnImyY ² RtUvtUcCagknøHbrimaRtrbs;va .

x  y 2  402 x 2  y 2  1600  2 xy

bgðajfaRCugRtIekaNnImYy²xøICagknøHbrimaRt tag a , b nig c CaRbEvgRCugénRtIekaN naM[ brimaRt P  a  b  c tamvismPaBénRCugrbs;RtIekaN eyIg)an ³ -cMeBaH a  b  c b¤ a  a  b  c  a

rkcMnYnenaH ³ tag x CacMnYnEdlRtUvrkenaH ³ tambRmab;RbFan 2x  5  3 x  3  5 2 x  8 2

eyIgyk 1 CMnYskñúg 2 eyIg)an ³ 2 xy  1600  2 xy 2 xy  2 xy  1600 4 xy  1600 xy  400

x  2  8  2 2 x  16

eXIjfa épÞRkLacmáarKW xy Edl xy  400

dUcenH cMnYnenaH CacMnYnEdlFMCag b¤esµI 16 .

dUcenH cmáarmanépÞRkLaFMbMputKW 400 m . 2

111

6.

rkcenøaHqñaMeTAmuxeTot ³ tag t CacenøaHqñaMeTAmuxeTot Edl t  0 smµtikmµ ³ «BukmanGayu 32 qñaM kUnmanGayu 12 qñaM tambRmab;RbFan eyIg)anRbB½n§vismIkar ³ 32  t  312  t  32  t  36  3t b¤ 32  t  24  2t  32  t  212  t  

8.

 32  36  3t  t  32  24  2t  t

84  93  78  87  89  70  81  x  90 8 582  x  90 8 582  x  720 x  720  582 x  138

 4  2t t  2    8  t t  8

eday t  0 enaHeyIg)an 0  t  8 dUcenH cab;BIbc©úb,nñrhUtdl;ticCag 8 qñaMeTot eFVI[Gayu«Buk ticCagbIdg b:uEnþeRcIn CagBIrdgénGayurbs;kUn . 7.

k> etIvisalTTYl)annieTÞs A Edr b¤eT ? tag x CaBinÞúénmuxviC¢acugeRkaymYyeTotEdl visalnwgTTYl)an ehIy 0  x  100 . visal)anRbLg 7 muxviC¢aehIyTTYl)anBinÞú 84 , 93 , 78 , 87 , 89 , 70 nig 81 ]bmafa visalRbLg)annieTÞs A ³ eyIg)an

EttémøénBinÞú 0  x  100 dUcenH visalminGacTTYl)annieTÞs A eT . x> etIvisalTTYl)annieTÞs B Edr b¤eT ? ]bmafa visalRbLg)annieTÞs B ³ eyIg)an

rkcMnYnRkdasR)ak; 500 ` EdlsuxGacman ³ tag x CacMnYnRkdasR)ak; 500 ` EdlsuxhUt)an naM[ suxhUt)anRkdas 1000 ` cMnYn 25  x Edl x KitCasnøwk suxcg;hUt[)anR)ak; 17 500 ` y:agtic nigR)ak; 20 000 ` y:ageRcIn enaHeyIg)anTMnak;TMng ³

84  93  78  87  89  70  81  x  80 8 582  x  80 8 582  x  640 x  640  582 x  58

17500  500x  100025  x   20000 17500  500x  25000  1000x  20000 17500  25000  500 x  20000 17500  25000  500 x  20000  25000  7500  500 x  5000  7500  500x  5000    500  500  500 15  x  10

lT§plenHbBa¢ak;fa visalGacTTYl)annieTÞs B eday 0  x  100 niglT§pl x  58 naM[ 58  x  100 dUcenH visalGacTTYl)annieTÞs B ehIy edIm,I[TTYl)annieT§s B visal caM)ac;RtUvyk[)anBinÞúmxu viC¢a cugeRkayticbMputKW 58 .

dUcenH RkdasR)ak; 500 ` EdlsuxGac hUt)an mancMnYneRcInCag 10 snøwk nigticCag 15 snøwk . 112

kMNt;témøFbM MputéncMnYnessTaMgBIrtKña ³ tag x CacMnYnessTI 1 naM[ cMnYnessbnÞab;KW x  2 eday plbUkéncMnYnessTaMgBIrFMCag 72 eyIg)an x  x  2  72 2 x  3 x  15  94 2x  70 b¤ x  35 4 x  15  47 edaymancMnYnKt;ess x eRcInrab;minGs;EdlFM 4 x  32 x8 Cag cMnYn 35 enaHcMnYnKt;ess x kMNt;min)an eday x CacMnYnKt;mantémøGtibrma enaH x  8 dUcenH BIrcMnYnKt;esstKñaFMCageK nigman naM[ beNþay 3x 15  3 8 15  39 m plbUkFMCag 72 KWminGackMNt;)an . dUcenH vimaRtGtibrmaénsYnenaHKW TTwg 12. rkcm¶aypøÚv edIm,IkMu[QñÜlCYlelIsBIR)ak;kk; ³ manRbEvg 8m nigbeNþayman tag x Cacm¶aypøÚvEdlRtUvebIkbr ¬KitCa km ¦ manRbEvg 39m . edayR)ak;QñÜl 80 000 ` kñúgmYyéf¶ nig 400` kñúgcm¶aypøÚv 1km enaHeyIg)an ³ 10. kMNt;RbePTsMbuRtEdlGaclk;)aneRcInbMput ³ 80 000  400x  400 000 tag x CacMnYnRbePTsMbuRt A ¬KitCasnøwk¦ 400x  320 000 naM[ x  5 CacMnYnRbePTsMbuRt B eRBaH x  800 cMnYnRbePTsMbuRt A elIsRbePT B cMnYn 5snøkw dUcenH edIm,IkMu[QñÜlCYlelIsBIR)ak;kk; cMnYnsMbuRtlk;)ay:ageRcInKW 37 snøkw eyIg)an ³ kñúgmYyéf¶GñkCYlminRtUvebIbrelI 9.

rkvimaRtGtibrmaénsYnenaH ³ tag x CaRbEvgTTwgénsYnenaH ¬KitCa m¦ naM[ RbEvgbeNþayKW 3x 15 eRBaH beNþay manrgVas;elIs 3dgénTTwgRbEvg 15m edaysYnmanbrimaRtEvgbMputKW 94 m eyIg)an ³

x  x  5  37 2 x  42 x  21

naM[ cMnYnsMbuRtRbePT A lk;)aneRcInbMputKW x  21 snøwk nigRbePT B lk;)aneRcIn bMputKW x  5  21 5  16 snøwk epÞógpÞat; ³ 2116  37 b¤ 37  37 Bit dUcenH cMnYnsMbuRtlk;)aneRcInbMputKW RbePT A cMnYn 21snøkw nig RbePT B cMnYn 16 snøwk

11.

cm¶aypøÚvelIsBI 800 km eLIy . 13. rkRbEvgRCug BC RtIekaN ABC man AB  12cm , AC  3cm tamvismPaB cMeBaHRtIekaN ABC eyIg)an ³ AB  AC  BC  AB  AC 12  3  BC  12  3 9  BC  15

C ?

3

A

9

eday BC CacMnYnKt; nigCaBhuKuNén 3 enaHnaM[ BC  12 cm dUcenH rk)anRbEvgRCug BC  12 cm .

. 113

B

rkcMnYnKt;enaH ³ tag x CacMnYnKt;enaH tambRmab;RbFan 2x  8 b¤ x  4 eXIjfa x CacMnYnKt;FMCagb¤esµI 4 naM[ x  4 , 5 , 6 , 7 , 8 , ... dUcenH cMnnY Kt;Edlrk)anKW

14.

x  4 , 5 , 6 , 7 , 8 , ...

.

rkRbEvgbeNþayEdlbUNa RtUveRCIserIs ³ tag x CaRbEvgbeNþay ¬KitCa cm ¦ TTwgmanRbEvg 3 cm ehIyRkLaépÞsßitenA cenøaHBI 15 cm eTA 24 cm tambRmab;RbFan eyIg)anTMnak;TMng ³

15.

2

2

15  3 x  24 15 3 x 24   3 3 3 5 x8

eday x CacMnYnKt; enaH

x6, x7

dUcenH RbEvgbeNþayEdlbUNaRtUv eRCIserIsKW 6 cm , 7 cm .

114





1.

3 2 1 6 1 7 9 7 10 10 10 3 5 7 2 5 1 6 4 8 1 2 7 1 10 3 5 5 3 7 6 2 10 6 4 3 4 5 5 7 ។

10 5? ឃ

9? ។ ។

2. x f

0

1

2

3

4

5

6

7

8

144

195

130

80

58

45

24

6

3



5 7 ។

3. x f

1

2

3

4

5

6

78

1270

680

320

150

133 ។

x 3 ។ 4.

25 18 16 32

22 30 25 36

30 15 28 21

45 20 31 18

28 24 41 34

51 17 28 41

30 24 26 53

32 41 15 25

34 38 25 42

33 27 19 41

8

5

20-25 , …។ ។ ។ ឃ

25 ។ 115

15-20 ,

5.

45

0-5

5-10

10-15

15-20

20-25

25-30

30-35

35-40

40-45



4

5

9

12

15

14

10

8

6

45 15 ។

6.

2 ។

5 5

5-10

10-15

15-20

20-25

25-30

30-35

35-40

40-45

1

1

3

2

6

8

12

12

20

30

។ ។

7. 0-5

5-15

15-35

35-45

45-55

55-70

70-85

85-100

1

104

65

45

70

135

195

210

12

3010

3645

1700

1175

1800

2400

1170

។ ។ ។ ឃ

35

DDCEE

3 116

៦ 1.

eyIgmanTinñn½ykMhus GkçraviruT§énsisSmYyfñak; ³ 3 10 1 6

2 1 3 5 2 7 2 10

6 1 7 7 2 5 1 10 3 6 4 3

9 1 5 4

7 10 10 6 4 8 5 3 7 5 5 7

f % 100%

100% 87.5%

k> pþµúTinñn½yCataragbgðajBI eRbkg; eRbkg;ekIn nigeRbkg;fy eRbkg;eFob eRbkg;eFobekInnigfy kMhus 1 2 3 4 5 6 7 8 9 10

srub

f 5 4 5 3 6 4 6 1 1 5 40



f 5 9 14 17 23 27 33 34 35 40



f 40 35 31 26 23 17 13 7 6 5



g> sg;RkabssréneRbkg;eFobfyCaPaKry ³



f%

f %

f %

12.5 10 12.5 7.5 15 10 15 2.5 2.5 12.5

12.5 22.5 35.0 42.5 57.5 67.5 82.5 85.0 87.5 100

100 87.5 77.5 65.0 57.5 42.5 32.5 17.5 15.0 12.5

80%

77.5% 65%

60%

57% 42.5%

40%

32.5% 17.5%

20%

15% 12.5%

1

2.

2

3

4

5

6

7

8

9

10

kMhus

eyIgmantaragsßiti éncMnYnkUnkñúgRKYsar ³

cMnYnkUn x cMnYnRKYsar f

0

1

2

3

4

5

6

7

8

144

195

130

80

58

45

24

6

3

k> begáIttaragbgðajBIeRbkg; eRbkg;ekInnigfy

x> etIfñak;enH mansisSb:unµannak; ? cMnYnkUn x eRbkg; f eRbkg;ekIn f eRbkg;fy f 0 144 144 685 edayeRbkg;srubKW f  40 1 195 339 541 2 130 469 346 dUcenH fñak;eronenHmancMnYnsisS 40 nak; . 3 80 549 216 K> -sisSb:unµannak;mankMhsu 10 ? 4 58 607 136 5 45 652 78 edaysisSmankMhus 10 mancMnYneRbkg; f  5 6 24 676 33 7 6 682 9 dUcenH cMnYnsisSmankMhsu 10 man 5 nak; . 8 3 685 3 685 -ehIytamtarageRbkg;ekIn nigeRkg;ekIneFob srub x> -edayeRbkg;srub f  685 mansisS 23 nak;RtUvCa 57.5% EdlmankMhus naM[ kñúgtMbn;enHman 685 RKYsar . y:ageRcIncMnnY 5 . -tamtarageRbkg;ekIn man 652 RKYsar Edlman X> tamtarageRbkg;fy nigeRbkg;eFobfy kUny:ageRcIn 5 nak; nigtamtarageRbkg;fy mansisS 6 nak; RtUvCa 15% EdlmankMhus man 9 RKYsarEdlmankUny:agtic 7 nak; . y:agticcMnYn 9 . 

117



K> sg;RkabssréneRbkg;ekIn ³

-tagTinñn½yxagelICaRkabssréneRbkg;eFob³ f%

f

700

652

50%

685

682

676

48.27%

607

600

40%

549

500

469

30%

400

25.85% 339

300 200

20% 12.16%

144

10%

100

0

3.

5.70%

5.06%

5

6

2.94%

1

3

2

4

5

6

8

7

taraglT§pléncMnYnkUnsøab;kñúgsRgÁam ³ cMnYnkUnsøab; x cMnYnRKYsar f

1

2

3

4

5

6

78

1270

680

320

150

133

eyIgsg;taragbMENgEckeRbkg; eRbkg;eFob ³ cMnYnkUnsøab; x cMnYnRKYsar f eRbkg;eFob 1 2 3 4 5 6

78 1270 680 320 150 133 2631

srub

1

cMnYnkUn

f%

2.94 48.27 25.85 12.16 5.70 5.06

25 18 16 32

f

1200 1100 1000 900 800 680

600 500 320

200 150

133

78

2

30 15 28 21

45 20 31 18

28 24 41 34

51 17 28 41

30 24 26 53

32 41 15 25

34 38 25 42

33 27 19 41

3

4

eRbkg; eRbkg;ekIn eRbkg;eFob eRbkg;eFobekIn

15-20 20-25 25-30 30-35 35-40 40-45 45-50 50-55

7 5 9 9 2 5 1 2 40

5

6

7 12 21 30 32 37 38 40

17.5 12.5 22.5 22.5 5 12.5 2.5 5

17.5 30 52.5 75 80 92.5 95 100

x> sg;GIusþRkam ³ ¬rMlwk ³ GIusþÚRkamCaRkabssrenACab;²Kña¦ tamtaragbMENgEckeRbkg; eyIgsg;GIusþÚRkam³

300

1

22 30 25 36

Gayu

srub

400

100

cMnYnkUnsab;

k> sresrTinnñ ½yCafñak; mancenøaHfñak;esµI 5 ³

1270

700

4

x> RsaybBa¢ak;elIRkabTaMgBIr Rtg;ssrEdl manGab;sIus x  3 ³ -Rtg;cMNucénRkabssrEdlman x  3 mann½y fa man 680 RKYsarEdlmankUnsøab; 3 nak;enA kñúgsRgÁam EdlRtUvCa 25.85% éncMnYnRKYsar TaMgGs;EdlmankUnsøab;kñúgsRgÁam . 4. eyIgmanTinñn½yGayukmµkrenAkñúgshRKasmYy ³

k> -tagTinñn½yxagelICaRkabssréneRbkg; ³ 1300

3

2

cMnYnkUnsab; 118

tamtaraglT§pl eyIgsg;)antaragbMENkEck eRbkg;dUcxageRkam ³

f 10 9

9

cMnYn)al;

eRbkg;ekIn

eRbkg;fy

eRbkg;eFob

eRbkg;eFobekIn

eRbkg;eFobfy

8

0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45

4 5 9 12 15 14 10 8 6

4 9 18 30 45 59 69 77 83

83 79 74 65 53 38 24 14 6

4.82 6.02 10.84 14.46 18.07 16.87 12.05 9.64 7.23

4.82 10.84 21.68 36.14 54.21 71.08 83.13 92.77 100

100 95.18 89.16 78.31 63.85 45.78 28.92 16.88 7.23

srub

83

6

5

ry³eBl

7 5

4 2

2

2 1

Gayu

15 20 25 30 35 40 45 50 55

K> -eyIgbMeBjtarageRbkg;ekIn nigeRbkg;eFob ekIn dUckñúgtaragbMENgEckeRbkg;énsMNYr k> -KUsRkabrbs;va ³ f%

k> edayeRbkg;srubKW f  83 dUcenH kñúgry³eBl 45 naTI RkumkILakr)an e)aH)al;cUlTI cMnYn 83 RKab; . x> tamtarageRbkg;ekIn bgðajfakñúgry³eBl 15 naTIdMbUg RkumkILakr)ane)aH cUlTIcMnYn 18 RKab; ehIyenAenAknøHem:ag cugeRkayRkum kILakr)ane)aHcUlTI)ancMnYn 83-18 = 65 RKab; EdlRtUvnwg 78.31% . K> KUsRkabénBhuekaNeRbkg;ekIn ³

f

100%

40

75%

30

50%

20

40 37 38 100% 82.5% 95% 30 32 75% 80%

21 52.5%

12 7 30% 17.5%

10

25%

15 20 25 30 35 40 45 50 55 Gayu

X> bkRsayelIRkabRtg;cMNucEdlman x  25 tamRkabtageRbkg;ekIn nigeRbkg;eFobekInKW Rtg;cMNucEdlmanGab;sIusesµI 25 mann½yfa mankmµkry:ageRcIncMnYn 12 nak; EdlmanGayu 25 qñaM EdlRtUvnwg 30% éncMnYnkmµkrsrub . 5.

f



100

83 80

77 69 59

60

eyIgmantaraglT§ple)aH)al;bBa©ÚlTIeTAtam ry³eBlnImYy² kñúgefrevla 45 naTI ³

45 40

30 18

20

10-15

15-20

20-25

25-30

30-35

35-40

40-45

4

5-10

cMnYn)al;

0-5

ry³eBl

9

5

9

12

15

14

10

8

6

4

5 10 15

119

20 25 30 35 40 45

naTI

cMnYndg

eRbkg;ekIn

eRbkg;fy

ry³eBlpSay

5 1 1 3 2 6 8 12 12

5 6 7 10 12 18 26 38 50

50 45 44 43 40 38 32 24 12

5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45

srub

70-85

85-100

104

65

45

70

135

195

210

12

3010

3645

1700

1175

1800

2400

1170

Gayu

Rb>C søab; km Rb>C rbYs km

0-5 5-15 15-35 35-45 45-55 55-70 70-85 85-100

1 104 65 45 70 135 195 210

srub

825

0.2 10.4 3.25 4.5 7 9 13 14

12 3010 3645 1700 1175 1800 2400 1170

2.4 301 182.25 170 117.5 120 160 78

h

15

14

13

12 10.4

f

7

6

4.5 3.25

3 0.2

0 5

85

100

Gayu

100

Gayu

301

250

200

182.25

38

170

160

150

32

30

117.5

26

f

24

20

70

h

43 38

35 45 55

-sg;GIusþÚRkaménTin½yRbCaCnsøab; ³

50

40

15



50

40

9

9

300

f

44

f A

14912

50

45

h

-sg;GIusþÚRkaménTin½yRbCaCnsøab; ³

k> tamtaragbMENgEckeRbkg; eXIjfa eRbkg; srubKW f  50 dUcenH kñúgeBll¶acenH eKpSay BaNiC¢kmµ)an 50 dg eRbIeBlGs; 45 naTI . x> -tamtarageRbkg;fy KWry³eBl 20 naTIcug eRkay eKpSayBaNiC¢kmµ)an 38 dg . -tamtarageRbkg;ekIn ry³eBlticCag 30 naTIdMbUg eKpSayBaNiC¢kmµ)an 18 dg . K> KUsRkabénBhuekaNekIn nigfy ³ 50

1

k> eyIgrkkmCsøab; nigrbYs

eyIgsg;)antaragbMENgEckeRbkg;dUcxageRkam³

eRkam 5

55-70

Gayu

12

45-55

12

40-45

35-40

8

35-45

6

Rb>C søab; Rb>C rbYs

15-35

2

30-35

25-30

20-25

3

taraglT§plRbCaCnsøab; nigrgrbYstamGayu ³ 5-15

1

7.

0-5

1

15-20

eRkam 5 5

5-10

ry³eBlpSay ¬naTI¦ cMnYndg

10-15

eyIgmantaragbgðajBIcMnYndgénkarpSayBaNiC¢kmµ

6.

120

100

78

18

50 10

10 5

6

12

12

2.4

7

5 10 15

20 25

30

35 40 45

0 5

naTI 120

15

35 45 55

70

85

x> begáIttarageRbkg; eRbkg;ekIn ³ Gayu

Rb>C søab; eRbkg;ekIn Rb>C rbYs eRbkg;ekIn

0-5 5-15 15-35 35-45 45-55 55-70 70-85 85-100

1 104 65 45 70 135 195 210

srub

825

1 105 170 215 285 420 615 825

12 3010 3645 1700 1175 1800 2400 1170

12 3022 6667 8367 9542 11342 13742 14912

14912

K> rkcMnYnRbCaCnsøab; nigrbYs ³ tamtarageRbkg; RbCaCnsøab; = 825 nak; / RbCaCnrgrbYs = 14912 nak; naM[ RbCaCnsøab; nigrgrbYs mancMnYn 825 + 14912 = 15737 nak; . X> tamtarageRbkg;ekIn RbCaCnEdlmanGayu ticCag 35 qñaM søab;cMnYn 170 nak; nigmanrbYs cMnYn 6667 nak; .

aaa

121

៧ 1. 22 22 20 22 27 20 23

1 2 3 4 5 6

22 23 19 23 27 19 24

21 22 21 23 26 22 24

21 23 20 23 20 24 ។ ។

kg

2.

4 6 2 10 8 5 4 4 8 10 5 4 3 7 2 4 6 8 7 4 5 3 6 4 ។

3. x 16 18 19 f 1 4 9

20 3

21 30 2 1 ។

4.

0

2

4

6

8

10

11

12

34

36

0

2

4

6

8

10

11

12

34

36

5

10

15

20

25

30

35

5.

0 3 1 0

0 2 3 2

0 2 3 4

1 4 4 1

3 1 1 3

3 6 1 4

1 5 0 1

1 6 3 5

1 0 1 6

3 0 0 4 3 3 1 1 0 5 6 2 2 1 1 2 3 5 1 3 2 1 1 1 1 2 1 1 3 3 6 0 0 3 4 1 3 2 3 3 ។



122



6.

o

C

14o

23o

14o

k>

32o

35o

30o

30o

29o

25o

18o

22o

។ ។

7.

1

89 ។

8

2

90 ។ 8. ។

mm)

0-5 5-10 10-15 15-20 20-25 25-30 30-35 3

15

72

15

91

35

8



20 mm

35 mm ។



។ ។

45-50

50-55

55-60

60-65

65-70

70-75

75-80

80-85

85-90

g

40-45

9.

8

11

31

61

54

58

43

25

17

7

។ ។ ឃ



10.



280





4

។ ។

150-155

155-160

160-165

165-170

170-175

175-180

cm

145-150

11.

31

95

131

272

120

77

48

។ ។ ។

DDCEE

3 123

15o

៧ 1.

eyIgmantaragsikSacMnYnsisSdUcxageRkam ³ fñak; cMnYnsisS fñak;metþyü fñak;TI 1 fñak;TI 2 fñak;TI 3 fñak;TI 4 fñak;TI 5 fñak;TI 6

-cMeBaH fñak;TI 2 ³ eyIgmanTinñn½y 19 20 20 21 ÷mFümKW x  19  20 4 20  21  20 ÷tYén Me KW 4 2 1  2.5 enaHnaM[ Me  20 2 20  20 ÷témøm:Ut KW Mo  20 ¬ maneRbkg;elIseK¦ -cMeBaH fñak;TI 3 ³ eyIgmanTinñn½y 22 23 23 23 ÷mFümKW x  22  23 4 23  23  22.75 ÷tYén Me KW 4 2 1  2.5 enaHnaM[ Me  23 2 23  23 ÷témøm:Ut KW Mo  23 ¬ maneRbkg;elIseK¦ -cMeBaH fñak;TI 4 ³ eyIgmanTinñn½y 26 27 27 ÷mFümKW x  26  273  27  26.67 ÷tYén Me KW 3 2 1  2 naM[ Me  27 ÷témøm:Ut KW Mo  27 ¬ maneRbkg;elIseK¦ -cMeBaH fñak;TI 5 ³ eyIgmanTinnñ ½y 19 20 20 22 ÷mFümKW x  19  20 4 20  22  20.25 ÷tYén Me KW 4 2 1  2.5 enaHnaM[ Me  20 2 20  20 ÷témøm:Ut KW Mo  20 ¬ maneRbkg;elIseK¦

22 22 21 21 22 23 22 23 20 19 21 20 22 23 23 23 27 27 26 20 19 22 20

20

23 24 24 24

rkmFüm emdüan nigm:UténcMnYnsisSkñúgmYyfñak;³ -cMeBaH fñak;metþyü ³ eyIgmanTinñn½y 20 20 21 21 ÷mFümKW x  20  20 4 21 21  20.5 ÷tYén Me KW 4 2 1  2.5 enaHnaM[ Me  20 2 21  20.5 ÷Kµanm:UteT eRBaH 20 nig 21 maneRbkg;dUcKña -cMeBaH fñak;TI 1 ³ eyIgmanTinñn½y 21 22 23 23 ÷mFümKW x  22  22 4 23  23  22.5 ÷tYén Me KW 4 2 1  2.5 enaHnaM[ Me  22 2 23  22.5 ÷Kµanm:UteT eRBaH 22 nig 23 maneRbkg;dUcKña

smÁal; ³

23

27

-mFüm tageday x -emdüan tageday Me -m:Ut tageday Mo

20

124

-cMeBaH fñak;TI 6 ³ eyIgmanTinñn½y 23 24 24 24 ÷mFümKW x  23  24 3 24  24  23.75 ÷tYén Me KW 4 2 1  2.5 enaHnaM[ Me  24 2 24  24 ÷témøm:Ut KW Mo  24 ¬ maneRbkg;elIseK¦

3.

x 16 18 19 f 1 4 9

16 1  18  4  19  9  20  3  21 2  30 1 1 4  9  3  2 1 391   19.55 20

-KNnaemdüan ³ eday tYénemdüanKW  202 1  10.5 ehIytYTI 10.5 sßitkñúgTinñn½y 19 dUcenH Me  19 . -KNnam:Ut ³ edayTinñn½y 19 maneRbkg;elIseK dUcenH Mo  19 .

4 6 2 10 8 5 4 4 8 10 5 4 3 7 2 4 6 8 7 4 5 3 6 4



1 2 3 4 5 6 7 8 10

1 2 2 6 3 3 2 3 2

24 srub -KNnamFüm ³

1 4 6 24 15 18 14 24 20

21 30 2 1

x

eyIgmanlT§plbBa©úHm:as ¬kg¦ dUcxageRkam ³

eyIgGacsresrsRmÜlCatarag dUcxageRkam ³ m:as¬kg¦ eRbkg; f x  f f

20 3

-KNnamFüm ³

24

2.

eyIgmanTinñn½y dUcxageRkam ³

4.

1 3 5 11 14 17 19 22 24

KNnamFüm emdüan nigm:Ut ³ k> tamRkaPic eyIgBRgay)anTinñn½y 2 , 4 , 4 , 6 , 6 , 6 , 6 , 6 , 6 , 8 , 8 , 10 2  4  2  6  6  8  2  10 72 x  12 12

-mFüm dUcenH KNna)an x  6 . -KNnaemdüan ³ tYénemdüanKW 122 1  6.5 naM[ Me  6 2 6  6 dUcenH Me  6 . -KNnam:Ut ³ eday 6 maneRbkg;eRcInCageK dUcenH Mo  6 . x> tamRkaPic eyIgBRgay)anTinñn½y

126

11  2  2  3  2  4  6  5  3  6  3  7  2  8  3  10  2 1 2  2  6  3  3  2  3  2 126   5.25 kg 24

x

-KNemdüan ³ tYénemdüanKW  242  1  13 ehIytYTI 13 sßitenA kñúgfñak;m:as 5 kg dUcenH Me  5 kg . -KNnam:Ut ³ eday m:as 4 kg mancMnYneRbkg;eRcInCageK dUcenH Mo  4 kg .

2 , 4 , 4 , 4 , 6 , 8 , 10 , 10 , 10 , 10 , 34 , 34

-mFüm x  2  4  3  6  812 10  4  34  2  136 12 dUcenH KNna)an x  11.33 . -KNnaemdüan ³ tYénemdüanKW 122 1  6.5 naM[ Me  8 210  9 dUcenH Me  9 . 125

-KNnam:Ut ³ eday 10 maneRbkg;eRcInCageK dUcenH Mo  10 . K> tamRkaPic eyIgBRgay)anTinñn½y

6.

o

5 , 5 , 10 , 10 , 10 , 10 , 15 , 15 , 25 , 25 , 30 , 30 , 30 , 30 , 35 , 35

o

14  14  23  32  35  30  30  29  25  22  18  15 12 287 o   23.92 C 12

5  2  10  4  15  2  25  2  30  4  35  2 16

dUcenH KNna)an x  20 . -KNnaemdüan ³ tYénemdüanKW 162 1  8.5 naM[ Me  15 2 25  20 dUcenH Me  20 .

o

o

-KNnamFüm ³ x

k> KNnam:Ut ³ eday sItuNPð aB 14 C nig 30 C maneRbkg; esµI 2 eRcInCageK dUcenH Mo  14 C nig Mo  30 C . x> KNnasItuNðPaBmFüm ³ x

rkcMnYnBinÞúEdl sux RtUvbegáIneEfmeTot ³ tambRmab;RbFan ³ -BinÞú sux enAqmasTI1 KW 89 8  712 BinÞú -ehIyBinÞúedIm,I[)anmFümPaK 90 KW -KNnam:Ut ³ eday 10 nig 30 maneRbkg;eRcIn 90  8  720 BinÞú CageK dUcenH Mo  10 nig Mo  30 . -naM[ cMnYnBinÞú EdlsuxRtUvbegáInKW 5. k> begáIttarageRbkg; eRbkg;ekIneFobCaPaKry 720  712  8 BinÞú cMnYnkUn eRbkg; eRbkg;ekIn eRbkg;eFob eRbkg;ekIneFob dUcenH sux RtUvbegáIncMnYn 8 BinÞúeTot . 0 11 11 14.47 14.47 1 23 34 30.26 44.74 8. k> begáIttarag eRbkg; eRbkg;ekIn nigfy ³ 2 9 43 11.84 56.85 3 4 5 6

18 6 4 5

61 67 71 76

23.68 7.89 5.26 6.58

7.

km
80.26 88.16 93.42 100

srub 76 x> KNnaemdüan ³ eday eRbkg;srub f  76 naM[ tYénemdüanKW 762 1  38.5 tamtarageRbkg;ekIn tYTI 38.5 sßitenATinñn½y cMnYnkUn 2 dUcenH Me  2 .

mm

0-5 5-10 10-15 15-20 20-25 25-30 30-35

srub

f

3 15 72 15 91 35 8 239

f

f

3 18 90 105 196 231 239

239 236 221 149 134 43 8

p©itfñak; x 2.5 7.5 12.5 17.5 22.5 27.5 32.5

x f 7.5 112.5 900 262.5 2047.5 962.5 260 4552.5

x> -tamtarageRbkg;fy cMnYnkUneb:ge)aH Edlman km
K> -KNnam:Ut ³ edayfñak;km
tamtarageRbkg;srubKW f  315 dUcenH cMnYnTarke)ATwkedaHeKaKW 315 nak; . x> rkm:asTwkedaHeKaEdlTarke)ACamFümkñúg1éf¶ 20357.5 x  64.63 g dUcenH x  64.63 g 315 K> KNnam:Ut ³ edayfñak; 55-60 mancMnYneRbkg;eRcInCageK naM[ m:UtCap©ti fñak;enH dUcenH Mo  57.5 . X> KNnaemdüan ³ tYénemdüanKW 315  157.5 2 eday eRbkg; 157.5 sßitenAkñúgfñak; 60-65  157.5  111  64.31 naM[ Me  60  65  60165  111

25  20119.5  105  20.8 196  105

dUcenH emdüanKNna)an -KNnamFüm ³

x

Me  20.8

.

dUcenH KNna)an Me  64.31 . -bkRsaytamRkab ³

4552.5  19.05 239

dUcenH KNna)an x  19.05 . -eRbóbeFobemdüan nigmFüm ³ eday Me  20.8 nig x  19.05 dUcenH eRbóbeFob)an Me  x . 9. k> rkcMnYnTarkEdle)ATwkedaHeKa kñúgmYyéf¶ ³ km
40-45 45-50 50-55 55-60 60-65 65-70 70-75 75-80 80-85 85-90

srub

f

8 11 31 61 54 58 43 25 17 7 315

f



8 19 50 111 165 223 266 291 308 315

f



315 307 296 265 204 150 92 49 24 7

p©itfñak; x 42.5 47.5 52.5 57.5 62.5 67.5 72.5 77.5 82.5 87.5

x f 340 522.5 1627.5 3507.5 3375 3915 3117.5 1937.5 1402.5 612.5 20357.5

350 300 250 200 150 100 50 40 45 50 55 60 65 70 75 80 85 90 TwkedaHeKa (g )

tamRkabénBhuekaNeRbkg;ekIn nigBhuekaN eRbkg;fy RkaPicTaMgBIrRbsBVKñaRtg;cMNuc Edl man Gab;sIusesµI 64.31 nigGredaenesµI 157.5 man n½yfa Tinñn½ymanemdüan Me  64.31 EdlRtUvnwg eRbkg; f  157.5 .

127

k> begáIttarageRbkg; eRbkg;ekIn ³ km
10.

145-150 150-155 155-160 160-165 165-170 170-175 175-180

31 95 131 272 120 77 48

srub

774

-bkRsayelIRkab ³ eyIgKUsbnÞat;RsbG½kS Gab;sIus edaykat;G½kSGredaenRtg;eRbkg; 387 rYceFVIcMeNalEkg éncMNucEdlCaRbsBVrvag bnÞat; nigBhuekaNeRbkg;ekIn mkelIGk½ SGab; sIus enaHeyIg)antémøkm
31 126 257 529 649 726 774



x> sg;RkabénBhuekaNeRbkg;ekIn ³ f



800

774

726 700

649

600

529 500

400 

387

300

257

200

126 100

31

162.39

145 150 155 160 165 170 175 180

kMBs;sisS

K> KNnaemdüan ³  387 tYénemdüanKW 774 2 tamtarageRbkg;ekIn tYénemdüansßitenAkñúgfñak; 160-165 mann½yfafñak; 160-165 Cafñak;emdüan eyIgKNna Me tamviFIGaMgETb:LU asüúg ³ Me  160 

165  160387  257  162.39 529  257

dUcenH KNna)an

Me  162.39 cm

. 128

៨ 1.

PHNOM PENH P

OឬM

H

2.

1 1

PឬN 21 ឬ

21

3.

1

4

//

//

4. ឬ

5.

182

52

234

254

338

592

1200

760

440 6.

3

A B C

A, B, C

1420 846 570

74 26 41

182 122 60

1676 994 671

2836

141

364

3341 A

BឬC A BឬC A 7.

4

HHHH , HTHH , THHH , TTHH HHHT , HTHT , THHT , TTHT HHTH , HTTH , THTH , TTTH HHTT , HTTT , THTT , TTTT 129

BឬC

H

T

H

H

T 8.

2 5 9. 0

1

2

3

4

5

6

7

8

6

1

15

12

24

18

16

10

7

4

6 6

10.

6

4

2 ABCD

X

11.

Y

6

A, B, C, D, E

F

3

4

12.

H

13.

12

1 3 14.

3

2

A1

15. A1 , A2 , B

A2

A 16.

B

15 3 5

2 3 130

៨ 1.

cMnYnGkSrTaMgGs;énBakü PHNOM PENH man 9 GkSr naM[ cMnYnkrNIGac  9 eKcab;ykGkSmYyBIBaküenHedayécdnü ³ k> rkRbU)abEdlcab;)anGkSr P ³ eday GkSr P mancMnYn 2 naM[ cMnYnkrNIRsbcab;)anGkSr P KW  2 R sb 2  dUcenH P(P)  cMcMnnYnYnkrNI . krNIG ac 9 x> rkRbU)abEdlcab;)anGkSr H ³ eday GkSr H mancMnYn 2 naM[ cMnYnkrNIRsbcab;)anGkSr H KW  2 R sb 2  dUcenH P(H)  cMcMnnYnYnkrNI . krNIG ac 9 K> rkRbU)abEdlcab;)anGkSr O b¤ M ³ eday GkSr O mancMnYn 1 naM[ cMnYnkrNIRsbcab;)anGkSr O KW  1 ehIy GkSr M mancMnYn 1 naM[ cMnYnkrNIRsbcab;)anGkSr O KW  1 eK)an P(H b¤ M)  PO  PM   19  19 dUcenH P(H b¤ M)  92 X> rkRbU)abEdlcab;)anGkSr P b¤ N ³ eday GkSr N mancMnYn 2 naM[ cMnYnkrNIRsbcab;)anGkSr N KW  2 eK)an P(P b¤ N)  PP  PN   92  92 dUcenH P(P b¤ N)  94 .

2.

etIRbU)abéncMnYnEdlsux nigesArkesµIKña b¤eT ? cMnYnenAcenøaHBI 1 dl; 21 KWman 21 cMnYn naM[ cMnYnkrNIGac  21 -sux kMBugrkcMnYnessenAcenøaHBI 1 dl; 21 cMnYnessenAcenøaHBI 1 dl; 21 KWman 11 cMnYn naM[ P(cMnYness)  11 21 -esA kMBugrkcMnYnKUenAcenøaHBI 1 dl; 21 cMnYnKUenAcenøaHBI 1 dl; 21 KWman 10 cMnYn naM[ P(cMnYnKU)  10 21

dUcenH RbU)abéncMnYnEdlsux nigesA kMBugnwgrk KWminesµIKñaeT . 3. rkRbU)abénRKab;LúkLak;ecjBIelx 1dl;elx 4 eday RKab;Lkú Lak;manmux 6 enaHkrNIGac  6 ehIymuxBIelx 1dl; 4 man 4 muxCakrNIRsb naM[ P(1dl;elx 4)  64  23 dUcenH 4.

dl;elx 4) 

P(1

2 3

.

etIRbU)abKb;RBYjelIépÞqUt nigminqUtesµIKñab¤eT ? tag a nig b CavimaRtrbs;ctuekaNEkg // // -épÞqUt  12 ab a b 1 b 1 b 1   a     a    ab 2 2 2 2 2

-épÞminqUt eday épÞqUt nigépÞminqUtesµIKña dUcenH RbU)abKb; RBYjelIépÞqUt nigminqUtk¾esµIKñaEdr . 131

eyIgmanTinñn½ydUcxageRkam ³ GñkenAkñúgRkug GñkenACayRkug srub 182 52 234 rfynþ 254 338 592 m:UtU k> rkRbU)abénGñkeFVIdMeNIredaym:UtU edaym:UtU nigrfynþmansrub 234  592  826 naM[ cMnYnkrNIGacesµInwg 826 ehIy m:UtUmancMnYn 592 CacMnYnkrNIRsb 592 296 eyIg)an P(GñkCiHm:UtU)  826   0.72 413

K> rkcMnYncMNtrfynþEdleKRtUveRtómTukCamun -rkcMnYnGñkenAkñúgRkugCiHrfynþ RbU)abénGñkrs;enAkñúgRkugCiHrfynþKW

5.

P

182 91  182  254 218

edayePJóvenAkñúgRkugGeBa©IjcUlrYm 760 nak; naM[ GñkenAkñúgRkugCiHrfynþmancMnYn 91  760  318 nak; 218 -rkcMnYnGñkenACayRkugCiHrfynþ RbU)abénGñkrs;enACayRkugCiHrfynþKW P

dUcenH RbU)anénGñkeFVIdMeNIredaym:UtUKW 296 P(GñkCiHm:Ut)U  .  0.72 413

52 2  52  338 15

edayePJóvenACayRkugGeBa©IjcUlrYm 440 nak; naM[ GñkenACayRkugCiHrfynþmancMnYn 2 x> ¬rebobTI1¦rkRbU)abénGñkeFVIdMeNIredayrynþ  440  59 nak; 15 rfynþmancMnYn 234 CacMnYnkrNIRsb -eyIg)an cMnYnGñkeRbIR)as;rfynþTaMgGs;KW ehIy cMnYnkrNIGacesµInwg 826 ¬rkxagelI¦ 318  59  377 nak; 234 117 eyIg)an P(GñkCiHrfynþ)  826  413  0.28 naM[ rfynþman 377 eRKÓg ehIy RtUvkarcMNt 377 kEnøg dUcenH RbU)anénGñkeFVIdMeNIredayrfynþKW 117 dUcenH eKRtUveRtómcMNtrfynþ 377 kEnøg  0.28 P(GñkCiHrfynþ)  . 413 6. eyIgmantaraglT§plénkarsÞabsÞg;sMeLg ³ ¬rebobTI2¦rkRbU)abénGñkeFVIdMeNIredayrynþ KaMRT minKaMRT Kµaneyabl; srub edayRbU)abénGñkeFVIdMeNIredaym:UtUCaRbU)ab A 1420 74 182 1676 B 846 26 122 994 bMeBjnwgRbU)abénGñkeFVIdMeNIredayrfynþ C 570 41 60 671 364 3341 srub 2836 141 naM[ P(GñkCiHm:UtU) + P(GñkCiHrfynþ) = 1 k> rkRbU)abénsMeLgEdlminKaMRTebkçCn A b¤ P(GñkCiHrfynþ) =1 P(GñkCiHm:UtU) 296 sMeLgminKaMRTsrubmancMnnY 3341 CakrNIGac  1 413 sMeLgminKaMRT A mancMnYn 74 CakrNIRsb 117   0.28 74 413 naM[ P(sMeLgminKaMRTA)  3341  0.0221  0.28 . dUcenH P(GñkCiHrfynþ)  117 dUcenH P(sMeLgminKaMRTA)  0.0221 . 413 132

x> rkRbU)abénsMeLgEdlminKaMRTebkçCn B b¤ C tamtaraglT§plénkaresÞabsÞg; eyIg)an ³ 26 41 P(sMeLgminKaMRT B b¤ C)   3341 3341 

7.

eyIgmanRBwtþikarN_Gacénkare)aHkak; 4 dgKW ³ HHHH , HTHH , THHH , TTHH HHHT , HTHT , THHT , TTHT HHTH , HTTH , THTH , TTTH HHTT , HTTT , THTT , TTTT

67  0.0201 3341

naM[ cMnYnkrNIGacesµInwg 16 dUcenH P(sMeLgminKaMRT B b¤ C)  0.0201 . k> rkRbU)abEdle)aH)anGkSr H BIr krNIe)aH)anGkSr H BIrman ³ K> rkRbU)abénkarKµaneyabl;cMeBaHebkçCn A TTHH , HTHT , THHT   man 6 CakrNIRsb tamtaraglT§plénkaresÞabsÞg; eyIg)an ³ HTTH , THTH , HHTT  182 P(sMeLgKµaneyabl; A)   0.0545 naM[ P( H BIr)  166  83  0.375 3341 dUcenH

sMeLgKµaneyabl; A)  0.0545 .

dUcenH

P(

P( H

BIr)  83  0.375

X> rkRbU)abénkarKµaneyabl;cMeBaHebkçCn B b¤ C x> rkRbU)abEdle)aH)anGkSr T BIrmuneK tamtaraglT§plénkaresÞabsÞg; eyIg)an ³ krNIe)aH)anGkSr T BIrmuneKman ³ 122 60 P(sMeLgKµaneyabl; B b¤ C)   TTHH , TTHT , TTTH , TTTT man 4 krNI 3341 3341 4 1 182 naM [ P( T BIrmuneK)    0.25   0.0545 16 4 3341 dUcenH P(sMeLgKµaneyabl; B b¤ C)  0.0545

dUcenH

P( T

BIrmuneK)  14  0.25

g> eRbóbeFobRbU)abKaMRT A nigRbU)abKaMRT B b¤ C K> rkRbU)abEdle)aH)anGkSr H mYymuneK tamtaraglT§plénkaresÞabsÞg; eyIg)an ³ krNIe)aH)anGkSr T BIrmuneKman ³ 1420  0.4250 P(sMeLgKaMRT A)  HHHH , HTHH , HHHT , HTHT  3341  man 8 krNI HHTH , HTTH , HHTT , HTTT  846 570  P(sMeLgKaMRT B b¤ C)  3341 3341 naM[ P( H mYymuneK)  168  12  0.5 

1416  0.4238 3341

dUcenH

enaH P(sMeLgKaMRT A)  P(sMeLgKaMRT B b¤ C) dUcenH eyIgeRbóbeFob)an RbU)abénsMeLg KaMRTebkçCn A FMCagRbU)abénsMeLg ebkçCn B b¤ C

P( H

mYymuneK)  12  0.5

X> rkRbU)abEdle)aH)anGkSr H TaMgbYn ³ e)aH)anGkSr H TaMgbYn man 1 krNI KW HHHH naM[ P( H TaMgbYn)  161  0.0625 dUcenH P( H TaMgbYn)  161  0.0625 133

g> rkRbU)abEdle)aH)anGkSr T mYyy:agtic ³ RbU)abe)aH)anGkSr T mYyy:agtic CaRbU)ab bMeBjnwgRbU)abe)aH)anGkSr H TaMgbYn naM[ P( H TaMgbYn) + P( T mYyy:agtic) = 1 enaH P( T mYyy:agtic) = 1 P( H TaMgbYn)  1

dUcenH

P( T

1 15   0.9375 16 16

x> rkRbU)abEdlbuKÁlikenaH )anQb;y:agticmYyéf¶ edaycMnYnbuKÁlik )anQb;y:agticmYyéf¶ KW ³ 1  15  12  24  18  16  10  7  103 nak; ¬GacKNnaedayxøIKW 109  6  103 nak;¦ 103 eyIg)an P(Qb;y:agticmYyéf¶)  109 dUcenH

15 mYyy:agtic)  16  0.9375 .

103 Qb;y:agticmYyéf¶)  109

P(

K> rkRbU)abEdlbuKÁlikenaH)anQb;cenøaHBI 4eTA 6éf¶ 8. rkRbU)abEdlcab;)anXøIBN’ s ³ edaycMnYnbuKÁlik )anQb;cenøaHBI 4 eTA 6éf¶KW ³ edayRbU)abEdlcab;)anXøBI N’s CaRbU)abbMeBj 24 18 16  58 nak; CacMnYnkrNIRsb 58 nwgRbU)abEdlcab;)anXøBI N’exµA eyIg)an P(Qb;cenøaHBI 4eTA 6éf¶)  109 naM[ P(XøIexµA) + P(XøIs) = 1 58 dU c enH P(Qb;cenøaHBI 4eTA 6éf¶)  Taj)an P(XøIs) = 1 P(XøIexµA) 109 tambRmab; P(XøIexµA)  52 K> rkRbU)abEdlbuKÁlikenaH)anQb;eRcInCag 6éf¶ eyIg)an P(XøIs) = 1 52  53 edaycMnYnbuKÁlik )anQb;eRcInCag 6éf¶KW ³ 10  7  17 nak; CacMnYnkrNIRsb dUcenH eyIgrk)an P(XøIs) = 53 . 17 eyIg)an P(Qb;eRcInCag 6éf¶)  109 9. eyIgmantaragéncMnYnGvtþmanrbs;buKl Á ik ³ 17 dUcenH P(Qb;eRcInCag 6éf¶)  109 cM>éf¶Gvtþman cM>buKÁlik

0

1

2

3

4

5

6

7

8

eyIgmanXøIexµA 4 nigXøIs 2 buKÁliksrub 6 115 12  24 18 16 10  7  109 k> rkRbU)abEdlcab;)anXøBI N’sTaMgBIr nak; CacMnYnkrNIGac cMnYnkrNIGacKW 4  2  6 k> rkRbU)abEdlbuKÁlikenaH )anQb;y:ageRcInbIéf¶ eyIg)an P(ss) = P(s)×P(s¼s) 2 1 2 1 edaycMnYnbuKÁlik )anQb;y:ageRcInbIéf¶ KW ³     6 5 30 15 6  1  15  12  34 nak; CacMnYnkrNIRsb 34 dUcenH RbU)abEdlcab;)anXøIBN’s eyIg)an P(Qb;y:ageRcInbIéf¶)  109 TaMgBIrKW P(ss)  151 34 dUcenH P(Qb;y:ageRcInbIéf¶)  109 6

1

15

12

24

18

16

10

7

10.

134

x> rkRbU)abEdlcab;)anXøIBN’exµAmYyy:agtic edayRbU)abEdlcab;)anXøBI N’exµAmYyy:agtic CaRbU)abbMeBjnwgRbU)abcab;)anXøIsTaMgBIr eyIg)an P(ss) + P(exµAmYyy:agtic) = 1 naM[ P(exµAmYyy:agtic) = 1 P(ss)

rkRbU)abEdle)aH)anmux H TaMgbI kak;manmux H nig T enaHlT§plGac)anKW ³ kak;TI1 kak;TI2 kak;TI3 lT§pl

12.

H T

1 14  1  15 15

dUcenH 11.

P(

exµAmYyy:agtic

H T H T H T H T

H

H T

14 ) 15

T

HHH HHT HTH HTT THH THT TTH TTT

lT§plsrubmancMnYn 8 CacMnYnkrNIGac mux HHH manEt 1 Kt; CacMnYnkrNIRsb

eyIgmanXøIexµA 4 nigXøIs 2

k>

dUcenH

P( H

TaMgbI)  18

k> rkcMnnY énXøIBN’exµA XøITaMgGs;mancMnYn 12 RKab; CacMnnY krNIGac tag x CacMnYnXøIBN’exµA EdlCakrNIRsb naM[ RbU)abcab;)anXøIBN’exµAKW P(exµA) = 12x Et RbU)abEdlcab;)anXøIBN’exµAesµInwg 13

13.

eyIg)an

x 1  12 3



3x  12

naM[ x  4

dUcenH cMnYnXøIBN’exµAmancMnYn 4 RKab; x> -¬rebobTI1¦ rkRbU)abEdlcab;)anXøBI N’s cMnYnXøIBN’s  12  4  8 CacMnYnkrNIRsb dUcenH

s

P( ) 

8 2  12 3

-¬rebobTI2¦ rkRbU)abEdlcab;)anXøIBN’s eday P(s) CaRbU)abbMeBjnwg P(exµA) naM[ P(s) = 1  P(exµA)  1  124  128 dUcenH P(s)  128  23 135

rkRbU)abEdleKerIs)annarITaMgBIrnak; bursmancMnYn 3 nak; nignarImancMnYn 2 nak; naM[ cMnYnkrNIGacKW 3+2=5 eyIg)an P(narIBInak;)  P(narI)  P(narI¼narI)

14.

2 1 1    5 4 10

dUcenH

P(

narIBInak;)  101

rkRbU)abEdleKKb;)anGkSr A TaMgBIelIk eKKb;RBYjBIrdgepSgKña minTak;TgKña fasEckCabIEpñk enaHcMnYnkrNIGacesµInwg 3 GkSr A man 2 KW A nig A CacMnYnkrNIRsb eyIg)an P(ATaMgBIrelIk)  P(A) × P(A)

15.

1

x> rkcMnYnXøIRkhmEdlRtUvbEnßmcUlkñúgfg; tag y CacMnYnXøIRkhmEdlRtUvbEnßmcUlkñúgfg; naM[ cMnYnXøsI rubKW 15  x  y  25  y cMnYnxøIRkhmekIn)an 15  y naM[ RbU)abcab;)anXøIRkhmfµIKW P  1525  yy EtRbU)abEdlcab;)anXøIRkhmfµIesµInwg 23 eyIg)an 1525  yy  23 225  y   315  y  50  2 y  45  3 y 50  45  3 y  2 y 5 y

2



dUcenH cMnYnXøIBN’RkhmEdlRtUvbEnßm cUlkñúgfg;KWmancMnnY 4 RKab; .

2 2 4   3 3 9

dUcenH RbU)abEdlKb;)anGkSr A TaMgBIelIk KW P(ATaMgBIrelIk)  94 k> KNnacMnnY XøIBN’exovkñúgfg;enaH tag x CacMnYnXøIBN’exovEdlRtUvrk enaHcMnYnXøITaMgGs;KW 15  x CacMnYnkrNIGac naM[ P(Rkhm)  1515 x Et RbU)abEdlcab;)anXøIBN’RkhmesµInwg 53 eyIg)an 1515 x  53

16.

15  5 3 x  25  15 x  10

15  x 

dUcenH cMnnY XøIBN’exovmancMnYn 10 RKab;

136

៩ ចម្ងាយរវាងពីរចំណុច 1.

គណនាចម្ងាយរវាងពរី ចំណុច ដែលម្ងនកូអរដោដណែូចខាងដរោម។

k> 9 , 2 nig 6 , 8 K> 2 , 5 nig 0 , 0 g> 8 , 7 nig 8 ,  6 q> 100 ,  203  nig 97 ,  200  2. 3. 4. 5.

ចុងទាំងពីរននអងកតផ្ ់ ចិតរងវងម ់ យ ួ ម្ងនកូអរដោដនដរៀងគ្នា 3 , 1 និង  2 , 5 ។ ចូរគណនាោំរងវងរ់ ច ួ សង់រងវងដ់ នះ។

ចូរគណនាររដវងអងកតរ់ រូងននចតុដោណ PQRS ដែល P 2 , 3 , Q5 , 5 , R6 ,  6 នង ិ S  3 ,  3 ។

KLM ដែល K 2 , 8 , L10 , 11 នង ិ M 5 , 0  ជារតដី ោណសមបាត ។ ចូរគណនាររម្ងរតននរត ិ ីដោណ ABC ដែល A3 , 7  , B5 , 2 និង C  7 , 3 ។ ចូររង្ហាញថារតដី ោណ ចូររង្ហាញថា

6. 7.

ABC ជារតីដោណដកង រួចគណនានផ្ៃរកឡាររស់វា ។

y ដែើមបឱ្ ី យចម្ងាយរវាងពរី ចំណុចដែលម្ងនកូអរដោដន 4 , 2 នង ិ 4 , y  ដសមើនង ឹ 5 ឯកតា ។ ចូររកចំណុច C  x , 1 កាុងោរែង់រី 1 ដែើមបឱ្ ី យរតីដោណដែលម្ងនកំពូល A1 , 1 , B4 , 7  និង C  x , 1 ចូររកតនមល

ជារតីដោណសមបាតដែល

8.

x> 5 ,  3 nig  2 , 4 X>  6 ,  3 nig 2 , 1 c> 3 , 12  nig 7 , 12  C>  3 , 8 nig  4 , 7

AB  AC ។

កំពូលននរតដី ោណមួយម្ងនកូអរដោដន  3 , 2 , 9 , 2 នង ិ 3 , 10  ។ ក. ចូរគណនាររដវងររុងទាំងរីននរតីដោណ។ ខ. ចូររបារ់ររដេររតីដោណដនះ។

9.

កំពូលននរតដី ោណមួយម្ងនកូអរដោដន  1 ,  2 , 5 ,  2 ,  1 , 4 នង ិ 5 , 4  ។ ក. ចូរគណនាររដវងររុង និងររដវងអងកតរ់ រូងននចតុដោណ។ ខ. ដតើដគសនាិោានែូចដមេចចំដបាះចតុដោណដនះ ?

10.

កូអរដោដនកំពូលររស់ចតុដោណមួយម្ងន 2 ,  1 , 6 , 4 , 2 , 9 នង ិ  2 , 4 ។ ក. ចូរគណនាររដវងររុង និងររដវងអងកតរ់ រូងននចតុដោណ។ ខ. ចូររបារ់ររដេរននចតុដោណដនះ។

11. 12.

ចតុដោណមួយម្ងនកំពូល  2 ,  3 ,  3 , 1 , 5 ,  1 នង ិ 4 , 3 ។ ដតច ើ តុដោណដនះម្ងនរាងជាអវ? ី ក. A5 , 8 និង B 5 , 12 

13.

 

ចូរគណនាកូអរដោដនននចំណុចកណ្ត េ លនន AB រួចដៅចំណុចកាុងតរមុយអរតូណរដមតាមករណីនម ួ ៗែូចខាងដរោម ី យ ខ. A 5 , 2 និង B 5 , 14  ។

 

ដរររើ រ ូ មនេកូអរដោដនននចំណុចកណ្ត េ លអងកត។ ់ ចូរគណនាកូអរដោដនចំណុចកណ្ត េ លននអងកត់ AB កាុងករណី នម ួ ៗែូចខាងដរោម ។ ី យ

ក. A 3 ,  5 និង B7 ,  5

ខ. A 8 ,  6 និង B4 , 2

គ. A3t  5 ,  7  និង Bt  7 , 7  , t  1

14.

ចូរគណនាកូអរដោដនននចំណុចកណ្ត េ ល ចូរគណនាររដវង

15.

ឃ. Aa , b  នង ិ Ba , c  ។

M ននអងកតរ់ វាងពរី ចំណុច A 3 ,  1 នង ិ B5 , 7  ។

AM និង BM ។ ដគឱ្យ M 1 ,  2  ជាចំណុចកណ្ត េ លននអងកត់ AB  ដែល A 2 , 2 ។ ចូរគណនាកូអរដោដនននចំណុច B ។

137

16. 17.

រងវងម ់ យ ួ ម្ងនផ្ចត ់ ចិតរងវងដ់ នះម្ងនចំណុចចុងមួយរតង់ V 3 , 8 ។ គណនាកូអរដោដនននចំណុច ិ F  2 , 6  ។ អងកតផ្

T ដែលជាចំណុចចុងម្ងាងដរៀតននអងកត់ TV  រួចសង់រងវងដ់ នះ។ កូអរដោដនននកំពូលររដលឡូរោមមួយដសមើ 1 , 1 , 2 ,  3 ,  3 ,  1 និង  2 ,  5 ។ ចូរគណនាកូអរ ដោដនននចំណុចកណ្ត េ លននអងកតរ់ រូងទាំងពីរ។ ដតើដគសនាិោានបានយ៉ាងែូចដមេច?

18.

ចតុដោណមួយម្ងនកំពូល E 5 , 3 , F 5 ,  5 , G 3 ,  3 នង ិ H  1 , 5 ។ ចូរគណនាកូអរដោដននន ចំណុចកណ្ត េ ល A , B , C និង រាងជាអវី ?

19.

D ននររុង EF  , FG  , GH  និង EH  ។ ដតើចតុដោណ ABCD ម្ងន

ចតុដោណដកងមួយកំណត់ដោយចំណុច A3 , 2 , B9 , 2 , C 9 , 6 នង ិ D3 , 6 ។ ចូររាយរញ្ជាក់ថា ចតុដោណដែលកំណត់ដោយ ចំណុចកណ្ត េ លននររុងទាំងរួន ររស់ចតុដោណដកងខាងដលើជាចតុដោណដសមើ។

20.

ចតុដោណមួយម្ងនកំពូល P 3 ,  2 , Q 1 , 5 , R3 , 1 និង S 5 ,  4 ។ ដរើ A , B , C និង

     

 

D

ជាចំណុចកណ្ត េ លដរៀងគ្នាននររុង PQ , QR , RS នង ិ SP ។ ចូររង្ហាញថា

21.

ABCD ជាររដលឡូរោម ។





ដគម្ងនអងកត់ P1 P2 ដែល P1  x1 , y1  និង P2 x2 , y 2  ។ ចូរគណនាកូអរដោដនននចំណុច





ចំណុចដែលដចកអងកត់ P1 P2 ជារីដផ្ាកដសមើៗគ្នា ។

22.

23.

 x  x2 y1  y 2  P1 x1 , y1  , Pm  1 ,  នង ិ P2 x2 , y 2  ។ 2   2 ចូររង្ហាញថា P1 Pm  Pm P2  P1 P2 ។

A និង B ជា

ដគម្ងនចំណុច

ដគឱ្យ A1 , 0  និង B3 , 2 រួចសង់រងវងដ់ ែលម្ងនអងកតផ្ ់ ចិត ក. ចូររកកូអរដោដនននផ្ចិតរងវងដ់ ែលតាងដោយចំណុច ខ.

5 M ជាចំណុចមួយដែលម្ងនកូអរដោដន  , 2 ដែើមបឱ្ ិ ដៅដលើរងវង់ រួចរញ្ជាក់ដតើ M ី យ M ឋត

y

AB ។

I។



 y  ចូរកំណត់ y  ម្ងនរីតាង ំ រានា ុ ម ន?



x

O

A

y

DDCEE

3

138

B



x



KNnacm¶ayrvagBIrcMNuc EdlmankUGredaen ³ k> 9 , 2 nig 6 , 8 ebI d Cacm¶ayrvagBIrcMNucenH eyIg)an ³ 1.

d 

X>  6 ,  3 nig 2 , 1 ebI d Cacm¶ayrvagBIrcMNucenH eyIg)an ³ d

6  92  8  22  32  6 2

 82  4 2  64  16  80  16  5  4 5

 9  36

dUcenH KNna)ancm¶ay d  4 5 ÉktaRbEvg

 45  95

g> 8 , 7 nig 8 ,  6 ebI d Cacm¶ayrvagBIrcMNucenH eyIg)an ³ 5 ÉktaRbEvg

3 5

dUcenH KNna)ancm¶ay d  3

d

x> 5 ,  3 nig  2 , 4 ebI d Cacm¶ayrvagBIrcMNucenH eyIg)an ³ d 



dUcenH KNna)ancm¶ay d  13 ÉktaRbEvg c> 3 , 12  nig 7 , 12  ebI d Cacm¶ayrvagBIrcMNucenH eyIg)an ³

 2  49 7 2

d

dUcenH KNna)ancm¶ay d  7 2 ÉktaRbEvg K> 2 , 5 nig 0 , 0 ebI d Cacm¶ayrvagBIrcMNucenH eyIg)an ³ 

0  5  0  2  52   22 2

8  82   6  72 2 0 2   13

 132  13

 2  52  4  32  7 2  7 2

 49  49

d

2  62  1  32

2

 42  02  42  4

dUcenH KNna)ancm¶ay d  4 ÉktaRbEvg q> 100 ,  203  nig 97 ,  200  ebI d Cacm¶ayrvagBIrcMNucenH eyIg)an ³ d

 25  4



 29

dUcenH KNna)ancm¶ay d 

29

7  32  12  122

97  100 2   200  203 2  32  32

 9  9  18  3 2

ÉktaRbEvg

dUcenH KNna)ancm¶ay d  3 2 ÉktaRbEvg 139

C>  3 , 8 nig  4 , 7 ebI d Cacm¶ayrvagBIrcMNucenH eyIg)an ³

3.

KNnaRbEvgGgát;RTUgénctuekaN PQRS eyIgman kUGredaenéncMNcu dUcxageRkam ³

 4  32  7  82  12   12

d 



 2

6

2

-KNnaRbEvgkaMrgVg; ³ edaycugTaMgBIrénGgát;p©itmankUGredaen 3 , 1 nig  2 , 5 ebI d CaRbEvgGgát;p©it enaH 

3

3

dUcenH KNna)ancm¶ay d  2 ÉktaRbEvg

d

Q

P

 11

2.



5

S

5

3



6

-KNnaRbEvgGgát;RTUg PR ³ PR 

 2  32  5  12  52  4 2



6  22   6  32 2 8 2   9 

 64  81  145

 25  16

dUcenH RbEvgGgát;RTUg PR 

 41

naM[ kaMrgVg; R  d2 

41 2

dUcenH kaMrgVg;manRbEvg R 

ÉktaRbEvg 41 2

145

ÉktaRbEvg

-KNnaRbEvgGgát;RTUg QS ³

ÉktaRbEvg

-sg;rgVg;enH ³ edIm,I[gayRsYlsg;rgVg;enH eyIgrkp©itrbs;rgVg; p©it I  3 2 2 , 1 2 5  b¤ I  12 , 3 

QS  

 3  52   3  52  82   82

 64  64  8 2

dUcenH RbEvgGgát;RTUg QS  8 2 ÉktaRbEvg 4.

 2 , 5

bgðajfa RtIekaN KLM CaRtIekaNsm)at ³ eyIgman K 2 , 8 , L10 , 11 nig M 5 , 0  L10 , 11

11



R

1  I  , 3 2 

8



O

2

K 2 , 8

3 , 1

140

 5

M 5 , 0

10

-KNnaRbEvg KL ³ KL 

naM[ brimaRténRtIekaN ABC KW ³ P  AB  AC  BC

10  22  11  82

 29  2 29  145

 8 2  32

 3 29  145

ÉktaRbEvg

 64  9  73

dUcenH

-KNnaRbEvg KM ³ KM  

5  22  0  82 2 32   8

-bgðajfa ABC CaRtIekaNEkg eday AB  AC   29   2 29  2

ÉktaRbEvg

 9  64  73



C  7 , 3 

7

3

2

3



AC  

AB  AC 2 29  2 29   29 2

dUcenH KNna)an S

ÉktaRbEvg

 4  29  2 29

BC  

6.

 7  32  3  72  102   42

ABC

2

 29

ÉktaépÞRkLa ÉktaépÞRkLa

2

 y  22  5  y  22  25

ÉktaRbEvg

 7  52  3  22  122  12

 144  1  145

2

rktémøén y EdleFVI[cm¶ayénBIcMNucesµI 5 ³ eyIg)an 4  4   y  2  5

>

 100  16  116

2

S ABC 

5

5  32  2  72 2 2 2   5

 4  25  29

2

-KNnaépÞRkLaénRtIekaN ABC ³ eday ABC CaRtIekaNEkgRtg; A eyIg)an

-KNnabrimaRténRtIekaN ABC ³ AB 

2

2

A3 , 7

>

2

2

 B5 , 2

O

2

ehIy BC   145  145 enaHeyIg)an AB  AC  BC tamRTWsþIbTBItaK½r AB  AC  BC enaH ABC CaRtIekaNEkgRtg; A dUcenH bgðaj)anfa ABC CaRtIekaNEkg

eyIgman A3 , 7 , B5 , 2 nig C 7 , 3 7

2

2

 29  4  29  145

edayRtIekaN KLM man KL  KM dUcenH KLM CaRtIekaNsm)at 5.

ÉktaRbEvg

P  3 29  145

naM[

y  2   25 y  2  5 y  2  5 y  5 2 y  7  y  2  5   y  5  2   y  3   

dUcenH témørk)anKW

ÉktaRbEvg 141

y  7 , y  3

.

7.

rkcMNuc C x , 1 kñúgkaRdg;TI 1 ³ eyIgman A1 , 1 nig B4 , 7 ehIyman AB  

4  12  7  12 4  12  7  12

 32  6 2  9  36  45 AC 

eday

x  12  1  12

AB  AC

x  12



x> R)ab;RbePTénRtIekaNenH ³ edayRtIekaN ABC enHman AC  BC  10 ÉktaRbEvg dUcKña dUcenH ABC CaRtIekaNsm)aTmankMBUl A . 9. eyIgmankMBUlctuekaNtagdUcxageRkam ³

enaHeyIg)an ³

C  1 , 4 

x  12  45 x  12  45

D5 , 4  

x  1   45 x  3 5  1

O

cMeBaH x  3 5  1  0 minyk eRBaH C x , 1 enAkñúgkaRdg;TI 1 enaH x  0 dUcenH cMNcu C 3 5  1 , 1 . 8.

 A 1 ,  2

k> -KNnaRbEvgRCug ³ É>RbEvg AC   1  1  4  2  6  6 É>RbEvg CD  5  1  4  4  6  6 É>RbEvg BD  5  5  4  2  6  6 É>RbEvg dUcenH RbEvgRCugKNna)an ¬ÉktaRbEvg¦ AB  6 / AC  6 / CD  6 / BD  6 -KNnaRbEvgGgát;RTUg ³ AB 

k> KNnaRbEvgRCugTaMgbIénRtIekaN ABC ³ eyIgtagkMBUlTaMgbIénRtIekaNenaHeday ³ A 3 , 2 , B9 , 2 nig C 3 , 10  eyIg)an AB 

AC 

ÉktaRbEvg

3  32  10  22

 62  82  100  10 BC 



5  12   2  22 2

9  32  2  22

 12 2  12

 B5 ,  2 

ÉktaRbEvg

3  92  10  22  62  82  100  10 ÉktaRbEvg

 62  6

2

2

2

2

2

2

2

2

AD 

5  12  4  22

BC 

1  52  4  22   62  62  6

 62  62  6 2 2

dUcenH RbEvgGgát;RTUgKNna)anKW AD  6 2 ÉktaRbEvg / BC  6 2 ÉktaRbEvg x> snñdi æancMeBaHctuekaNenH ³ edayRbEvgRCug AB  AC  BD  CD  6 nigRbEvgGgát;RTUg AD  BC  6 2 dUcenH ctuekaNenHKWCakaery:agR)akd .

dUcenH KNna)anRbEvgRCugTaMbIénRtIekaNKW ÉktaRbEvg AC  10 ÉktaRbEvg BC  10 ÉktaRbEvg AB  12

142

10.

eyIgtagkUGredaenénkMBUlrbs;ctuekaNeday³ A2 ,  1 , B6 , 4 , C 2 , 9 nig D 2 , 4 

11.

C 2 , 9

etIctuekaNenH manragCaGVI ? eyIgtagkUGredaenénkMBUlrbs;ctuekaNeday³ A 2 ,  3 , B 3 , 1 , C 5 ,  1 nig D4 , 3 

B6 , 4 

B 3 , 1



4

D 2 , 4

2



2

2

O

2 2

O

2 

4

6

BC  CD 

AB 

6  22  4  12  4 2  52  41  2  22  4  12   42  52  41 2  62  9  42   42  52  41  2  22  4  92   42   52  41

BD  AC  BD  AD  BD 

-KNnaRbEvgGgát;RTUgénctuekaN ³ 2  22  9  12  10 2  10  2  62  4  42   82  8

dUcenH KNna)anRbEvgGgát;RTUgKW ³ AC  10 , BD  8 ¬ÉktaRbEvg¦ x> R)ab;RbePTénctuekaNenH ³ edayRbEvgRCug AB  AD  BC  CD  41 RbEvgGgát;RTUg AC  BD tamRTwsþI ³ ctuekaNEdlmanRCugTaMgbYnesµIKña ehIyGgát;RTUgminesµKI ña vaCactuekaNesµI . dUcenH ctuekaNenHKWCa ctuekaNesµI .

C 5 ,  1

 3  22  1  32   12  4 2  17 4  52  3  12   12  4 2  17 5  22   1  32  7 2  2 2  53 4  32  3  12  7 2  2 2  53 4  22  3  32  6 2  6 2  6 2 5  32   1  12  82   22  2 17

edayctuekaNenHman ³ -RbEvgRCug AB  BD  17 , AC  BD  53 -RbEvgGgát;RTUg AD BD tamRTwsþI ³ ctuekaNEdlmanRCugesµKI ñaBIr² ehIy manGgát;RTUgminesµKI ña vaCaRbelLÚRkam . dUcenH ctuekaNenHmanragCa RbelLÚRkam .

AB  41 , AD  41 , BC  41 , CD  41

BD 



eyIgKNnaRbEvgRCug nigRbEvgGgát;RTUg ³

dUcenH KNna)anRbEvgRCug ¬ÉktaRbEvg¦KW

AC 

4



k> -KNnaRbEvgRCug ³ AD 

2

A 2 ,  3

A2 ,  1

AB 

D4 , 3

4

6

KNnakUGredaencMNuckNþalén AB rYcedA kñúgtRmúyGrtUNrem tamkrNInImYy² ³ k> A5 , 8 nig B5 , 12  tag I CacMNuckNþalén A nig B eyIg)an ³  5  5 8  12  I ,  b¤ I 5 , 10  2   2 12.

dUcenH cMNcu kNþal A nig B KW I 5 , 10  . 143

-edAcMNuckñúgtRmúyGetUNrem ³

x> eyIgman A 8 ,  6 nig B4 , 2 tamrUbmnþ M  x 2 x , y 2 y 

 B5 , 12 

A

I 5 , 10 

10

naM[

 A5 , 8

8

B

A

 8 4 6 2  M ,  2   2

B

b¤ M  2 ,  2

dUcenH kUGredaencMNuckNþalKW

M  2 ,  2

6

K> eyIgman A3t  5 ,  7 nig Bt  7 , 7 tamrUbmnþ M  x 2 x , y 2 y  naM[ M  3t  52 t  7 ,  72 7  b¤ M 2t  6 , 0

4

A

2

O

2

6

4

dUcenH cMNcu kNþalKW

x> A 5 , 2 nig B 5 , 14  tag J CacMNuckNþalén A nig B eyIg)an ³   5  5 2  14  J ,  b¤ J  5 , 8 2   2 dUcenH cMNcu kNþal A nig B KW J  5 , 8 -edAcMNuckñúgtRmúyGetUNrem ³ B 5 , 14  

A

8

6

4

O

KNnakUGredaencMNuckNþalén AB³ k> eyIgman A 3 ,  5 nig B7 ,  5 tamrUbmnþ M  x 2 x , y 2 y  naM[

 3 7 55 M ,  2   2

A

B

-KNnaRbEvg AM nig BM ³ AM  1  3  3  1  4 2  4 2  2 2

13.

B

B

dUcenH kUGredaencMNuckNþalKW M 1 , 3 .

2

A

M 2t  6 , 0

14.

10

6 4 2

B

X> eyIgman Aa , b nig Ba , c tamrUbmnþ M  x 2 x , y 2 y   a  a b  c  b¤  b  c  naM [ M , M a ,   . 2  2   2  dUcenH cMNcu kNþalKW M  a , b 2 c 

12

A 5 , 2 

A

-rkkUGredaenéncMNuckNþal M ³ eyIgman A 3 , 1 nig B5 , 7 naM[ M   32 5 ,  12 7  b¤ M 1 , 3

14

J  5 , 8 

B

A

2

2

BM  1  5  3  7   2

2

 42   42

dUcenH RbEvgKNna)anKW ³ AM  2 2 ÉktaRbEvg BM  2 2 ÉktaRbEvg

B

b¤ M 2 ,  5

dUcenH kUGredaencMNuckNþalKW M 2 ,  5 144

2 2

KNnakUGredaenéncMNuc B ³ tag Bx , y  CacMNucEdlRtUvrk eyIgmancMNuc A 2 , 2 nigcMNuc M 1 ,  2 eday M CacMNuckNþalénGgát; AB

15.

B

eyIg)an ³ naM[

KNnakUGredaencMNuckNþalGgát;RTUgTaMgBIr ³ tagkMBUlTaMgbYnenaHénRbelLÚRkameday A1 , 1 , B2 ,  3 , C  3 ,  1 nig D 2 ,  5

17.

B

  2  xB 1  2   2  y B  2  2  xB  2  2   y B  4  2

enaH

2 

 2  x B  2  2  y B  4



C  3 ,  1

4

.



-tag M CacMNuckNþalénGgát;RTUg AD naM[ M  1 2 2 , 1 2 5  b¤ M   12 ,  2 

naM[

T

enaH b¤

dUcenH cMNcu kNþal AD KW M   12 ,  2  -tag N CacMNuckNþalénGgát;RTUg BC naM[ N  2 2 3 ,  12 3  b¤ N   12 ,  2 

 xT  3  4   yT  8  12

 xT  7   yT  4

dUcenH cMNcu kNþal BC KW N   12 ,  2 

dUcenH kUGredaencMNuc T  7 , 4

.

-edaycMNuc M   12 ,  2  dUcnwg N   12 ,  2 

-sg;rgVg;enH ³

dUcenH eyIgsnñidæan)anfa cMNucTaMgBIrRtYtsIuKña V 3 , 8

F  2 , 6



T  7 , 4

KNnakUGredaenéncMNuckNþal A , B , C , D ³ eyIgmankMBUlénctuekaN E5 , 3 ; F 5 ,  5 ; G 3 ,  3 nig H  1 , 5 ³ eday A , B , C , D CacMNuckNþalerogKñaén EF  ; FG  , GH  nig EH  eyIg)an ³  55 35 A ,  b£ A5 ,  1 2   2

18.



8



6

4

2

6

B2 ,  3

D 2 ,  5

KNnakUGredaenéncMNuc T ³ tag T x , y  CacMNucEdlRtUvrk eyIgmancMNuc V 3 , 8 nigp©it F  2 , 6 eday F CacMNuckNþalénGgát; TV  eyIg)an ³

2 

16.

 xT  3  2  2   yT  8  6  2  xT  4  3   yT  12  8

2

O



 xB  4   y B  6

dUcenH kUGredaencMNuc B4 ,  6

T

2

4

A1 , 1

4

2

O

2

145

b¤ B1 ,  4 b¤ C 2 , 1 b¤ D2 , 4 dUcenH kUGredaenKNna)anKW ³ cMNuckNþal EF  KW A5 , 1 cMNuckNþal FG KW B1 ,  4 cMNuckNþal GH  KW C 2 , 1 cMNuckNþal EH  KW D2 , 4 53 53 B ,  2   2   3 1  3  5  C ,  2   2  5 1 3  5  D ,  2   2

Rsayfa ctuekaNEdlkMNt;)an CactuekaNEkg eyIgman A3 , 2 ; B9 , 2 ; C9 , 6 ; D3 , 6 tag K , L , M , N CacMNuckNþalerogKñaén RCug AB , BC  , CD , AD

19.

8 D3 , 6

6



4

N 3 , 4 

-bBa¢ak;BIragctuekaN ABCD ³ O

H  1 , 5 



4

4



2

O

4 

A5 ,  1



4 

B1 ,  4



KL 

F 5 ,  5

eyIgKNnaRbEvgRCugénctuekaN ABCD ³ AB  AD  CD  BC 

B9 , 2

4

8

6



K 6 , 2



L9 , 4



M 6 , 6

b¤ N 3 , 4 eyIgKNnaRbEvgRCugénctuekaN KLMN ³

2

G 3 ,  3





K 6 , 2

 39 2 2 K ,  2   2 99 26 L ,  2   2 93 66 M ,  2   2  33 2 6 N ,  2   2

E 5 , 3

2

2

 L9 , 4

A3 , 2

2



enaHeyIg)an ³

D2 , 4 

C  2 , 1





2

C 9 , 6

M 6 , 6

LM  MN 

1  52   4  12   42   32  5 2  52  4  12   32  52  34 2  22  4  12  4 2  32  5  2  12  1  42   32  52  34

KN 

9  62  4  22  32  2 2  13 6  92  6  42   32  2 2  13 3  62  4  62   32   22  13 3  62  4  22   32  2 2  13

eday ctuekaN KLMN manRbEvgRCug ³ KL  LM  MN  KN  13 dUcKña tamRTwsþI ³ ctuekaNEdlmanRCugTaMgbYnesµI²Kña enaHvaKWCactuekaNesµI dUcenH ctuekaNEdlkMNt;)anBIcMNuckNþal énRCugctuekaNEkgvaCa ctuekaNesµI

edayRbEvg AB  CD  5 nig AD  BC  34 tamRTwsþI ³ ctuekaNEdlmanRCugesµIKñaBIr² vaCa RbelLÚRkam dUcenH ctuekaN ABCD CaRbelLÚRkam . 146

bgðajfa ABCD CaRbelLÚRkam ³ eyIgman kMBUlénctuekaN P 3 ,  2 ; Q1 , 5 R 3 , 1 nig S 5 ,  4 Edlman A , B , C , D CacMNuckNþalerogKñaRCug PQ ; QR  ; RS  nig SP enaHeyIg)ankUGredayen ³   3  1  2  5  b¤ A  2 , 3  A ,    2 2    2  1 3 5 1  b¤ B1 , 3 B ,  2   2

20.

KNnakUGredaenéncMNuc A nig B ³ eyIgman P x , y  nig P x , y 

21.

1

1

//

A

O

A

B

1



P 3 ,  2

 R3 , 1

S 5 ,  4

AD 

1  22    3  3 

2

BC 

4  12    3  3  1  42    3  3 

2

CD 





2

 9

2

2

A



2

 9

81 117  4 2

 9

81 117  4 2

 9

9 3 5  4 2

2

B

enaH

9 3 5  4 2

2

2

B

x1  xB   x2  x A  x2 x  x B  2 x2 2 x    1  B  2 2 4  y1  y B   y2 y  y B  2 y2  y  y A  y2  2  1 B  2 2 4  x1  2 x2  x  4 xB  x1  xB  2 x2   B 3  3  4 y  y  y  2 y y  2  B 1 B  y  1 2 y2 B  3 

6 3   C 4 ,   2 

4



 2

1

A

A

 4 D1 ,  3



B

2

2



B

B

1  22   3  3 

P2 x2 , y2 

1

B1 , 3

AB 



1

A

2

//

1 2



2



B ? 

tag Ax , y  nig Bx , y  CacMNucRtUvrk eday A nig B Eck P P  CabIEpñkesµIKña eyIg)an P A  AB  BP naM;[ A CacMNuckNþalén P B eyIg)an x  x 2 x , y  y 2 y 1 ehIy B CacMNuckNþalén AP  eyIg)an x  x 2 x , y  y 2 y 2 yk 1 CMnYskñúg 2 enaHeyIg)an ³



4

//

O

Q 1 , 5

2

2



A ? 

1

3  A  2 ,   2 

2



b¤ b¤ D1 ,  3 -eyIgKNnaRbEvgRCugénctuekaN ABCD ³ 4

2

P1 x1 , y1 

3  C 4 ,   2 

 3  5 1 4  C ,  2   2 53 42 D ,  2   2

1



yk 3 CMnYskñúg 1 ³ x  2 x2  x1  1  4 x  2 x2 2 x1  x2 3  1  xA   2 3 2 3  y  2 y2  y  1 4 x  2 x2 2 y1  y 2 y  1 3  1  A  2 3 2 3 

eday AB  CD  3 25 , AD  BC  117 2 ctuekaNenHmanRCugesµIKñaBIr vaCaRbelLÚRkam dUcenH ctuekaN ABCD CaRbelLÚRkam .

dUcenH kUGredaen A 2 x 3 x

2 y1  y 2   3   x  2 x2 y1  2 y 2  B 1 ,  3  3  1

kUGredaen 147

2

,

bgðajfa P P  P P  P P ³ eyIgman P x , y  / P x , y  nig x x y y  P  ,  naM[eyIg)anRbEvg ³ 2   2

22.

1 m

1

1

m

1

2

2

1

1

rkkUGredaenénp©itrgVg;tageday I ³ eyIgman A1 , 0 nig B3 , 2 sg;rgVg;EdlmanGgát;p©it AB

23.

1 2

2

2

2

2

m

 x  x2   y  y2  P1 Pm   1  x1    1  y1  2  2    2

y

2

 x  x2  2 x1   y  y 2  2 y1    1   1  2 2     2

2

x

x  x2   y  y2   Pm P2   x2  1    y2  1  2   2   2

2

x2  x1 2   y 2  y1 2

eyIgKNnaplbUk P P

1 m

P1 Pm  Pm P2 

P1 Pm  Pm P2 

1 2 1 2

³

 Pm P2

x2  x1 2   y2  y1 2  x2  x1 

  y 2  y1 

AI 

Et P P  x  x    y  y  dUcenH bgðaj)anfa P P  P P  P P . -GñkGaceFVItamrebobmü:ageTotKW ³ eday P  x 2 x , y 2 y  KWCacMNuckNþal énBIrcMNuc P x , y  nig P x , y  naM[ P P  P P  12 P P enaH P P  P P  12 P P  12 P P  P P 2

1

eyIg)an

2

1

2

1 m

2

m

1

2

1 2

1

2

1 m

m 2

1 2

1 m

m 2

1 2

dUcenH bgðaj)anfa P P

1 m

2

1 2

1 2  1  y   2 4 1 2  1  y   2 4

y  1

2

7 2

dUcenH kMNt;)an y  1  27 , y  1  27 ehIy M manTItaMgBIrenAelIrgVg;KW

1 2

 Pm P2  P1 P2

 11  2

4 7 1 y   2

2

1

2 12  1  02

2

1  y 2  2  1

m

1

x 5 7  M 1  ,1  2  2

2

2

2

1



2

2

x2  x1 2   y2  y1 2

1 2

2

edayp©it I CacMNuckNþalénGgát;p©it AB eyIg)an I  1 2 3 , 0 2 2  b¤ I 2 , 1 dUcenH KNna)ankUGredaenp©it I 2 , 1 . x> kMNt; y edIm,I[ M  52 , y  zitenAelIrgVg; edIm,I[ M zitenAelIrgVg; luHRtaEt MI  AI Et MI   2  52   1  y   14  1  y 

1 x2  x1 2  1  y 2  y1 2 4 4 1 2

A1

y

2





O

B3 , 2

I 2 , 1

2

 2 x  x1  x2   2 y 2  y1  y 2    2    2 2     



1

x2  x1 2   y 2  y1 2

1 2



2

1 x2  x1 2  1  y 2  y1 2 4 4

 

5 7  M 2  ,1  2  2 

.

5 5 7 7  , M , 1  M  , 1    2  2  2 2

148

.

១០ 1.

k> a  2 ,  4 , 1

x>

k> 3 , 1 , 5 , 4 K>  2 , 1 ,  4 ,  4

x> 3 , 0 ,  3 ,  6 X> 1 , 4 ,  4 ,  2

k>  6,1 , 6 ,  2 K>  2,0 , 1 ,  8 g>  2.5, 1 ,  0.5 ,1

x> 3,  4 ,  9 , 2 X>  4.2,  4 ,  2.2 ,6 c> 0,5 , 3 ,  2.5

a

2 , 1 , 5  3

2.

3.

4.

0.8% 2000

80%

2008 5.

1992 1992

15.5%

6.

38%

2007 m

P

k> m  1 , P0 , 2 X> m  53 , P 1 ,  4

x> m  1 , P1 , 0 g> m  0 , P2 , 1

K> m  2 , P3 , 1 c> m   32 , P0 , 3

k> 2x  3 y  11

x> 4x  8 y 1  0

K> y   23 x  1

7.

8.

k> y  x  4 , x  y  5  0 K> 3x  y  4  0 , y  2  3x  1

x> y  2x  3 , x  2 y 1  0 X> 2 y  5x  6 , 5x  2 y 1  0

9.

k> y  3x 1 x> y  2 x  5 K> y  5x  4

1 , y x 3 , x  2y  6  0 , x  5y 1  0 149

10.

k> y  3x  4 x> 3x  2 y  5  0 K> 2x  2 y  9  0 X> x  5 y  6  0

5 , 1  2 , 4  5    , 0  3 

0 , 0

11.

k> y  12 x  4 x> x  y  5  0 K> 8x  3y  1  0 X> y   x  6

5 , 0 0 , 0  1 , 4 2   4 ,  3  A 3 , 5

d1

12. .

m

d2: y   m 1 x  2 d1 ឬ

d2

2 d2

m

d1

m

 6 , 0

B

A

B

yy

A  0 , 6 , B  3 , 0

13.

AB

AC

D D

AB

C

B

AC

A  6 , 2

14.

 AB C  2 , 6 C2

B  2 ,  2

CAB

AB

C

M  5 , 3

C2

A  6 , 0 , B  6 , 0

15.

C  6 , 0

C  3 , 9

ABC

ABC 16.

 a , 6

 2 , a

4x  2 y  b

a

b

17.

1973 47%

1990

38% x

3 150

x 0

1970

១០ 1.

sg;bnÞat;kat;tammYycMNuc nigmanemKuNR)ab;Tis k> eyIgman a  2 nigcMNuctageday A 4 , 1 eyIgsg;cMNuc A 4 , 1 rYcKUs 1 ÉktaecjBI A RsbG½kS ox tamTisedAviC¢man nigKUs 2 Ékta RsbnwgG½kS oy tamTisedAviC¢man enaHeyIg)an cMNuc B rYcKUsbnÞat;kat;tamcMNuc A nig B ³

2.

rkemKuNR)ab;TisénbnÞat;kat;tamBIrcMNuc ³ emKuNR)ab;TisénbnÞat;kat;tamBIrcMNuc y y Ax , y  nig Bx , y  KW a  x x *

A

A

B

B

A

B

A

B

k> manBIrcMNuctageday A3 , 1 , B5 , 4 emKuNR)ab;TisénbnÞat;Edlkat;tam A nig B kMNt;eday a  yx  xy  54 31  32 B

A

B

A

dUcenH emKuNR)ab;TisénbnÞat;KW a  32 . x> manBIrcMNcu tageday C3 , 0 , D 3 ,  6 emKuNR)ab;TisénbnÞat;Edlkat;tam C nig D kMNt;eday a  yx  xy   63  30   66  1

B A

x> eyIgman nigcMNuctageday eyIgsg;cMNuc A1 , 5 rYcKUs 3 ÉktaecjBI A RsbG½kS ox tamTisedAviC¢man nigKUs 2 Ékta RsbG½kS oy tamTisedAGviCm¢ an enaHeyIg)an cMNuc B rYcKUsbnÞat;kat;tamcMNuc A nig B ³

A1 , 5

2 a 3

D

C

D

C

dUcenH emKuNR)ab;TisénbnÞat;KW a  1 . K> BIrcMNuctageday I  2 , 1 , J  4 ,  4 emKuNR)ab;TisénbnÞat;Edlkat;tam I nig J kMNt;eday a  yx  xy   44  12   23  23 J

I

J

I

dUcenH emKuNR)ab;TisénbnÞat;KW a  23 . 

X> manBIrcMNuctageday M 1 , 4 , N 4 ,  2 emKuNR)ab;TisénbnÞat;Edlkat;tam M nig M kMNt;eday a  yx  xy  4214  36  2

A

B



N

M

N

M

dUcenH emKuNR)ab;TisénbnÞat;KW a  2 . 151

3.

rksmIkarénbnÞat;Edlkat;tamBIrcMNcu ³ k>manBIrcMNuctageday A 6 ,1 , B6 ,  2 naM[ emKuNR)ab;TisénbnÞat; AB KW a

K>manBIrcMNuctageday A2 , 0 , B1 ,  8 tag M x , y  CacMNucenAlIbnÞat; AB naM[ emKuNR)ab;TisénbnÞat; AM nig AB esµIKña eyIg)an yx  xy  yx  xy

 2 1  3 1   6   6 12 4

tag M x , y  CacMNucenAlIbnÞat; AB naM[ emKuNR)ab;TisénbnÞat; AM nig AB esµIKña eyIg)an x y 16   14

B

A

A

B

A

y 0 80  x2 1 2 y 8  x  2 1 y  8x  2 y  8 x  16

1 x  6 4 1 3 y   x  1 4 2 1 1 y x 4 2

y 1  

dUcenH smIkarbnÞat;rk)anKW y  8x  16 . X>BIrcMNuctageday A 4.2,  4 , B 2.2 , 6 tag M x , y  CacMNucenAlIbnÞat; AB naM[ emKuNR)ab;TisénbnÞat; AM nig AB esµIKña eyIg)an yx  xy  yx  xy

dUcenH smIkarbnÞat;rk)anKW y   14 x  12 . x>manBIrcMNuctageday A3 ,  4 , B 9 , 2 naM[ emKuNR)ab;TisénbnÞat; AB KW a

A

A

B

A

A

B

A

y   4  6   4   x   4.2   2.2   4.2  y  4 10  x  4. 2 2 y  4  5 x  4.2  y  5 x  21  4 y  5 x  17

2   4 6 1    9  3  12 2

tag M x , y  CacMNucenAlIbnÞat; AB naM[ emKuNR)ab;TisénbnÞat; AM nig AB esµIKña eyIg)an y x 34   12

dUcenH smIkarbnÞat;rk)anKW y  5x  17 .

1 y  4   x  3 2 1 3 y   x 4 2 2 1 5 y  x 2 2

g> manBIrcMNuctageday A2.5, 1 , B0.5 ,1 tag M x , y  CacMNucenAlIbnÞat; AB naM[ emKuNR)ab;TisénbnÞat; AM nig AB esµIKña eyIg)an yx  xy  yx  xy

dUcenH smIkarbnÞat;rk)anKW y   12 x  52 .

A

B

A

A

B

A

y   1 1   1  x  2 .5 0 .5  2 .5 y 1 2  x  2 .5  2 y  1    x  2 .5 

smÁal; ³ bnÞat;BIrRtYtelIKña enaHbnÞat;TaMgBIr manemKuNR)ab;TisesµIKña . 152

y   x  2.5  1 y   x  1 .5

5.

dUcenH smIkarbnÞat;rk)anKW y   x  1.5 . c> manBIrcMNcu tageday A0 , 5 , B3 ,  2.5 tag M x , y  CacMNucenAlIbnÞat; AB naM[ emKuNR)ab;TisénbnÞat; AM nig AB esµIKña eyIg)an yx  xy  yx  xy A

B

A

A

B

A

y  5  2.5  5  x0 30 y  5  7.5  x 3 y  4  2.5 x y  2.5 x  4



dUcenH smIkarbnÞat;rk)anKW y  2.5x  4 . 4. -sresrsmIkarTak;Tg;ng w karfycuHcMnnY ksikr ³ smIkarEdlRtUvsresrmanrag y  ax  b ÷eday cMnYnksikrfycuHCalMdab;eTAtamGRta 0.8% kñúgmYyqñaM enaHeyIg)an a  0.8% ÷ehIyenAqñaM 2000 ksikrmancMnYn 80% ebItag x CaqñaM nig y CacMnYnksikr enaHeyIg)an cMeBaH x  2000 naM[ y  80% -smIkar y  ax  b GacsresrCa ³ 80%  0.8%  2000  b 0.8  0.008  2000  b 0.8  16  b b  16.8

rksmIkarEdlTak;ngw GñkCk;)arI nigcMnYnqñaM ³ tag y  ax  b CasmIkarbnÞat;RtUvrk Edl x CacMnYnqñaM nig y CacMnYnGñkCk;)arI ÷GñkCk;)arImancMnYn 38% enAqñaM 1992 ³ naM[ y  38% nig x  1992 eyIg)an y  ax  b kat;cMNuc A1992 , 0.38 ÷GñkCk;)arImancMnYn 15.5% enAqñaM 2007 ³ naM[ y  15.5% nig x  2007 eyIg)an y  ax  b kat;cMNuc B2007 , 0.155  tag M x , y  CacMNucenAlIbnÞat; y  ax  b naM[ emKuNR)ab;TisénbnÞat; AM nig AB esµIKña eyIg)an yx  xy  yx  xy A

B

A

A

B

A

y  0.38 0.155  0.38  x  1992 2007  1992 y  0.38  0.225  x  1992 15 y  0.38  0.015 x  1992 y  0.38  0.015 x  1992 y  0.015x  29.88  0.38 y  0.015x  30.26

dUcenH smIkarrk)anKW y  0.015x  30.26 6.

dUcenH sresr)ansmIkar y  0.008x  16.8 . -eRbIsmIkar):an;sµancMnnY ksikrenAqñaM 2008 ³ enAqñaM 2008 mann½yfa x  2008 enaHeyIg)an ³ y  0.008 2008  16.8  0.736 b¤ y  73.6% dUcenH enAqñaM 2008 ksikrmancMnYn 73.6% .

sresrsmIkarbnÞat; sg;bnÞat; rYcrkcMNucRbsBV³ k> -eyIgman m  1 , P0 , 2 naM[ a  m  1 , x  0 , y  2 bnÞat;RtUvrkmanrag y  ax  b eyIg)an 2  1 0  b naM[ b  2 dUcenH smIkarbnÞat;RtUvrkKW y  x  2 . -sg;bnÞat; y  x  2 tamrebobemIl m  1 , P0 , 2

153

¬elOnCag eRbItaragtémøelx¦

-sg;bnÞat; y  2x  5 tamrebobemIl emKuNR)ab;Tis m  2 , P3 , 1

y  x2  

y  2 x  5

tamRkabcMNucRbsBVrvagbnÞat; y  x  2 nig ³ -G½kSGab;sIusKW  2 , 0 -G½kSGredaenKW P0 , 2 .





x> -eyIgman m  1 , P1 , 0 naM[ a  m  1 , x  1 , y  0 bnÞat;RtUvrkmanrag y  ax  b eyIg)an 0  11  b naM[ b  1 dUcenH smIkarbnÞat;RtUvrkKW y  x 1 . -sg;bnÞat; y  x 1 tamrebobemIl emKuNR)ab;Tis m  1 , P1 , 0

tamRkabcMNucRbsBVrvagbnÞat; y  2x  5 nig ³ -G½kSGab;sIusKW 2.5 , 0 -G½kSGredaenKW 0 , 5 . X> -eyIgman m  53 , P 1 ,  4 naM[ a  m  53 , x  1 , y  4 bnÞat;RtUvrkmanrag y  ax  b eyIg)an  4  53  1  b naM[ b   175

y  x  1

dUcenH smIkarbnÞat;RtUvrkKW



y

3 17 x 5 5

.

-sg;bnÞat; y  53 x  175 tamrebobemIl emKuNR)ab;Tis m  53 , P 1 ,  4



tamRkabcMNucRbsBVrvagbnÞat; y  x 1 nig ³ -G½kSGab;sIusKW P1 , 0 -G½kSGredaenKW 0 , 1 .

y

3 17 x 5 5



K> -eyIgman m  2 , P3 , 1 naM[ a  m  2 , x  3 , y  1 bnÞat;RtUvrkmanrag y  ax  b eyIg)an 1  2  3  b naM[ b  5 dUcenH smIkarbnÞat;RtUvrkKW y  2x  5 .



tamRkabcMNucRbsBVrvagbnÞat; y  x 1 nig ³ -G½kSGab;sIusKW 17 / 3 , 0 -G½kSGredaenKW 0 , 17 / 5 . 154

g> -eyIgman m  0 , P2 , 1 edayemKuNR)ab;Tis m  0 nig y  1 enaHbnÞat;EdlRtUvrk KWRsbnwgG½kSGab;sIus ehIymansmIkar y  1 dUcenH smIkarbnÞat;RtUvrkKW y  1 . -sg;bnÞat; y  1 RsbnwgG½kSGab;suIs

7.

y 1

8.

tamRkabcMNucRbsBVrvagbnÞat; y  1 nig ³ -G½kSGab;sIusKW Kµan eRBaH y  1 RsbG½kS ox -G½kSGredaenKW 0 , 1 . c> -eyIgman m   32 , P0 , 3 naM[ a  m   32 , x  0 , y  3 bnÞat;RtUvrkmanrag y  ax  b eyIg)an 3   32  0  b naM[ b  3 dUcenH smIkarbnÞat;RtUvrkKW

y

3 x3 2

.

-sg;bnÞat; y   32 x  3 RsbnwgG½kSGab;suIs 3 y   x3 2 



tamRkabcMNucRbsBVrvagbnÞat; y   32 x  3 nig ³ -G½kSGab;sIusKW 2 , 0 -G½kSGredaenKW 0 , 3 . 155

kñúgcMeNambnÞat;bI etIbnÞat;NaRsbKña ? k> 2x  3 y  11 b¤ y   23 x  113 x> 4x  8 y 1  0 b¤ y   12 x  18 K> y   23 x  1 edabnÞat; k> y   23 x  113 nig K> y   23 x  1 manemKuNR)ab;TisesµIKña naM[vaRsbKña dUcenH k> 2x  3y  11 Rsbnwg K> y   23 x  1 . rkemKuNR)ab;TisénbnÞat; etIvaRsbKña b¤eT ? k> y  x  4 manemKuNR)ab;Tis a  1 x y5 0 manemKuNR)ab;Tsi a  1 edaybnÞat;TaMgBIrmanemKuNR)ab;TisesµIKña dUcenH KUsmIkarbnÞat;TaMgBIrRsbKña . x> y  2x  3 manemKuNR)ab;Tis a  2 1 x  2 y  1  0 manemKuNR)ab;Tis a   2 edaybnÞat;TaMgBIrmanemKuNR)ab;TisminesµIKña dUcenH KUsmIkarbnÞat;TaMgBIrminRsbKñaeT . K> 3x  y  4  0 manemKuNR)ab;Tis a  3 y  2  3x  1 manemKuNR)ab;Tis a  3 edaybnÞat;TaMgBIrmanemKuNR)ab;TisesµIKña dUcenH KUsmIkarbnÞat;TaMgBIrRsbKña . X> 2 y  5x  6 manemKuNR)ab;Tis a  5 / 2 5x  2 y  1  0 manemKuNR)ab;Tis a  5 / 2 edaybnÞat;TaMgBIrmanemKuNR)ab;TisminesµIKña dUcenH KUsmIkarbnÞat;TaMgBIrminRsbKñaeT .

9.

etIKUsmIkarNaxøHEdlmanbnÞat;EkgKña ? k> y  3x 1 manemKuNR)ab;Tis a  3 1 1 y   x manemKuNR)ab;Tis a   3 3 edaybnÞat;TaMgBIrman a  a  3    13   1

ehIy y  ax  b kat;tamcMNuc  2 , 4 enaH x  2 , y  4 eyIg)an 4  32   2  b naM[ b  7

dUcenH KUénsmIkarenH manbnÞat;EkgKña . x> y  2 x  5 manemKuNR)ab;Tis a  2 1 x  2 y  6  0 manemKuNR)ab;Tis a  2 edaybnÞat;TaMgBIrman a  a  2  12  1  1

K> eyIgman 2x  2 y  9  0 nigcMNuc   53 , 0  bnÞat;RtUvrkmanrag y  ax  b EdlRsbnwg bnÞat; 2x  2 y  9  0 enaH a  1 ehIy y  ax  b kat;tamcMNuc   53 , 0  enaH x   53 , y  0 eyIg)an 0  1    53   b naM[ b   53

dUcenH smIkarbnÞat;RtUvrkKW y  32 x  7 .

dUcenH KUénsmIkarenH manbnÞat;minEkgKñaeT . K> y  5x  4 manemKuNR)ab;Tis a  5 1 x  5 y  1  0 manemKuNR)ab;Tis a   5 edaybnÞat;TaMgBIrman a  a  5    15   1

dUcenH smIkarbnÞat;RtUvrkKW y   x  53 . X> eyIgman x  5 y  6  0 nigcMNuc 0 , 0 bnÞat;RtUvrkmanrag y  ax eRBaHvakat; 0 , 0 ehIyRsbnwgbnÞat; x  5 y  6  0 enaH a  15

dUcenH KUénsmIkarenH manbnÞat;EkgKña . kMNt;smIkarbnÞat;EdlRsbnwg ³ k> eyIgman y  3x  4 nigcMNuc 5 , 1 bnÞat;RtUvrkmanrag y  ax  b eday y  ax  b Rsbnwg y  3x  4 enaH a  3 ehIy y  ax  b kat;tamcMNuc 5 , 1 enaH x  5 , y  1 eyIg)an 1  3  5  b naM[ b  14 dUcenH smIkarbnÞat;RtUvrkKW y  3x  14 .

10.

dUcenH smIkarbnÞat;RtUvrkKW y  15 x . kMNt;smIkarbnÞat;EdlEkgnwg ³ k> eyIgman y  12 x  4 nigcMNuc 5 , 0 bnÞat;RtUvrkmanrag y  ax  b EdlEkgnwg bnÞat; y  12 x  4 naM[ a  12  1 b¤ a  2 ehIy y  ax  b kat;tamcMNuc 5 , 0 enaH x  5 , y  0 eyIg)an 0  2  5  b naM[ b  10 dUcenH smIkarbnÞat;RtUvrkKW y  2x  10 .

11.

x> eyIgman 3x  2 y  5  0 nigcMNuc  2 , 4 bnÞat;RtUvrkmanrag y  ax  b EdlRsbnwg bnÞat; 3x  2 y  5  0 enaH a  32 156

x> eyIgman x  y  5  0 nigcMNuc 0 , 0 bnÞat;RtUvrkmanrag y  ax eRBaHvakat; 0 , 0 ehIy y  ax Ekgnwg x  y  5  0 man a  1 naM[ a 1  1 b¤ a  1 dUcenH smIkarbnÞat;RtUvrkKW y  x .

k> kMNt;smIkarénbnÞat; d ³ bnÞat;RtUvkMNt;manrag d : y  ax  b eday d kat;tamcMNuc A 3 , 5 naM[ x  3 , y  5 ehIy d manemKuNR)ab;Tis a  2 eyIg)an 5   2 3  b naM[ b  1 dUcenH smIkarbnÞat; d : y  2x 1 . -sg;bnÞat; d : y  2x 1 ³

12.

1

1

1

1

smÁal; ³ bnÞat;Edlkat;tamKl;tRmúy 0 , 0 CabnÞat;EdlmansmIkarrag y  ax .

1

1

K> eyIgman 8x  3y  1  0 nigcMNuc bnÞat;RtUvrkmanrag y  ax  b EdlEkgnwgbnÞat; 8 8x  3 y  1  0 manemKuNR)ab;Tis a   3 8 3 naM[ a    3   1 b¤ a  8 ehIy y  ax  b kat;tamcMNuc  1 , 4 enaH x  1 , y  4 eyIg)an 4  83  1  b naM[ b  358  1 , 4



A 3 , 5 

d1 : y  2 x  1

dUcenH smIkarbnÞat;RtUvrkKW y  83 x  358 . X> eyIgman y   x  6 nigcMNuc   4 ,  23  bnÞat;RtUvrkmanrag y  ax  b EdlEkgnwgbnÞat; y   x  6 manemKuNR)ab;Tis a  1 naM[ a  1  1 b¤ a  1 ehIy y  ax  b kat;tamcMNuc   4 ,  23  enaH x  4 , y   23 eyIg)an  23  1  4  b naM[ b  103

x> kMNt;témø m edIm,I[ d // d eyIgman d : y  m 1x  2 nigbnÞat; d : y  2 x  1 > edIm,I[bnÞat;TaMgBIr d nig d RsbKñaluHRtaEt ³ m 1  2 naM[ m  1 dUcenH témøkMNt;)anKW m  1 . -etImantémø m EdleFVI[ d  d b¤eT ? bnÞat; d  d luHRtaEt m  1 2  1 b¤  2m  2  1 naM[ m  32

dUcenH smIkarbnÞat;RtUvrkKW y  x  103 .

dUcenH mantémø m  32 EdleFV[I d

2

1

2

1

2

1

2

2

157

1

1

2

 d1

.

-sresrsmIkarkarénbnÞat;RtUvnwgtémø m nImYy² cMeBaH m  1 enaH d : y  2x  2 cMeBaH m  32 enaH d  : y  12 x  2 -sg;bnÞat;TaMgenaH ¬emIlsmIkarbnÞat; rYcsg;Etmþg¦

13.

2

kñúgtRmútGrtUNrem eyIgmanbIcMNucKW ³ A0 , 6 , B 3 , 0 nig C 6 , 0 AB : y  2 x  6

2

d 2 : y 

A0 , 6

1 D : y   x3 2

1 x2 2

AC : y   x  6

d1 : y  2 x  1

C 6 , 0

B 3 , 0

d 2 : y  2 x  2

D : y   x  3

k> -rksmIkarénbnÞat; AB ³ tag M x , y  CacMNucenAlIbnÞat; AB naM[ emKuNR)ab;TisénbnÞat; AM nig AB esµIKña eyIg)an yx  xy  yx  xy

K> sresrsmIkarbnÞat;kat;tamcMNuc A nig B ³ eyIgman A 3 , 5 nig B6 , 0 bnÞat;RtUvrkmanrag AB : y  ax  b tag M x , y  CacMNucenAlIbnÞat; AB naM[ emKuNR)ab;TisénbnÞat; AM nig AB esµIKña eyIg)an yx  xy  yx  xy A

B

A

A

B

A

y 5 05  x   3 6   3 y 5 5  x3 9 5 y  5    x  3 9 5 5 y   x 5 9 3 5 10 y  x 9 3 5 10 y  x x0 9 3  10  yy 0 ,  3  5 10 AB : y   x  9 3  10  yy 0 ,  3 

ebI

enaHbnÞat; Rtg;cMNuc

dUcenH bnÞat; nwgG½kS

B

A

A

B

A

y 6 06  x 0 30 y  6  2x y  2x  6

dUcenH smIkarbnÞat;

AB : y  2 x  6

.

- rksmIkarénbnÞat; AC ³ tag N x , y  CacMNucenAlIbnÞat; AC naM[ emKuNR)ab;TisénbnÞat; AN nig AC esµIKña eyIg)an yx  xy  yx  xy

CYbnwgG½kS

A

C

A

A

C

A

y6 06  x0 60 y  6  x y  x  6

ehIyCYb

Rtg;cMNuc

A

dUcenH smIkarbnÞat;

. 158

AC : y   x  6

.

x> rksmIkarénbnÞat; D ³ smIkarbnÞat; D RtUvrkmanrag D : y  ax  b eday D kat;tam C6 , 0 enaH x  6 , y  0 ehIy D EkgnwgbnÞat; AB : y  2x  6 naM[ a  2  1 enaH a   12 eyIg)an 0    12   6  b naM[ b  3

-rksmIkarénExSemdüaT½rrbs; AB ³ tag d : y  ax  b CasmIkarExSemdüaT½r AB naM[ d RtUvkat;tam I Edl I kNþal AB enaH I  6 2 2 , 2 2 2  b¤ I 4 , 0 ehIy d : y  ax  b RtUvEkgnwg AB : y  x  4 naM[ a 1  1 enaH a  1 eyIg)an d : 0  1 4  b enaH b  4 dUcenH ExSemdüaT½rén AB KW d : y   x  4 .

dUcenH bnÞat;rk)anKW D : y   12 x  3 . K> rksmIkarénbnÞat; D ³ smIkarbnÞat; D RtUvrkmanrag D : y  ax  b eday D kat;tamcMNuc B 3 , 0 naM[ x  3 , y  0 ehIy D RsbnwgbnÞat; AC : y  x  6 naM[ a  1 eyIg)an 0  1  3  b enaH b  3 dUcenH bnÞat;rk)anKW D : y  x  3 .

x> bgðajfa CAB CaRtIekaNsm)at ³ eyIgman C 2 , 6 , A6 , 2 nig B2 ,  2 eyIgKNnargVas;RCugénRtIekaN CAB ³ AB  BC 

k-rksmIkarbnÞat;kat;tamcMNuc A nig B ³ eyIgmanBIrcMNuc A6 , 2 nig B2 ,  2 tag M x , y  CacMNucenAlIbnÞat; AB naM[ emKuNR)ab;TisénbnÞat; AM nig AB esµIKña eyIg)an yx  xy  yx  xy B

A

A

B

A

16  64  80

2

2

2

2

2

2

2

2

y  x4 AB : y  x  4

16  16  32

K> rksmIkarénbnÞat; C ³ tag C : y  ax  b CabnÞat;RtUvrk eday C kat; C 2 , 6 enaH x  2 , y  6 ehIy C Rsbnwg AB : y  x  4 enaH a  1 eyIg)an C : 6  1  2  b enaH b  8 dUcenH bnÞat;rk)anKW C : y  x  8 . X> bgðajfa C kat;tam M  5 , 3 ³ ebIcMNuc M epÞógpÞat;smIkar C enaH C kat; M cMeBaH M  5 , 3 enaH 3  5  8 b¤ 3  3 Bit dUcenH bnÞat; C kat;tam M  5 , 3 .

y2 22  x6 26 y2 1 x6 y 2  x6

dUcenH smIkarbnÞat;

64  16  80

edayRtIekaN CAB man AC  BC  80 dUcenH CAB CaRtIekaNsm)atkMBUl C .

14.

A

 2  62  6  22  2  62   2  22   2  22  6  22 

AC 

.

2

159

2

k> rksmIkarénRCugRtIekaN ABC ³ eyIgman A 6 , 0 , B6 , 0 nig C 3 , 9 -rksmIkarénRCug AB ³ tag M x , y  CacMNucenAlIbnÞat; AB naM[ emKuNR)ab;TisénbnÞat; AM nig AB esµIKña eyIg)an yx  xy  yx  xy

x> rksmIkarénExSemdüaT½rrbs;RCugRtIekaN ABC -smIkarénExSemdüaT½rRCug AB ³ tag M : y  ax  b CaExSemdüaT½rRCug AB ³ eday M RtUvkatcMNuc I kNþalRCug AB naM[ I   62 6 , 0 2 0  b¤ I 0 , 0 ¬Kl;>¦ enaHsmIkarRtUvrkbþÚrmkCarag M : y  ax ehIy M : y  ax Ekgnwg AB: y  0 naM[ 0  ax enaH 0  x dUcenH smIkaremdüaT½r M : x  0 CaG½kS yy

15.

A

B

A

A

B

A

AB

AB

AB

AB

dUcenH smIkarénRCug AB: y  0 CaG½kS xx

AB

-smIkarénExSemdüaT½rRCug AC ³ tag M : y  ax  b CaExSemdüaT½rRCug AC ³ eday M RtUvkatcMNuc I kNþalRCug AC naM[ I   62 3 , 0 2 9  b¤ I  23 , 92  ehIy M Ekgnwg AC : y  x  6 naM[ a 1  1 enaH a  1 eyIg)an 92  1 23   b enaH b  3 dUcenH smIkaremdüaT½r M : y   x  3 . -smIkarénExSemdüaT½rRCug BC ³ tag M : y  ax  b CaExSemdüaT½rRCug BC ³ eday M RtUvkatcMNuc I kNþalRCug BC naM[ I  6 2 3 , 0 2 9  b¤ I  92 , 92  ehIy M Ekgnwg BC : y  3x  18 naM[ a   3  1 enaH a  1 / 3 eyIg)an 92   13  92   b enaH b  3

-rksmIkarénRCug AC ³ tag N x , y  CacMNucenAlIbnÞat; AC naM[ emKuNR)ab;TisénbnÞat; AN nig AC esµIKña eyIg)an yx  xy  yx  xy C

A

A

C

A

AC

AC

AC

-rksmIkarénRCug BC ³ tag K x , y  CacMNucenAlIbnÞat; BC naM[ emKuNR)ab;TisénbnÞat; BK nig BC esµIKña eyIg)an yx  xy  yx  xy B

B

C

B

AC

AC

dUcenH smIkarénRCug AC : y  x  6 .

C

AC

AC

y0 90  x   6 3   6 y  x6

B

AB

AB

y0 00  x   6 6   6 y0

A

AB

BC

BC

BC

BC

y0 90  x 6 36 y  3 x6 y  3 x  18

BC

BC

dUcenH smIkarénRCug BC : y  3x  18 .

dUcenH smIkaremdüaT½r M 160

BC

1 : y  x3 3

.

kMNt;témø a nig b ³ eyIgmanbnÞat; 4x  2 y  b eday cMNuc a , 6 enAelIbnÞat; 4x  2 y  b eyIg)an 4a  2  6  b b¤ 4a  12  b 1 ehIy cMNuc 2 , a  enAelIbnÞat; 4x  2 y  b eyIg)an 4  2  2a  b b¤ 2a  8  b 2 eyIgpÞwmtémø b énsmIkar 1 nig 2 eyIg)an³

16.

kMNt;smIkarEdlTak;TgnwgkareRbIfamBl BIeRbgeTAtamqñaM ³ tag y  ax  b CasmIkarEdlRtUvkMNt; Edl x CaqñaM nig y CafamBleRbgEdleRbIR)as; edayeKkMNt;yk x  0 RtUvnwgqñaM 1970 enaH qñaM 1973 kMNt;eday x  3 qñaM 1990 kMNt;eday x  20 eday enAqñaM 1973 famBleRbgeRbIR)as;KW 47% enAqñaM 1990 famBleRbgeRbIR)as;KW 38% naM[ x  3 RtUvnwgfamBleRbIR)as; y  47% x  20 RtUvnwgfamBleRbIR)as; y  38% edayemKuNR)ab;TisénbnÞat; CapleFobén bERmbRmYlén y nig bERmbRmYlén x eyIg)an a  38%20473 %

17.

4a  12  2a  8 4a  2a  8  12 2a  4 a  2

cMeBaH 1 :

a  2

ykeTACMnYskñgú 1 eyIg)an ³

4a  12  b 4 2  12  b b4

dUcenH témøkMNt;)anKW

a  2 , b  4

.

0.38  0.47 0.09  17 17 0.09 47%   3 b 17 0.09 0.47   3  b 17 0.27 b  0.47  17 8.26 b 17 0.09 8.26 y x 17 17 9 826 y x 1700 1700 a

-sg;bnÞat;enaH ³ cMeBaH b  4 enaHeyIg)an 4x  2 y  4 b¤ 2x  y  2 naM[ y  2x  2 eyIgsg;bnÞat; edayemIl y  2x  2 ¬mincaM)ac;eRbItaragtémøelx ¦

naM[

smIkarGacsresr b¤

dUcenH smIkarTMnak;TMngkMNt;)anKW y

y  2 x  2

161

9 826 x 1700 1700

.

១១

១ ឬ

1.

k>

x  y  8   x  y  2

3 ,  5

x>

K>

 y  3x  x  y  3

0 , 0

X>

2 x  y  3  x  2 y  4 x  y  3  2 x  2 y  6

2 ,  1

5 , 2

2.

k> xx  4yy14

x> xy  32  00

2 x  y  6   y  8  2x

x  y  1  x y  2  2  2





g>

c>

K> 2x x23yy813

X> xy  y3x 4

x  y  3   7  2x  y  2

C> xy  7y  3x



q>





3.

k> 52xx  22yy  92

x> 22xx  2y y58

K> 34xx  33yy  916

y  1 g> 37xx 10 2 y  13

c> 84xx  23 yy  1510

x  8 y  1 5 x  3 y  9  0 q> 210 C>  x  4 y  16 3x  4 y  17  0











X> 8x7 x 3 y6 y 17 2 





Q> 6x2x552yx67 y j> 43x x35y y97

d> 37xx  49 yy  01

19 z> 46x x23yy1.5

k> 4x x2 yy  16 1

x> 4x x23yy64

K> 2yx34yx135

23 X> 53xx  yy  15

g> 22x x3 yy  62

c> 4x x5 yy  112

11 q> 32xx  33yy 18

C> 54xx  32yy  14

3x  6 y  6  2 x  2 y

 x  10 y  1  2 x  3 y  2









4.







Q> 5.





5 x  7 y  3  2 x  14 y  2

j>



d>

m

4 x  6 y  12  2 x  my  5 m

mx  ny  10   4x  3 y  5

12x  3my  1  4 x  2 y  3 n 6 x  y  30   n  1x  1 y  n  m  3  162





z>

x  7  y  1 x 1  y  4

6.

2 3

19 000 ៛

2

8 000 ៛

7. 500 ៛

21 000 ៛

3

11

1 000 ៛

8. 7m 1m 9.

110 m

5m

2m

2

150 m 10.

20 $

H

P

H6

P4

1.5 $

H2

P5

1$

H4

P4

11.

22

246

12.

490

13.

5 4

14.

ABC

3 7 324 192 m

2.5 , 2 15.

BC , CA , AB

1.5

25 81

36

3 5

16. Ax  By  9

17.

 2 , 1

64 m

 3 , 3

A

B

2 2 1 x  y  2   1  5  3  x y 4

18.

19.

A

A B

2008 2.3 2.9

B

2009 2.7 3.3

2010 3.1 3.7

2011 3.5 4.1

A

DDCEE

3 163

B ឬ

១១ 1.

1

kUGredaenEdl[CacemøIyrbs;RbB½n§smIkarb¤eT? k> xx  yy  82  eyIgmankUGredaen 3 ,  5 mann½yfa cMeBaH x  3 , y  5 eyIg)an ³ 3   5  8 3  5  8 8  8 b¤ b¤    3   5  2 3  5  2  2  2 eXIjfa kUGredaenHvaepÞógpÞat;RbB½n§smIkar dUcenH 3 ,  5 CakUGredaenrbs;RbB½n§smIkar

X> 2x xy2y3 6 b¤ xx  yy  33 b¤ x  y  3   eyIgmankUGredaen 5 , 2 mann½yfa cMeBaH x  5 , y  2 eyIg)an ³ 5  2  3 b¤ 3  3 eXIjfa kUGredaenHvaepÞógpÞat;RbB½n§smIkar dUcenH 5 , 2 CakUGredaenrbs;RbB½n§smIkar 2.

2 x  y  3  x  2 y  4

k>

x> eyIgmankUGredaen 2 ,  1 mann½yfa cMeBaH x  2 , y  1 eyIg)an ³ 3  3 2  2   1  3 4  1  3 b¤ b¤    04 2  2   1  4 22  4 



edaHRsayRbB½n§smIkartamRkab ³ x  4 y  1   x  y  4



4 y  x  1   y  x  4



x 1  y  4   y   x 4 

eyIgeRbItaragtémøelxedIm,Isg;Rkab ³ -cMeBaH y  x 4 1 ³ xy  13 15 - cMeBaH y   x  4 ³ xy  22 eyIgsg;RkabénRbB½n§smIkar)an ³



eXIjfa kUGredaenHminvaepÞógpÞat;RbB½n§smIkar dUcenH 2 ,  1 minCakUGredaenrbs;Rb>smIkar

0 4

y

K> xy  y3x 3  eyIgmankUGredaen 0 , 0 mann½yfa cMeBaH x  0 , y  0 eyIg)an ³ 0  3  0 0  0 b¤   00 3 03 

x 1 4

y  x  4



edayRkabTaMgBIrkat;KñaRtg;cMNuc  3 , 1 mann½yfa x  3 , y  1 CacemøIyénRbB½n§

eXIjfa kUGredaenHminvaepÞógpÞat;RbB½n§smIkar dUcenH 0 , 0 minCakUGredaenrbs;Rb>smIkar

dUcenH RbB½n§smIkarmanKUcemøIy xy  31 . 

164

edayRkabTaMgBIrkat;KñaRtg;cMNuc 2 ,  3 mann½yfa x  2 , y  3 CacemøIyénRbB½n§

x> xy  32  00 b¤ xy  23   y  2 CabnÞat;edkkat;G½kSGredaenRtg; 2 x  3 CabnÞat;Qr kat;G½kSGab;sIusRtg;  3 eyIgsg;RkabénRbB½n§smIkar)an ³

dUcenH RbB½n§smIkarmanKUcemøIy xy  23 . 

X> xy  y3x 4 b¤  yy  3xx  4   tagragCMnYyedIm,Isg;Rkab ³ x 0 1 -cMeBaH y  3x y 0 3

y2

-cMeBaH y   x  4 eyIgsg;Rkab)an ³

x  3

x 0 1 y 4 3

edayRkabTaMgBIrkat;KñaRtg;cMNuc  3 , 2 mann½yfa x  3 , y  2 CacemøIyénRbB½n§ dUcenH RbB½n§smIkarmanKUcemøIy

 x  3  y  2

y  3x



.

y  x  4

K> 2x x23yy813 b¤ 

2 x  13   y  3  y  x 8  2

edayRkabTaMgBIrkat;KñaRtg;cMNuc 1 , 3 mann½yfa x  1 , y  3 CacemøIyénRbB½n§

eyIgeRbItaragtémøelxedIm,Isg;RkabénbnÞat; -cMeBaH y  2 x 3 13 xy 23 51 -cMeBaH

y

x 8 2

dUcenH RbB½n§smIkarmanKUcemøIy xy 13 .

x 2 4 y 3 2 y



2 x  13 3

y

g> 2yx8y2x6 b¤  yy  86  22xx   tagragCMnYyedIm,Isg;Rkab ³ -cMeBaH y  6  2 x xy 22 03

x 8 2



-cMeBaH y  8  2 x eyIgsg;Rkab)an ³ 165

x 3 4 y 2 0

q>

y  6  2x

c>

x  y  1  x y  2  2  2



 y  x 1   y  x  4

tamRkab bnÞat;TaMgBIrRsbKña ¬eRBaHmanemKuN R)ab;TisesµI -1 dUcKña¦ dUcenH RbB½n§smIkarKµanKUcemøIy .

taragtémøelxRtUvKñaén x nig y edIm,Isg;Rkab -cMeBaH y   x  1 xy 10 10 -cMeBaH y   x  4



 y  x  3   7  y   x  2

eRbItaragtémøelxedIm,Isg;Rkab ³ -cMeBaH y   x  3 xy 03 12 -cMeBaH y   x  72 xy 70/ 2 51/ 2

y  8  2x

tamRkabbnÞat;TaMgBIrRsbKña ¬eRBaHemKuNR)ab; Tis énbnÞat;TaMgBIrKWesµI -2 dUcKña ¦ dUcenH RbB½n§smIkarKµanKUcemøIy .

x  y  3   7  2x  y  2

C> xy  7y  3x b¤  yy  x x3 7   taragtémøelxRtUvKñaén x nig y ³ -cMeBaH y   x  7 xy 34 43

x 0 2 y 4 2

-cMeBaH

y  x3

x 0 1 y 3 4

y  x3 y  x  1

y  x  4 

y  x  7

tamRkab bnÞat;TaMgBIrRsbKña ¬eRBaHmanemKuN R)ab;TisesµI -1 dUcKña¦

tamRkabbnÞat;TaMgBIRbsBVKñaRtg;cMNuc dUcenH x  2 , y  5 CaKUcemøIyénRbB½n§smIkar

dUcenH RbB½n§smIkarKµanKUcemøIy . 166

3.

edaHRsayRbB½n§smIkartamviFIbUkbM)at; ³ k> 52xx  22yy  92 12

X> 8x7x 3y6y 17 2  16 x  6 y  34   7 x  6 y  2 9 x  36



naM[ x  77 b¤ x  1 yk x  1 CMnYskñúgsmIkar 1 eyIg)an ³

6 y  2  28 30 6 y 5 y

dUcenH RbB½n§smIkarmanKUcemøIy xy  45 

dUcenH RbB½n§smIkarmanKUcemøIy xy 12 . 



5  1 7 x  10 y  1  15x  10 y  65 2 22 x  66

naM[ x  2266  3 yk x  3 CMnYskñúgsmIkar 2 eyIg)an ³

x  y  4  2 x  y  5 3x  9

naM[ x  93  3 yk x  3 CMnYskñúgsmIkar 1 eyIg)an ³

15   3  10 y  65 10 y  65  45

3 y  4

 20 10 y  2

y  43

y

y 1

dUcenH RbB½n§smIkarmanKUcemøIy xy  13 .

dUcenH RbB½n§smIkarmanKUcemøIy xy  32 .





1 2



c> 84xx  23 yy  1510

  2

  8 x  6 y  30 1  8 x  2 y  10 2 8 y  40

3x  3 y  9  4 x  3 y  16 7 x  7

naM[ x  77  1 yk x  1 CMnYskñúgsmIkar 1 eyIg)an ³ 3 1  3 y  9 b¤ 3 y  9  3 y

.

y  1 g> 37xx 10 2 y  13

1 2

x  y  4  2 x  y  5

K> 34xx  33yy  916

1 2

 7  4   6 y  2

2 1  2 y  2 2 y  2  2 4 y 2 y  2

x>

eyIg)an ³

naM[ x  369  4 yk x  4 CMnYskñúgsmIkar 2 eyIg)an ³

2 x  2 y  2  5 x  2 y  9 7x  7

2 x  2 y  8  2 x  y  5

2

naM[ y  840  5 yk y  5 CMnYskñúgsmIkar 2 eyIg)an ³ 8 x  2 5  10

8 x  10  10 x0

12 4 3

dUCenH RbB½n§smIkarmanKUcemøIy xy  05 .

dUcenH RbB½n§smIkarmanKUcemøIy xy  41 .





167

q> 2x10x8y 4y116  5

 10 x  40 y  5 1   10 x  4 y  16 2 44 y  11 1 y 4 1  10 x  4   16 4  10 x  16  1

yk

j> 4x3x 3 y5 y 9 7

4  1 12 x  9 y  27   12 x  20 y  28 2 11y  55

1 naM[ y  11  44 4

55 naM[ y  11 5 yk y  5 CMnYskñúgsmIkar 1 eyIg)an ³

CMnYskñúgsmIkar 1 eyIg)an ³

x

15  10

12 x  9  5  27 12 x  27  45 72 x 12





x

dUcenH RbB½n§smIkarmanKUcemøIy

3 2

 x  3 / 2  y  1/ 4

90 5 x  3 y  9 C> 53xx  34 yy  17 b¤  3x  4 y  17 0   20 x  12 y  36 1  9 x  12 y  51 2 29 x  87



.

3   21x  28 y  7 1   21x  27 y  0 2 y7

4 3

naM[ y  71  7 yk y  7 CMnYskñúgsmIkar 2 eyIg)an ³

naM[ x  2987  3



dUcenH RbB½n§smIkarmanKUcemøIy Q>

6 x  5  2 x  7 y   2x  5 y  6



21x  27 7   0 21x  189 x

 x  3  y  2



x9



.

z> 4x6x 2 y3 y 119.5

3

  2  12x  6 y  57 1   60  5 12x  6 y  3 2 x  24 2 24x  60 5 2 x 2

 4 x  7 y  5 1   4 x  10 y  12 2 17 y  17

yk

1 naM[ y  17 17 yk y  1 CMnYskñúgsmIkar 1 eyIg)an ³  2 1  4x  7 1  5 b¤ 4x  5  7 enaH x  4 2 1  x   2   y  1

189 21

dUcenH RbB½n§smIkarmanKUcemøIy xy  97 .

y2

 4x  7 y  5  2 x  5 y  6   2

dUcenH RbB½n§smIkarmanKUcemøIy

  7 

d> 37xx  49 yy  01

20 3  12 y  36 12 y  36  60 24 12

x6

dUcenH RbB½n§smIkarmanKUcemøIy xy  65 .

yk x  3 CMnYskñúgsmIkar 1 eyIg)an ³ y

3

naM[ CMnYskñúgsmIkar eyIg)an ³

 5 12    6 y  3  2 6 y  3  30 9 y 2

.

dUcenH RbB½n§smIkarmanKUcemøIy xy  95/ 2/ 2 . 

168

4.

23 1 X> 53xx  yy  15 2  tam 1 : 5x  y  23 enaH y  5x  23 yk y  5x  23 CMnYs 2 eyIg)an ³

edaHRsayRbB½n§smIkartamviFICMnYs ³ 1 k> 4x x2 yy  16 1 2  tam 1 : x  2 y  16 b¤ x  16  2 y yk x  16  2 y CMnYskñúg 2 eyIg)an ³

2 : 3x  5x  23  15

3x  5 x  23  15  2 x  23  15  x  4

2 : 416  2 y   y  1

64  8 y  y  1 9 y  63



cMeBaH x  4 enaH

y  7

y  5x  23

cMeBaH y  7 enaH x  16  2 y

 5 4  23  3

 16  2 7 

dUcenH RbB½n§smIkarmanKUcemøIy xy  34 .

2

dUcenH RbB½n§smIkarmanKUcemøIy



x  2   y  7

.

g> 2x2x 3yy62 12  tam 1 :  2x  y  2 b¤ y  2  2x yk y  2  2x CMnYskñúg 2 eyIg)an ³

x> 4x x23yy64 12  tam 1 : x  2 y  6 b¤ x  6  2 y yk x  6  2 y CMnYskñúg 2 eyIg)an ³

2 :

2 : 46  2 y   3 y  4

24  8 y  3 y  4  5 y  20

cMeBaH y  4 enaH



cMeBaH

y4

 x  2  y  4

x0

enaH

 x0

y  2  2x  2  2  0  2



.

c> 4x x5 yy  112 12  tam 1 : x  5 y  11 enaH x  11 5 y yk x  11 5 y CMnYskñúg 2 enaHeyIg)an ³

K> 2yx34yx135 12  yk 1 CMnYskñúg 2 enaHeyIg)an ³

2 : 411  5 y   y  2

2 : 2 x  3 4 x  5  13

44  20 y  y  2

2 x  12 x  15  13 14 x  28

2 x  32  2 x   6 2x  6  6x  6 8x  0

dUcenH RbB½n§smIkarmanKUcemøIy xy  02 .

x  6  2 y  6  2  4  2

dUcenH RbB½n§smIkarmanKUcemøIy

>

 21y  42  y 

28  x 2 14

cMeBaH

cMeBaH x  2 enaH y  4x  5

dUcenH RbB½n§smIkarmanKUcemøIy

x  2   y  3

enaH

x  11 5 y  11  52  1

>

 42  5  3

y2

 42 2  21

>

dUcenH RbB½n§smIkarmanKUcemøIy xy 12 .

.



169

11 1 q> 32xx  33yy 18 2  tam 1 : 2 x  3 y  11 enaH 3 y  11 2x yk 3 y  11 2x CMnYskñúg 2 enaHeyIg)an ³

cMeBaH x  1 enaH 7 y 1  x

7 y  1   1 7y  2 y

2 : 3x  11  2 x   18

dUcenH RbB½n§smIkarmanKUcemøIy xy  21/ 7 .

x  18  11  x  7

cMeBaH x  7 enaH 3 y  11 2x y



11  2  7  1 3

j> 32xx 62yy  6 b¤ xx  2yy  2 iii   yk ii : x  y CMnYskñúg i  enaHeyIg)an ³

dUcenH RbB½n§smIkarmanKUcemøIy xy  71 . 

C> 54xx  32yy  14 

i  :

1 2

tam 1 : 5x  3 y  4 enaH x  4 53 y yk 3 CMnYskñúg 2 enaHeyIg)an ³

3

d>



y 1

tam * : x  10 y  10 1  10 dUcenH RbB½n§smIkarmanKUcemøIy xy 10 . 1 

1 2  83  1 5 5 2 2

4  3

z>

x  7  y  1 x 1  y  4

b¤ xx  4y 47y 

1 2

yk 1 : x  y  7 CMnYskñúg 2 enaHeyIg)an ³

5 x  7 y  3 1   x  7 y  1 2

Q> b¤ tam 2 : x  7 y  1 enaH 7 y 1  x yk 7 y 1  x CMnYskñúg 1 enaHeyIg)an ³

2 : y  7  4  4 y 3  3y y 1

tam 1 : x  y  7  1  7  8

: 5 x  1  x   3 4 x  4 x

 x  10 y   1 x  3 y  2 * *  2

2 5y  3y  2

dUcenH RbB½n§smIkarmanKUcemøIy x  y  12 .

1

2 3

* * : 1 10 y  3 y  2

yk y  12 CMnYskñúg 3 eyIg)an ³

5 x  7 y  3  2 x  14 y  2

y

yk * : x  10 y CMnYskñúg * * enaHeyIg)an ³

 11 1  22 y  11  y    22 2

x

y  2y  2 

dUcenH RbB½n§smIkarmanKUcemøIy x  y  23 .

2 : 4 4  3 y   2 y  1  5  16  12 y  2y 1 5 16  12 y  10 y  5

3 :

2 7

dUcenH RbB½n§smIkarmanKUcemøIy  xy   18 .    

4  1 4 170

5.

k> rktémø m edIm,I[RbB½n§smIkarKµancemøyI ³ -eyIgman 42xx  6myy 125

naM[ m  8 nig n  6 dUcenH rk)antémø m  8 nig



rMlwk ³ lkçN³énRbB½n§smIkardWeRkTI!manBIrGBaØat -ebI aa  bb  cc RbB½n§smIkarKµanKUcemøIy -ebI aa  bb  cc RbB½n§>manKUcemøIyeRcInrab;minGs;

dUcenH témøkMNt;)anKW m  3 . x  3my  1 -eyIgman 12 4 x  2 y  3 edIm,I[RbB½ns§ mIkarKµancemøIyluHRtaEt ³ 12  3m 1  3m 1 b¤   3  4 2 3 2 3  3m eyIg)an 3  2 b¤  3m  6 b¤ m  2

dUcenH témøkMNt;)anKW m  2 . x> rktémø m nig n edIm,I[RbB½n§smIkar manKUcemøIyeRcInrab;minGs; ³ -eyIgman mx4xny3 y 105  edIm,I[RbB½ns§ mIkarmanKUcemøIyeRcInrab;luHRta ³ m n 10 m n    2 b¤ 4 3 5 4 3 eyIg)an m4  2 nig n3  2

3

3

eyIg)an n 6 1  3 nig n30 m  3 naM[ n  1  2 b¤ n  3 ehIy m  n  10 enaH m  10  n  10  3  7 dUcenH témørk)anKW m  7 nig n  3 .

RbB½n§>manKUcemøIy EtmYyKt;.

edIm,I[RbB½ns§ mIkarKµanKUcemøIyluHRtaEt ³ 4 6 12 enaHeyIgTaj)an ³   2 m 5 4 6 12 b¤  4m  12 naM[ m   3 2 m 4

 

edIm,I[RbB½ns§ mIkarmanKUcemøIyeRcInrab;luHRta ³ 6 30 6 1 30 b¤ 3   n 1 nm n 1 1 n  m



-ebI

6 x  y  30

.

-eyIgman n 1x  1 y  n  m

RbB½n§smIkardWeRkTI!manBIrGBaØatmanrag aaxx  bbyy  cc

a b  a  b



n  6

rktémøesovePATaMgBIrRbePT ³ -tag x CatémøesovePAesþIg ¬KitCaerol¦ y CatémøesovePARkas; ¬KitCaerol¦ -tambRmab;RbFan ³ ÷suxTijesovePAesþIg 2k, nigRkas; 3k, Gs; R)ak;cMnYn 21 000 ` naM[ 2x  3 y  21000 1 ÷esATijesovePAesþIg 3k, nigRkas; 2k, Gs; R)ak;cMnYn 19 000 ` naM[ 3x  2 y  19000 2 -tam 1 nig 2 eyIg)anRbB½n§smIkar ³ 2 x  3 y  21000   2 eRbIviFIbUkbM)at;  3x  2 y  19000  3 6.

  4 x  6 y  42000   9 x  6 y  57000 5 x  15000

 3000 naM[ x  15000 5 cMeBaH x  3000 enaH 2  3000  3 y  21000  5000 naM[ 3y  15000 enaH y  15000 3 dUcenH esoePAesþIgtémø 3000` nigRkas; 5000`

171

7.

rkcMnYnRkdas;R)ak;RbePTnImYy² ³ -tag x CacMnYnRkdas;R)ak; 500` ¬KitCasnøwk¦ y CacMnYnRkdas;R)ak; 1000` ¬KitCasnøwk¦ -tambRmab;RbFan ³ ÷kñúgkarbUbmanRkdas;R)ak;BIrRbePTcMnYn 11 s> eyIg)an ³ x  y  11 i  ÷R)ak;srubkñgú kabUbmancMnYn 8000 ` eyIg)an ³ 500 x  1000 y  8000 ii -tam i  nig ii eyIg)anRbB½n§smIkar ³ i   x  y  11 eRbIviFICMnYs  500x  1000 y  8000 ii  tam i  : x  y  11 enaH x 11 y yk x 11 y CMnYskñúgsmIkar ii eyIg)an ³

eyIg)an 2x  1  y 2 -tam 1 nig 2 eyIg)anRbB½n§smIkar ³  x  1  y  7 1  x 2  2  1  y



 x  y  6 i    x  2  2 y ii 

yk i  CMnYskñúg ii eyIg)an ³ ii  : y  6  2  2 y

cMeBaH



y 8

CMnYskñúg i  eyIg)an ³ i  : x  y  6  8  6  14 > dUcenH ExSBYrmanRbEvg 14 m nig edImetñatmankm
rkRbEvgbeNþay nigTTwgéndIenaH ³ -tag x CaRbEvgbeNþay ¬KitCa Em:Rt¦ ii  : 50011  y   1000 y  8000 5500  500 y  1000 y  8000 y CaRbEvgTTwg ¬KitCa Em:Rt¦ 500 y  8000  5500 -smµtikmµ ³ dImanragCactuekaNEkg 2500 y 5 -tambRmab;RbFan ³ 500 cMeBaH y  5 enaH x  11 y  11 5  6 ÷dImanbrimaRt 110 m eyIg)an 2x  y   110 b¤ x  y  55 1 dUcenH Rkdas;R)ak; 500 ` mancMnYn 6 snøwk ehIymanépÞ S  xy Rkdas;R)ak; 1000 ` mancMnYn 5 snøwk . ÷ebIbEnßm 5m elIbeNþay nig 2m elITTwg enaH 8. rkRbEvgExSBYr nigkm -tambRmab;RbFan ³ -tam 1 nig 2 eyIg)anRbB½n§smIkar ³ ÷ebIKat;minbt;ExSCaBIr enaHKat;bgðÚtbMBg;mkdl;   2  x  y  55 eRbIviFIbUkbM)at;  dI ehIyenAsl;ExS 7m eTot 2 x  5 y  140  2 x  2 y  110 eyIg)an ³ x  1  y  7 1  2 x  5 y  140 naM[ y  10 ÷ebIKat;bt;ExSCaBIr Kat;bgðÚtmkdl;dlI µm 3 y  30 9.

2

172

yk y  10 CMnYskñúg 1 eyIg)an ³

rkBIrcMnYnenaH ³ -tag x nig y CaBIrcMnYnenaH Edl x  y -bRmab;RbFan ³ ÷pldkénBIrcMnYnesµnI wg 22 eyIg)an x  y  22 1 ÷BIrdgéncMnYnFMbUkbIdgéncMnYntUcesµInwg 246 eyIg)an 2x  3 y  246 2 -tam 1 nig 2 eyIg)anRbB½n§smIkar ³ 3  x  y  22 eRbIviFIbUkbM)at;  2 x  3 y  246

11.

> dUcenH RbEvgbeNþayKW 45m , TTwg 10m . 1

: x  10  55

 x  55  10  45

ebITijnM H 4 nignM P 4 etIeKRtUvGab;R)ak;b:unµan? edIm,IrkR)ak;Gab; eyIgRtUvdwgtémønMnImyY ²sin -tag x CatémønM H ¬KitCa $¦ y CatémønM P ¬KitCa $¦ -smµtikmµ ³ eKmanR)ak; 20$ -tambRmab;RbFan ³ ÷ebITijnM H 6 nignM P 4 eKGab;vij 1.5$ eyIg)an ³ 6x  4 y  20 1.5 b¤ 6x  4 y  18.5 1 ÷ebITijnM H 2 nignM P 5 eKGab;vij 1$ eyIg)an ³ 2x  5 y  20 1 b¤ 2x  5 y  19 2 -tam 1 nig 2 eyIg)anRbB½n§smIkar ³ 6 x  4 y  18.5   1 eRbIviFIbUkbM)at;  2 x  5 y  19 3

10.



3x  3 y  66  2 x  3 y  246 5 x  312

naM[ x  312  62.4 5 yk x  62.4 CMnYskñúg 1 1 : 62.4  y  22

y  62.4  22 y  40.4

dUcenH BIrcMnYnEdlRtUvrkKW 62.4 nig 40.4 . KNnacMnYnTaMgBIrenaH ³ -tag x nig y CaBIrcMnYnEdlRtUvKNnaenaH -bRmab;RbFan ³ ÷BIrcMnYnmanplbUkesµI 490 KW x  y  490 1 ÷BIrcMnYnmanpleFobesµInwg 73 KW xy  73 2 -tam 1 nig 2 eyIg)anRbB½n§smIkar ³

12.



 6 x  4 y  18.5  6 x  15 y  57 11y  38.5

naM[ y  3811.5  3.5 cMeBaH y  3.5 CMnYskñúg 2 eyIg)an ³ 2 : 2 x  53.5  19

2 x  19  17.5

 x  y  490  x  y  490   x 3 x 9 y  7  3  7  x y x  y 490     49 3 7 3  7 10

1.5 2 x  0.75 x



ebITijnM H 4 nignM P 4 enaHeKRtUvGab;R)ak;KW ³ 20  4  0.75  4  3.5  20  3  14   3 > dUcenH eKnwgGab;R)ak;[eyIgvijcMnYn 3$ .

tamlkçN³

smamaRt naM[ x  3 49  147 nig y  7  49  343 dUcenH cMnYnTaMgBIrenaHKW 147 nig 343 . 173

KNnacMnYnnImYy² ³ -tag x nig y CaBIrcMnYnEdlRtUvKNnaenaH -bRmab;RbFan ³ ÷pleFobénBIrcMnYnesµInwg 54 KW ³ xy  54 b¤Gacsresr 5x  4y 1 ÷kaerénpldkrbs;vaesµInwg 324 ³ eyIg)an x  y   324 b¤ x  y   324 naM[ x  y  18 2 b¤ x  y  18 3 -tam 1 nig 2 eyIg)anRbB½n§smIkar ³

-tam 1 nig 2 eyIg)anRbB½n§smIkar ³

13.

BC  CA  AB  192   BC CA AB    2 1.5  2.5

tamlkçN³énsmamaRt eyIg)an ³ BC CA AB BC  CA  AB 192      32 2.5 2 1.5 2.5  2  1.5 6 BC  32  BC  2.5  32  80 2.5 CA  32  CA  2  32  64 2 AB  32  AB  1.5  32  48 1.5

enaH

2

x y   5 4  x  y  18 x y x  y 18     18 5 4 54 1

dUcenH KNna)anRbEvgRCugénRtIekaN ABC KW BC  80m , CA  64m , AB  48m .

tamlkçN³énsmamaRt eyIg)an ³

KNnacMnYnnImYy² ³ -tag x nig y CaBIrcMnYnEdlRtUvKNnaenaH -bRmab;RbFan ³ ÷pldkénBIrcMnYnesµnI wg 36 KW x  y  36 1 x 25    ÷kaerénpleFobesµInwg 25 KW y 81 81

15.

naM[ x  5 18  90 nig y  4 18  72 -tam 1 nig 3 eyIg)anRbB½n§smIkar ³ x y   5 4  x  y  18 x y x  y  18     18 5 4 54 1

tamlkçN³énsmamaRt eyIg)an ³

2

  x 5 x 5 x 25    y 9 y 9 y 81 x y x y 2 3   5 9 5 9

enaH naM[ b¤ b¤Gacsresr b¤ -tam 1 nig 2 eyIg)anRbB½n§smIkar ³

naM[ x  5  18   90 nig y  4  18   72 dUcenH cMnYnnImYy²KW 90 nig 72 b¤cMnYnnImYy²KW -90 nig -72 .

 x  y  36  x y  5  9 x y x  y 36     9 5 9 59 4

tamlkçN³énsmamaRt eyIg)an³

KNnaRbEvgRCug BC , CA nig AB ³ -bRmab;RbFan ³ ÷RtIekaN ABC manbrimaRt 192m ³ eyIg)an BC  CA  AB  192 1 ÷smamaRtRCugTaMgbIerogKñaKW 2.5 2 nig 1.5 ³ CA AB 2 eyIg)an BC   2.5 2 1.5

14.

naM[ x  5   9  45 nig y  9   9  81 -tam 1 nig 3 eyIg)anRbB½n§smIkar ³  x  y  36  x  y  5  9 174

tamlkçN³énsmamaRt eyIg)an³

x  y x  y 36 18     5 9 5  9 14 7 18 90 18  162 x  5  y   9  7 7 7 7

naM[

yk

CMnYskñúg 2 eyIg)an ³ 2 :  2  B  3 enaH B  5 dUcenH kMNt;)an A  2 nig B  5 .

nig

dUcenH cMnYnnImYy²KW -45 nig -81 b¤cMnYnnImYy²KW 907 nig  162 . 7

18.

A2

edaHRsayRbB½n§smIkar ³ 2 x    1   x

2 1  y 2 5 3  y 4

KNnaRbEvgén)atnImYy² énctuekaNBñay ³ -tag B CaRbEvg)atFM nig b CaRbEvg)attUc -bRmab;RbFan ³ ÷pleFob)atctuekaNBñayesµI 53 KW Bb  53 b¤Gacsresr)an b3  B5 1 ÷plbUk)atrbs;vaesµInwg 64 KW b  B  64 2 -tam 1 nig 2 eyIg)anRbB½n§smIkar ³

eyIgman

b B   3 5 b  B  64 b B b  B 64    8 3 5 35 8

cMeBaH Y  121 eyIgman X  5Y  34 enaH X  34  5Y  34  125  912 5  124  13 eday X  1x nig Y  1y enaHeyIg)an ³ 1 1 1 1   y  12   x  3 nig y 12 x 3

16.

tag X  1x nig Y  1y enaHeyIg)anRbB½n§fµIKW ³ 1  2 X  2Y  4 X  4Y  1   2   4 X  20Y  3  X  5Y  3  4   4 X  4Y  1  2 4 X  20Y  3 Y 24 24Y  2



naM[

tamlkçN³énsmamaRt eyIg)an ³

enaH b  3  8  24m nig B  4  8  40m dUcenH RbEvg)attUc 24m nig)atFM 40m . kMNt; A nig B ³ eyIgmanbnÞat; Ax  By  9 -ebIbnÞat; Ax  By  9 kat;tamcMNuc 2 , 1 eyIg)an 2 A  B  9 1 -ebIbnÞat; Ax  By  9 kat;tamcMNuc  3 , 3 eyIg)an  3A  3B  9 b¤  A  B  3 2 -yk 1 - 2 eyIg)an ³

17.

2 A  B  9   A  B  3 3A  6

naM[

A

6 3

b¤ A  2



1 1  1 2  x  2  y  2   1  5 1  3  y 4 x

  1

b¤ Y  121

3   . dUcenH RbB½n§smIkarmanKUrcemøIy  xy   12     19. etIplitpl A ekInCagplitpl B b¤eT? -kMeNInplitpl A tamqñaMnImYy²KW ³ 2.7  2.3  3.1  2.7  3.5  3.1  0.4 ¬efr¦ -kMeNInplitpl B tamqñaMnImYy²KW ³ 3.3  2.9  3.7  3.3  4.1  3.7  0.4 ¬efr¦ dUcenH plitpl A minGaclk;ekInCaplit pl B eT eRBaH GRtakMeNInénka lk;tamqñaMesµIKña . 175

១២ 1.

x 10 m

x

6m

2.



ABC

k> AB  7 x> AB  52.8 K> AB  83

,

BC  9

, AC  12

,

BC  45.5

, AC  69.7

,

BC  49

, AC  67

3.

A

ABC

41cm

15 cm

B 12 cm

4.

C

D

5 cm

O

 AB

O

8 cm OM

A

//

M

//

B

3 cm

5.

h 6.

x

y

m x

y 12 6

50

38

x

8

16

7. 18cm

12 cm

176

8.

1 cm

9.

A

cm AB

16

AH BH

HC

B

C

H 20

10.

O

Ox

x

o

Oy

O 100 km

100 km

y

DDCEE

3

177

១២ 1.

KNna x kñúgrUbxageRkam ³ eyIgmanRtIekaNEkg Edlman x CaRCugCab; mMuEkg tamRTwsþIbTBItaK½r eyIg)an ³ x  6  10 2

2

67 2  49 2  832 4489  2401  6889

¬minBit¦ dUcenH ABC minEmnCaRtIekaNEkgeT . 6890  6889

2

x 2  100  36

10 m

x  64 x 8 m

x

3. 6m

dUcenH KNna)an 2.

AC 2  BC 2  AB2

x 8 m

.

KNnaépÞRkLaénRtIekaN ABC ³ eyIgmanRtIekaN ABC dUcrUbxageRkam A

bBa¢ak;fa ABC CaRtIekaNEkgb¤eT ? k> AB  7 , BC  9 , AC  12 cMeBaHkrNIenH ebI ABC CaRtIekaNEkgluHRta ³

B

7  9  12 2

eyIgdwgfa S  12  BC  AD -cMeBaHRtIekaNEkg ADBEkgRtg; D eyIg)an ³ AD  DB  AB b¤ AD  AB  DB ABC

2

49  81  144

¬minBit¦ dUcenH ABC minEmnCaRtIekaNEkgeT .

2

130  144

2

2

2

2

2

2

2

2

2

DC 2  412  9 2  1681 81  1600

52.82  45.52  69.7 2 2787.84  2070.25  4858.09

ABC

2

naM[ AD  81  9 cm -cMeBaHRtIekaNEkg ADC EkgRtg; D eyIg)an ³ DC  DA  AC b¤ DC  AC  DA

AB2  BC 2  AC 2

dUcenH

2

AD2  152  122  225  144  81

x> AB  52.8 , BC  45.5 , AC  69.7 cMeBaHkrNIenH ebI ABC CaRtIekaNEkgluHRta ³

4858.09  4858.09

C

D

12 cm

AB 2  BC 2  AC 2 2

41cm

15 cm

naM[ DC  1600  40 cm enaH BC  BC  DC  12  40  52 cm eyIg)an S  12  52  9  234cm

¬Bit¦

KWCaRtIekaNEkg .

ABC

K> AB  83 , BC  49 , AC  67 cMeBaHkrNIenH ebI ABC CaRtIekaNEkgluHRta ³

dUcenH KNna)an 178

2

S ABC  234 cm 2

.

4.

KNnaRbEvg OM kñúgrUbxageRkam ³ -eyIgmanrgVg;p©it O mankaMRbEvg 5 cm nig AB  manRbEvg 8 cm -eday MA MB naM[ M CacMNuckNþal AB  M eyIg)an OM  AM Rtg; M ¬eRBaH kaMrgVg;EkgnwgGgát;FñÚRtg;cMNuckNþal¦ -kñúgRtIekaN OMA EkgRtg; M tamRTwsþIbTBItaK½r OM  AM  OA naM[ OM  OA  AM 8 eday OA  5 cm nig AM  AB   4 cm 2 2 eyIg)an OM  5  4  25  16  9 enaH OM  9  3cm dUcenH KNna)anRbEvg OM  3cm .

6.

x 2  6 2  82  36  64  100

O

A

2

2

2

2

5.

2

//

//

2

x

2

2

2

2

2

16

x 2  CD 2  CE 2

 CD 2  BE  BC 

2

KNnaépÞRkLaénRtIekaNsm½gS ³ -ebIRtIekaNsm½gSmYyman rgVas;RCug a enaHkm
 16 2  50  38  256  144  400 2

h

Taj)an a  2h3 b¤ a  2 33h -épÞRkLaénRtIekaNsm½gSKW ³ 1 2 3h 3 1 h  h S  ah b¤ S   2 3 3 2 eday h  3 cm naM[ S  33   3   33  3  3 cm 2

6

naM[ x  100  10 8 ehIy y  12  x cMeBaH x  10 enaH y  144  100  44 b¤ y  44  4 10  2 10 dUcenH KNna)an x  10 nig y  2 10 . E -eyIgmanrUb ³ x eyIgKUsbEnßm CD C D 16 50 Edl CD // AB 38 tamRTwsþIbTBItaK½r A B

B

2

2

kMNt;témø x nig y énrUbxageRkamKitCa m ³ -eyIgmanrUb ³ y tamRTwsþIbTBItaK½r 12

naM[ x  400  20  20 dUcenH KNna)an x  20 . 7. KNnakm
2

h 2  182  122  324  144  180

2

naM[ h  180  6 5 cm ehIy V  13 S h  13  r h b¤ V  13   12  6 5  288

18cm

12 cm

2

b

2

dUcenH KNna)anépÞRkLaénRtIekaN sm½gSKW S  3 cm .

5 cm3

dUcenH KNna)an km
2

3

179

.

8.

KNnaRbEvgGgát;RTUgénKUbenaH ³ A 1cm B eyIgmanKUbEdlman D C rgVas;RCugesµI 1cm F E RbEvgGgát;RTUgKW AG G H tamRTwsþIbTBItaK½r -cMeBaH RtIekaN EHG EkgRtg; H eyIg)an ³

K> KNna BH nig HC ³ -kñúgRtIekaNEkg AHB EkgRtg; H eyIg)an ³ BH 2  AB2  AH 2 2

2304 1296  48   12 2     144   25 25  5 

naM[

EG2  GH 2  EH 2

dUcenH KNna)an

 1 1  2 2

2

-cMeBaH RtIekaN AEG EkgRtg; G eyIg)an ³ AG  EG  AE naM[ AG  3 cm  2 1  3 2

2

dUcenH KUbEdlmanRCugesµI 1cm vamanGgát;RTUg 3 cm

2

.

naM[

BC 

64 cm  12.8 cm 5

.

¬manviFIRsYlCagenH Et´cg;[GñkGnuvtþRTwsþIbTBItaK½r¦ C

KNnacm¶aypøÚvEdlynþehaHnImYy² ehaH)an ³ edayynþehaHmanel,ÓnesµIKña ehIyehaHecjBI cMNucEtmYyenAem:agEtmYy naM[ cm¶aypøÚvesµIKña -tag x Cacm¶aypøÚvénynþehaHnImYy² ¬km¦ tamRTwsþIbTBItaK½r eyIg)an ³

10.

k> KNna AB ³ 20 kñúgRtIekaN ABC EkgRtg; A eyIg)an AB2  BC 2  AC 2  202  162  400  256  144

naM[ AB  144  12  12cm dUcenH KNna)an AB  12cm x> KNna AH ³ tamlkçN³énRtIekaNEkg ABC mankm
x 2  x 2  1002

2

AH 

2

4096 64  64  HC      cm 25 5  5 

dUcenH KNna)an

16

dUcenH KNna)an

.

2304 4096  48   16 2     256   25 25  5 

A

H

36 cm  7.2 cm 5

HC 2  AC 2  AH 2

KNnargVas;RCugénrUbKitCa cm ³

B

BH 

-kñúgRtIekaNEkg AHC EkgRtg; H eyIg)an ³

2

2

9.

2

1296 36  36  BH      cm 25 5  5 

2 x 2  10000

x

o

x 2  5000

100 km

x  5000 x  50 2 km

y

x  70.71km

dUcenH ynþehaHTaMgBIrehaH)ancm¶ay esµIKñaRbEvg 70.71 km .

48 cm  9.6cm 5

180

កំណែលំហាត់តាមមមមរៀន

គែិតវិ ទ្យា អាន. គិត. យល់

១៣ 1.

O

T៖

PT

P T

O

ao bo

50

o

O

O

T

ao

T

P a

a

O

 bo

ao 35

ao

P

S o

b

b A

O o

T

P

40 o b o

65 co



B

bo

a

130o 

o

P bo

O

T

T

P

a

a,b

b

AOT

c

BOP a

2.

PT T

( )

O

PV

O

c

a

( )

P

42o

O b

P

a

c

V

V T

b

T

25o

a b

V

T

22o

b

( )

T

O

(

P

)

c 

X

21o

a

P

O

c

V

3.

O

PA r

PB

d

A cm

A

A 12 17

O r

P

P

O

15

B

O

PA A

cm

5

d

B

4.

B

A

PB

2

b

B

O



c

P

9

181

B

b

កំណែលំហាត់តាមមមមរៀន

គែិតវិ ទ្យា អាន. គិត. យល់

b

c OAPB

OAPB A

5.

AB , BC D,E

10

AC

F

F

ABC

D

cm

5

C

B

6.

PA

PB

O

AP  82.4 cm

3 cm

E

15

A

AOB  140o

82.4

3



P

o O  140

APOB 22      7  

AOB

B

A

7.

O

AT

TQO

BT

20 cm

TQ = 10 cm

10

T

8.

O TA

B

20

4.5 cm

TB

O

Q

A

A

B

9

4.5 O

TA = 9 cm

T

OATB B

OATB

9.

A 4 cm CB

B B

10.

TA

DA

C

D

A



B

DC

C

ABCD

TB

5 cm

D

A

CD A

B

A

O ៖

ATB  60o

T

AOB AOB

22      7  

182

O

60 o

5

B

កំណែលំហាត់តាមមមមរៀន

គែិតវិ ទ្យា អាន. គិត. យល់

A

11.

O

8 cm

10 cm

AB

T AB

(

:

O

T

OB )

OA

B M

12.

MA , MB

MC

O’

O

C

A

MA = MC



O

13.

EF

EG

H

JEF  22

o

B



O

F



EGH

E

HGF

22 o

J

H

5

FGE

G

DDCEE

3

183

កំណែលំហាត់តាមមមមរៀន

គែិតវិ ទ្យា អាន. គិត. យល់

មេម ៀនទី១៣ 1.

ង្វង្ន ់ ិង្បន្ទាត់

kñúgrUbnImYy²énrgVg;p©it O man PT CabnÞat;b:H ³ k> rktémøénmMu a ³ eday OT  TP O 50 naM[ OTP  90 T a ¬eRBaH bnÞat;b:HRtUvEkg P nwgkaMrgVg;Rtg;cMNucb:H¦ eyIg)an a  180  50  90   40 dUcenH rk)antémømMu a  40 . o

X> rktémøénmMu a nig b ³ eday OT  TP 90 naM[ OTP a S T  35  55 enaH a90 P ehIy b 2STP ¬mMup©itesµIBIrdgmMuBiess¦ enaH b 23570 dUcenH rk)antémømMu a  55 nig b  70 . g> rktémøénmMu a , b nig c ³ eday OTTP a 90 P naM[ OTP T  65  25 enaH a90 65   32 . 5 32 3 0 ehIy c 2 ¬eRBaH mMucarwkesµIknøHmMup©itEdlmanFñÚsáat;rmY ¦ OTP  90 eday cb naM[ b  90  c  90  32.5  57.5 dUcenH a  25 , b  57.5 , c  32.5 . O

o

o

o

o

o

o

o

o

o

35o

o

o

o

 bo

o

o

o

o

o

o

o

o

O

P x> rktémøénmMu a nig b ³ T a eday OT  TP 90 O naM[ aOTP smµtikmµ ³ PT  OT naM[ PTO CaRtIekaNEkgsm)at enaH mMu)atnImYy²manrgVas;esµIKñaesµInwg 45 eyIg)an b  45 dUcenH rk)antémømMu a  90 nig b  45 .

o

o

o

bo

bo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

c> rktémøénmMu a nig b ³ A mMu a  1302  65 P a ¬eRBaH mMucarwkesµIknøH B T mMup©itEdlmanFñÚsáat;rYm¦ ehIymMu b  180  OTP  TOP  Edl OTP  90 nig TOP  180  130  50 naM[ b  180  90  50   40 dUcenH rk)an a  65 nig b  40 . o

K> rktémøénmMu b ³ eday OT  TP naM[ OTP  90 eyIg)an b  90  40 b¤ b  50

o

o

130o 

o

bo

O

O

o

o



o

o

o

o

o

o

o

o

o

c

o

o

o

o

o

65o

o

o

40 o b o

P

o

T

o

o

o

dUcenH rk)antémømMu b  50 . o

o

o

o

o

o

184

o

o

o

o

o

កំណែលំហាត់តាមមមមរៀន

1.

eyIgmanrgVg;p©it O ehIy PT nig PV CabnÞat;b:H k> rkrgVas;mMuEdlminsÁal;KW a , b nig c ³ T

eday PT b:HrgVg;Rtg; T naM[ kñúgRtIekaNEkg OTP man 

OTP  90o



b  180 o  90 o  25 o  65 o

22o

a

O

គែិតវិ ទ្យា អាន. គិត. យល់

RtIekaN OTV CaRtIekaNsm)at ¬ OT  OV ¦ man TOV  2b  2  65  130 naM[ a  c  180  130  2  25 dUcenH a  25 , b  65 , c  25 .

P

b

o

c

V

o

eday PT nig PV CaknøHbnÞat;BIrKUs ecjBIcMNuc P EtmYy eTAb:HnwgrgVg;erogKñaRtg; T nig V enaH OP CaknøHbnÞat;BuHmMu TPV nig TOV naM[ c  22 nigmMu OTP  90 eyIg)an a  b  180  90  22   68 dUcenH a  68 , b  68 , c  22 . o

o

o

o

o

o

o

X> rkrgVas;mMuEdlminsÁal;KW

a,b

nig c ³

b

T

o

o

o

o

o

c

o



X

o

21o

a

P

O

o

kñúgRtIekaNEkg OTP man OTP  90 naM[ a  180  90  21   69 ehIy TOX CaRtIekaNsm)at ¬ OT  OX ¦ naM[ mMu)at b  c cMeBaH RtIekaN TOX man b  c  a ¬plbUkmMukñúgBIr esµInwgmMueRkAmYyminCab;nwgva¦ naM[ b  b  a b¤ 2b  a enaH b  a2  692 o

x> rkrgVas;mMuEdlminsÁal;KW

a,b

nig c ³

o

T c

42o

O b

P

a

V

eday PT nig PV CaknøHbnÞat;BIrKUsecjBIcMNuc P EtmYyeTAb:HnwgrgVg;erog KñaRtg; T nig V naM[ a  c  90 cMeBaHctuekaN OTPV manplbUkmMukñúgesµI 360 enaH b  360  90  90  42   138 dUcenH a  90 , b  138 , c  90 . K> rkrgVas;mMuEdlminsÁal;KW a , b nig c ³

o

o

o

o

dUcenH

o

a  69 , b  34 .5o , c  34 o 30

.

o

o

o

o

o

o

o

T a b

o

O

2.

o

-KNnargVas;kaM r KitCa cm ³ A eday PB b:HrgVg;Rtg; B naM[ OBP CaRtIekaN O 17 15 EkgRtg; B B tamRtwsþIbTBItaK½r cMeBaHRtIekaNEkg OBP r  17  15 b¤ r  64 enaH r  8 cm dUcenH KNna)anrgVas;kaM r  8 cm . 

r

25o

2

P

c

V

185

2

2

2

P

កំណែលំហាត់តាមមមមរៀន

គែិតវិ ទ្យា អាន. គិត. យល់

-KNnargVas; d KitCa cm ³

K> KNnabrimaRténctuekaN OAPB ³ POAPB  OA  AP  PB  OB

A 12 P

 2  b  9  c  2  9  9  2  22 cm

5

d

O

dUcenH KNna)anbrimaRt P

OAPB

.

 22 cm

B

eday PA b:HrgVg;Rtg; A naM[ OAP CaRtIekaN EkgRtg; A tamRTwsþIbTBItaK½r cMeBaHRtIekaNEkg OAP eyIg)an OP  12  5  144  25  169 naM[ OP  169  13 cm eday OP  d  OA ¬eRBaH OA CakaMrgVg;¦ eyIg)an d  OP  OA  13  5  8 cm dUcenH KNna)an d  8 cm . 2

2

X> KNnaépÞRkLaénctuekaN OAPB ³ eday OAP nig OBP CaRtIekaNEkgBIb:unKña ehIy S  S  S naM[ S  2S  2  12 9  2  18 cm OAPB

OAP

OBP

2

2

OAPB

OAP

dUcenH KNna)anépÞRkLa S 4.

OAPB

.

 18 cm 2

KNnaépÞRkLaén RtIekaN ABC KitCa cm ³ 2

A 10

3.

F

eyIgmanrUbdUcxageRkam manrgVas;KitCa cm ³ D

A

5

2

b

B

O

C

E

15

c

P

9

B

eday ABC CaRtIekaNEkgRtg; B ³ naM[ S  12 AB  BC ehIy BE  BD  5cm ¬ D nig E CacMNucb:H¦ nig AD  AF  10cm ¬ D nig F CacMNucb:H¦ enaH AB  AD  BD  10  5  15 cm BC  BE  EC  5  15  20 cm > eyIg)an S  12 15 20  150 cm

k> KNnargVas; b ³ eday PA nig PB CaknøHbnÞat;BIrKUsecjBIcMNuc P EtmYy eTAb:HnwgrgVg;erogKñaRtg; A nig B naM[ PA PB b¤ b  9 cm dUcenH KNna)an

b  9 cm

ABC

.

x> KNnargVas; c ³ eday OA  OC ¬kaMrgVg;Etp©it O mYy¦ naM[ c  2 cm dUcenH KNna)an

c  2 cm

2

ABC

dUcenH KNna)anépÞRkLa S

. 186

ABC

 150 cm 2

.

កំណែលំហាត់តាមមមមរៀន

5.

k> KNnaépÞRkLactuekaN APBO KitCa cm ³ 2

A

គែិតវិ ទ្យា អាន. គិត. យល់

7.

k> rkbrimaRténctuekaN OATB ³ A

82.4

3 o O  140

OAP S APBO

S OAPB  2S OAP  2   2

brimaRt P  OA  AT  TB  OB eday OA  OB  4.5 cm ¬kaMénrgVg;EtmYy¦ ehIy TA  TB  9 cm ¬eRBaH A nig B Ca cMNucb:HrgVg;KUsecjBIcMNuc T EtmYy ¦ eyIg)an P  4.5  9  9  4.5  27 cm dUcenH KNna)anbrimaRt P  27 cm .

nig OBP CaRtIekaNEkgBIb:unKña S S naM[ OAP

T B

B

eday ehIy

9

4.5 O

P

OATB

OBP

1  AO  AP 2

1 3  82.4  247.2 cm 2 2

OATB

dUcenH épÞRkLa S  247 .2 cm . x> KNnaépÞRkLaceRmókfastUc AOB ³ tamrUbmnþ épÞRkLaceRmókfasEdlmanmMu   nigrgVas;kaM R KW S  R  360 eday   140 , R  3cm ehIyyk   227 naM[ S  227  3  140  11 cm 360 2

APBO

OATB

x> rképÞRkLaénctuekaN OATB ³ eday OAT nig OBT CaRtIekaNEkgBIb:unKña ehIy S  S  S naM[

2

AOB

o

OAT

OATB

o

S OATB  2 S OAT  2 

o

2

AOB

2

 2

o

dUcenH épÞRkLaceRmókfas S

AOB

 11 cm 2

.

OBT

1 OA  AT  2

1 4.5  9  40.5 cm 2 2

dUcenH épÞRkLa S  40 .5 cm 8. rképÞRkLaénctuekaN ABCD ³

.

2

OATB

6.

rkrgVas;énkaMrgVg; ³ A eday TB b:HrgVg;Rtg; O Q 10 B enaH TBO CaRtI T B 20 ekaNEkgRtg; B tamRTwsþIbTBItaK½r cMeBaH RtIekaNEkg TBO

D

C



ctuekaN ABCD B A man CB  CD eRBaH B nig D CacMNucb:HénrgVg;p©it A nig DA  DC eRBaH A nig C CacMNucb:H énrgVg;p©it B ehIy mMu ADC  90 ¬eRBaHbnÞat;b:HEkgnwgkaMrgVg;¦ rgVg;p©it A nigrgVg;p©it B manrgVas;kaMesµIKña 4 cm naM[ ABCD CakaerEdlmanRCugesµI 4 cm dUcenH épÞRkLa S  4  16 cm . 

TO 2  TB 2  BO2

10  r 2  202  r 2

o

100  20r  r 2  20 2  r 2 20r  400  100 r



300  15 20

dUcenH KNna)anrgVas;kaMrgVg; r  15 cm .

2

ABCD

187

2

កំណែលំហាត់តាមមមមរៀន

k> KNna

9.

AOB

គែិតវិ ទ្យា អាន. គិត. យល់

³

bgðajfa MA  MC ³ M -eyIgman MA  MB ¬eRBaH MA nig MB A C CabnÞat; KUsecjBI B O cMNucEtmYyehIy b:HrgVg;p©it O Rtg; A nig B -mü:ageTot MB  MC ¬eRBaH MB nig MC Ca bnÞat;KUsecjBIcMNucEtmYy ehIyb:HrgVg;p©it O Rtg; B nig C eXIjfa MA  MB nig MB  MC dUcenH MA  MC RtUv)anbgðaj .

11. A O

60 o

T

5



B

edayctuekaN OATB manmMu OAT  90 nig OBT  90 ¬eRBaH TA nig TB CabnÞat;ehIy EkgnwgkaMrgVg;Rtg; A nig B ¦ naM[ AOB  360  90  90  60   120 dUcenH KNna)an AOB  120 . o

o

o

o

o

o

o

o

x> KNnaépÞRkLaénceRmókfatUc AOB ³ tamrUbmnþ épÞRkLaceRmókfasEdlmanmMu   nigrgVas;kaM R KW S  R  360 eday   120 , R  5 cm ehIyyk   227 naM[ S  227  5  120  26 .19 cm 360

12.

k> KNna EGH ³

2

AOB

o

E

22 o

F J

G

o

2

2

eday EG CaknøHbnÞat;b:HnwgrgVg;p©it H enaH EG  GH naM[ EGH  90 dUcenH KNna)an EGH  90 . x> KNna HGF ³ eday EF  EG nig HF  HG ¬kaMrgVg;EtmYy¦ naM[ EH CaemdüaT½rén FG enaH EH  GF eyIg)an HGF  GEH  22 ¬eRBaH mMuman RCugEkgerogKñaKW EG  GH nig EH  GF ¦ dUcenH KNna)an HGF  22 . K> KNna FGE ³ FGE  EGH  HGF  90  22  68 > dUcenH KNna)an FGE  68 .

o

dUcenH épÞRkLaceRmókfas S

AOB

 26 .19 cm 2

o

KNnargVas; AB ³ eyIgKUsP¢ab; OA nig OB bEnßm A eday AB b:HrgVg;tUc naM[ AT  TO > T tamRTwsþIbTBItaK½r B AT  OA  OT >  10  8  36 enaH AT  36  6 cm mü:ageTot AB  2 AT  2  6  12 cm ¬eRBaHGgát;FñÚEkgnwgkaMrgVg;Rtg;cMNuckNþal¦ dUcenH KNna)anrgVas; AB  12 cm .

o

10.



O

2

2

2

H

5

o

AOB



O

o

2

2

o

o

o

o

188

o

១៤ 1.

O

ABC  65o

ACB

B

A

AB = AC

65 o



ABO

o

D

C A

D

ACD , BAE

2.

E

BDC

130o

45 o

C

B

A

B 38 o

3.

O

AB

CD

BCD , ADC

ABC D

C

A C 60 o

y

4.

y

x

x

34 o

D

B A

5.

O

AC

CAB  40 , AIB  60 o

.

I

40 o 60 o

CAD C

D

6.

A, B, C

O

AOC  120o

o



ABC

120o

C

A

B C 25 o 45 o

7.

O

AD

BC

D

o

ACB  45 , ACD  25 o

.

ADC

o

ខ.

B

I

ខ.

ACD

BD

o

OAB

A

189

B

P

A

8.

A, B, C AB CAP  70 .

ACD

CD

ខ.

APC

O

AC

O

70 o

B

CBD  35o ,

P

DBP  75

o

D

35

o

.

o

75 o

P

DAB

D

C

C

9. CD .

T

ATD  20o

AT = AC

ខ.

ADB

BA

BOC

20 o

T

BDC

o

D

B

A Q

10.

O

QS

M

134o

POQ  134o

PR . PRQ

PR

ខ. RPQ

o

RSQ

P

M

R

S S

11.

O

PQ

R

ROQ  48o

RS . OQR

ខ.

o 48 o

TRQ

RST

T

P

Q

R

A

D

110o

12.

O C

AE

ABC

BC

x, y

D

z

x 40 o

B

y



o

A

B

13.

ABCD

AB = BC

ACE  25o

CD .

ABC

E ខ.

ADE  80o

80 o

BAD

25

o

C

TKXM

T J

SNXL

40 o

TKJ  56o

JKL .

MLN

ខ.

NJK  40o .

LMN

KLN

3 190

X M

E

D

K 56 o

L

14.

z

C

N S

E

១៤ 1.

KNnargVas;mMu ACB nig ABO ³

3.

KNnargVas;mMu BCD , ADC nig ABC ³ A

B 38 o

B

A

65 o



o

D

D

C

C

-eyIgman AC  AB nigmMu ABC  65 naM[ ABC CaRtIekaNsm)atEdlmanmMu)at ACB  ABC  65 > ehIymMu ACB  ADB  65 ¬FñÚsáat;rYm AB ¦ -eday OB  OD ¬kaMrgVg;EtmYy¦ enaH OBD CaRtIekaNsm)at Edlman ³ OBD  ADB  65 ¬mMu)atRtIekaNsm)at¦ nig ABD  90 ¬mMucarwkknøHrgVg;Ggát;p©it AD ¦ naM[ ABO  ABD OBD  90  65  25 dUcenH rgVas;mMu ACB  65 nig ABO  25 2. rkrgVas;mMu ACD , BAE nig BDC ³

mMu BCD  BAD  38 ¬manFñÚsáat;rYm BD¦ mMu ADC  BAD  38 ¬mMuqøas;kñúgeRBaH AB// CD ¦ mMu ABC  ADC  38 ¬manFñÚsáat;rYm AC ¦ dUcenH BCD  ADC  ABC  38 o

o

o

o

o

o

o

4.

o

A

o

o

o

o

C

o

x

eyIgman mMu x  y ¬eRBaHmanFñÚsáat;rYmKña CD ¦ eday mMueRkArgVg;  12 ( FñÚsáat;FM  FñÚsáat;tUc ) b¤Gacsresr P  12  AB  CD naM[  CD  AB  2  P eday  AB  2  ACB  2  60  120 ehIy P  34 eyIg)an  CD  120  2  34  52 naM[ x  y  12  CD  12  52  26

C

B

-mMu ACD  ABD  45 ¬mMumanFñÚsáat;rYm AD ¦ -mMu BAE  130  45  85 ¬eRBaH RtIekaN ABE manplbUkmMukñúgBIresµImMueRkAmYy¦ -mMu BDC  BAC  BAE  85 ¬mMumanFñÚsáat;rYm BC ¦ dUcenH ACD  45 , BAE  BDC  85

o

o

o

o

o

o

o

o

o

D

B

D

o

P

34 o

o

E 130o

60 o

y

A

45 o

rkrgVas;mMu x nig y ³ rebobTI1 ¬rktameKalbMNgénemeron¦

o

o

dUcenH KNna)anrgVas;mMu

o

191

o

o

x  y  26 o

.

rebobTI2 ¬rktamcMeNHdwgmanRsab;¦

6.

KNnargVas;mMu ABC ³

A C 60 o

y

P

34 o

o



120o

x

D

C

A

B

B

kñúg BCP manmMu x  60  34  26 ¬eRBaH plbUkmMukñúgBIrénRtIekaNesµImMueRkAmYy¦ eyIgman mMu x  y ¬eRBaHmanFñÚsáat;rYmKña CD ¦ dUcenH x  y  26 . o

o

o

eyIgman Edl CA  COA Et mMuqk COA  360 120  240 naM[ ABC  12  CA  12  240  120 1 ABC   CA 2 o

o

o

o

5.

o

dUcenH KNna)an

k> KNnargVas;mMu ACD ³ 7.

A

o

.

ABC  120o

k> KNnargVas;mMu ADC ³ C

o

40 60

B

o

25 o 45 o

I

D

o

C

D

kñúgRtIekaN ABI man IAB  40 , AIB  60 naM[ ABI  ABD  180  40  60   80 enaHmMu ACD ABD  80 ¬FñÚsáat;rYm AD ¦ dUcenH KNna)anrgVas;mMu ACD  80 . o

o

o

o

eday AD// BC naM[ ADC  BCD  180 Et BCD  BCA  ACD  45  25  70 enaHeyIg)an ADC  180  BCD  180  70  110 > dUcenH KNnargVas;mMu ADC  110 .

o

o

o

o

o

x> KNnargVas;mMu CAD ³ tamsmµtikmµ AB  BC enaH ABC sm)at vi)ak mMu)at ACB  CAB  40 ehIy ADB  ACB  40 ¬FñÚsáat;rYm AB ¦ kñúgRtIekaN ADI manplbUkmMu ADB  CAD  AIB ¬mMueRkArgVg;¦ naM[ CAD  AIB  ADB  60  40  20 > dUcenH KNna)an CAD  20 .

o

o

o

o

x> KNnargVas;mMu OAB ³ eday OA  OB ¬kaMrgVg;EtmYy¦ enaH OAB Ca RtIekaNsm)at Edlman OAB  OBA ehIy AOB  2ACB  2  45  90 ¬eRBaH mMup©itesµIBIrdgénmMucarwkmanFñÚsáat;rYm¦ eyIg)an OAB  OBA  180 2 90  45

o

o

o

o

o

o

o

B

A

o

o

o

o

o

o

o

dUcenH KNna)an

o

192

OAB  45o

.

8.

k> KNnargVas;mMu ACD ³

9.

k> KNnargVas;mMu ADB ³ C

A 70 o

o

D

B 35 o 75 o

T

20 o

B

A

P D

C

eday AT  AC enaH ATC CaRtIekaNsm)at vi)ak ATD  ACT  20 ehIy DBA  ACD  20 ¬FñÚsáat;rYm AD ¦ mü:ageTot ADC  90 ¬mMucarwkknøHrgVg;¦ enaHmMu ADT  ADC  90 ¬mMubEnßmKña¦ cMeBaH ADT ³ TAD  180  ATD  ADT  b¤ TAD  180  20  90   70 Et ADB  DBA  TAD ¬mMueRkA ABD¦ b¤ ADB  TAD  DBA  70  20  50 dUcenH KNna)an ADB  50 .

edaymMu ABD CamMuCab;bEnßmnwgmMu DBP naM[ ABD  180  DBP  180  75  105 ehIy ABCDCactuekaNcarwkkñgú rgVg;enaHvaman plbUkmMuQmKñaesµIngw 180 eyIg)an ACD  ABD  180 enaH ACD  180  ABD  180 105  75 dUcenH KNna)an ACD  75 . o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

x> KNnargVas;mMu APC ³ eday CAB  CDB  180 ¬mMuQm ABCD¦ naM[ CDB  180  CAB  180  70  110 > kñúg BDP man DBP  APC  CDB ¬eRBaHplbUkmMukñúgBIrénRtIekaNesµInwgmMueRkAmYy¦ naM[ APC  CDB  DBP  110  75  35 > dUcenH KNna)anrgVas;mMu APC  35 .

x> KNnargVas;mMu BOC ³ eyIgman BOC sm)at eRBaH OB  OC enaHmMu)at BCA  OBC  ADB  50 ¬eRBaH BCA nig ADB manFñÚsáat;rYm AB ¦ kñúg BOC man BOC  180  BCA  OBC  naM[ BOC  180  50  50   80 dUcenH KNna)anrgVas;mMu BOC  80 .

o

o

o

o

o

o

o

o

o

o

o

o

K> KNnargVas;mMu BDC ³ eday BDC  ADC  ADB naM[ BDC  90  50  40 dUcenH KNna)anrgVas;mMu BDC  40 .

o

o

o

o

K> KNnargVas;mMu DAB ³ man CAD  CBD  35 ¬manFñÚsáat;rYm CD ¦ ehIy DAB  CAB  CAD  70  35  35 dUcenH KNna)anrgVas;mMu DAB  35 . o

o

o

o

o

o

o

o

o

o

o

o

193

10.

k> KNnargVas;mMu PRQ ³

x> KNnargVas;mMu RST ³ eday RST  12 ROT  12  48  24 ¬eRBaH mMucarwkesµIknøHmMup©itEdlmanFñÚsáat;rmY TR ¦ dUcenH KNna)anrgVas;mMu RST  24 .

Q

o

134o

o

o

o

P

M

R

S

K> KNnargVas;mMu TRQ ³ eday TRQ  RST  24 ¬mMucarwk nigmMu Biess EdlmanFñÚsáat;rYm TR ¦ dUcenH KNna)anrgVas;mMu TRQ  24 .

eday ¬eRBaH mMucarwkesµInwgknøHmMup©itEdlmanFñÚsáat;rYm¦ dUcenH KNna)anrgVas;mMu PRQ  67 . 1 1 PRQ  POQ   134o  67o 2 2

o

o

o

x> KNnargVas;mMu RPQ ³ eday QS RbsBVnwg PR Rtg;cMNuckNþal M naM[ QS CaemdüaT½rén PR eFVI[ QR  QP eyIg)an PQR CaRtIekaNsm)at kMBUl Q vi)akmMu)atTaMgBIr RPQ  PRQ  67 dUcenH KNna)anrgVas;mMu RPQ  67 .

12.

KNnargVas;mMu x , y nig z ³ A 110o

x

B

o

o

40

o

y



o

z

C

E

eday ABCD CactuekaNe):ag carwkkñúgrgVg; enaHplbUkmMuQmrbs;va RtUvEtesµI 180 naM[

K> KNnargVas;mMu RSQ ³ eday RSQ  RPQ  67 ¬manFñÚsáat;rYm QR ¦ dUcenH KNna)anrgVas;mMu RSQ  67 .

o

B  ADC  180o

o

 ADC  180o  B  180o  40o  140o

ehIy A  BCD  180

o

11.

D

o

 BCD  180 o  A  180 o  110 o  70 o

k> KNnargVas;mMu OQR ³

naM[

S

>

x  180o  ADC  180o  140o  40o y  180 o  BCD  180 o  70 o  110 o

cMeBaHRtIekaN naM[ z  180

o 48 o

T

P

o

o

 x  y 



o



 180o  150o  30o

eday PQ b:HrgVg;Rtg; R enaH ORQ Ca   naM[ OQR  180  90  48   42 dUcenH KNna)anrgVas;mMu OQR  42 . o

o

man x  y  z  180

 180o  40o  110o

Q

R

CDE

dUcenH KNna)anrgVas;mMudUcteTA ³

o

x  40 o , y  110 o , z  30 o

o

194

.

>

13.

k> KNnargVas;mMu ABC ³

eyIgman MKN  NJK  40 ¬eRBaH mMu Biess nigmMucarwkmanFñÚsáat;rYm KN énrgVg;FM¦ ehIy MLN  MKN  40 ¬eRBaH mMucarwk manFñÚsáat;rYm MN énrgVg;tUc¦ dUcenH KNna)anrgVas;mMu MLN  40 . o

A

B

o

E

80 o 25

D

o

C

o

eday ADC CamMuCab;bEnßmnwgmMu ADE naM[ ADC  180  ADE  180  80  100 ehIy ABCD CactuekaNe):ag carwkkñúgrgVg; enaHplbUkmMuQmrbs;va RtUvEtesµI 180 naM[ ABC  ADC  180 b¤ ABC  180  ADC  180 100  80 dUcenH KNnargVas;mMu ABC  80 . o

o

o

x> KNnargVas;mMu LMN ³ eday JKL enAelIbnÞat;EtmYy nig TKXM Ca bnÞat;b:H enaHeyIg)anmMuTl;kMBUl LKM  TKJ  56 > naM[ LKN  LKM  MKN b¤ LKN  56  40  96 mü:ageTot LMNK CactuekaNcarwkkñúgrgVg;tUc naM[ plbUkmMuQm LMN  LKN  180

o

o

o

o

o

o

o

o

o

o

x> KNnargVas;mMu BAD ³ eday AB  BC enaH ABC CaRtIekaNsm)at vi)ak ACB  BAC  12 180  ABC b¤ ACB  12 180  80   50 naM[ BCD  ACB  ACD b¤ BCD  50  25  75 eday BCD  BAD  180 ¬mMuQmKña¦ b¤ BAD  180  BCD  180  75  105 dUcenH KNnargVas;mMu BAD  105 . o

o

LMN  180o  LKN  180o  96o  84o

dUcenH KNna)an

o

o

o

o

o

o

14.

o

KLN  180o  LKN  LNK   180o  96o  40o   44o

T K 56 o

dUcenH KNna)anrgVas;mMu KLN  44 .

J

o

40 o

X M

o

o

k> KNnargVas;mMu MLN ³ L

. o

o

o

LMN  84o

K> KNnargVas;mMu KLN ³ eyIgman MKN  LNK  NJK  40 ¬ mMuBiess nigmMucarwkmanFñÚsáat;rYm KN énrgVg;FM¦ ehIy LKN  LKM  MKN b¤ LKN  56  40  96 kñúg LKN manplbUkmMukñúgesµIngw 180 enaH

o

o

o

o

o

o

o

N S

195

១៥ 1.

AB

AB  6 cm

2.

AB

AB  11 cm

3 4 5

3.

AB

AB  12 cm

3 5 7

4.

AB  7 cm

5.

AB  9 mm

6.

5

C

3 5

AB

C

D

5 2

AB

AB / /CD / / EF / /GH .

DF

EG  4cm ខ.

AC  6 cm , CE  12cm

FH

BD  9cm

BD , DF

FH

CE  12cm , EG  4cm .

DF

CG

DB  8cm

B

C

AC  6 cm ,

HB  33cm

E

AC  6 cm , CE  12cm

G

D F

H

FH  9cm

 AB / /  MN 

7.

A

x A

A 9

8

M

N

B

M

M 3

x

16

A

x

8

C

N 4

6 4 N

B

C

B

C 12

A

8.

BE / /CD ED

4

8

E

12

CD

B

D

2

cm

C

9.

a

b

6 a

b

cm

4

2 8

196

x

10.

13 2.40 m

3.40 m

.

kaMTI13

A

ABC

B

1 20

muxQrénkaM

AB

BC ខ.

kaMTI1

AB BC

B



.

AB

11.

OX I’ , J’

1 20

BC OY

1 cm

OX

OI’ = 3 cm

C

3.40m

I

J

I’J’ = 4.5 cm

20 cm

OI = 2 cm II’

IJ = 3 cm

OY

JJ’

12.

1.65 m

6.50 m 10 m

. ខ.

13.

ABCD AB

F

. ខ.

E

E

E

CD AGE

ADC

FG // BD

DDCEE

3

197

BC

AD

G

AFE

ABC

១៥

eyIgKUsbnÞat; d  rYcRkit[)an AC  3 / CD  5 nig DE  7 rYcKUsP¢ab; EB bnÞab;mk A B CM , DN [Rsbnwg EB enaH AB  12 cm RtUv)anEckCaGgát;smamaRtnwg 3 5 7 . x eyIgKUsknøHbnÞat; Ax rYcedARbeLaHRkit 5Ékta 4. rkcMNuc C EdlEckGgát; AB tampleFob 53 ³ esµI²KñaelI Ax rYcKUsP¢ab;BIcMNcu 5 ÉktaeTAkan; C A B cMNuc B ehIyKUsGgát;bnþbnÞab;[RsbKña. M tamRTwsþIbTtaEls AB  6 cm RtUv)anEck x N Ca 5 cMENkesµI²Kña . eyIgKUsknøHbnÞat; Ax rYcRkit 8 RbeLaHesµI²Kña 2. EckGgát; AB  11 cm CaGgát;smamaRtnwg Edl AM  3 , MN  5 ehIyKUsP¢ab; NB nig 3 4 5 ³ N M KUs MC [Rsbnwg NB enaHeyIg)ancMNuc C B A C EdlEckGgát; AB tampleFob 53 . D d  5 E 5. kMNt;cMNuc C nig D EdlEck AB tampleFob 2 M l  eyIgKUsbnÞat; d  rYcRkit[)an AC  3 / N CD  4 nig DE  5 rYcKUsP¢ab; EB bnÞab;mk B C A D CM , DN [Rsbnwg EB enaH AB  11 cm P d  Q RtUv)anEckCaGgát;smamaRtnwg 3 4 5 . 1.

EckGgát; AB  6 cm Ca 5 cMENkesµIKña ³ 

/



/





/

/

/



/

/

/

/

 / / / / / / / /

/

/

/ / / /

/ / / / / / /

M

 / / / / C / / / /

D



N

/ / / / / / /

E





-KUs d  edA[)an AP  2 , PQ  2 rYcP¢ab; QB nig PC [RsbKña enaHeyIg)an C Eck Ggát; AB tampleFob 52 . -KUs l edA[)an AN  9, AM  6 rYcP¢ab; NB nig MD [RsbKña enaHeyIg)an D Eck Ggát; AB tampleFob 156  52 .

EckGgát; AB  12 cm CaGgát;smamaRtnwg 3 5 7 ³ A

/



\ \ \ \ \ \ \ \ \ \ \ \ \ \ \

3.

/

B

d 

198

6.

eyIgmanrUb Edl AB// CD // EF // GH ³ A

C

E G

K> KNna DF nig CG ³ eday AC  6 cm , CE  12cm , DB  8cm nig FH  6 cm tamRTwsþIbTtaElseyIg)an ³ BD DF 8 DF b¤   6 12 AC CE naM[ DF  8 612  16cm CG CE CE  DH ehIy DH b¤  CG  DF DF Et DH  DF  FH  FH  naM[ CG  CE  DF DF

B

D F

H

k> KNna DF nig FH ³ tamRTwsþIbTtaElseyIg)an BD DF FH eday AC  6 cm ,   AC CE EG CE  12 cm , EG  4cm nig BD  9 cm FH naM[ 96  DF  12 4 9 DF eyIg)an 6  12 enaH DF  9 612  18cm ehIy 96  FH4 enaH FH  9 6 4  6cm dUcenH KNna)an DF  18cm / FH  6cm

CG 

dUcenH DF  16cm nig CG  16.5 cm . 7. KNnaRbEvg x énrUbnImYy²xageRkam ³ AN eday  AB //MN  enaH AM  MB NC A -cMeBaHrUb 9

x> KNna BD / DF nig FH ³ tamRTwsþIbTtaElseyIg)an BD DF FH eday AC  6 cm ,   AC CE EG CE  12 cm , EG  4cm nig HB  33 cm tamlkçN³smamaRteyIg)an ³

dUcenH

8

M

N x

16

B

naM[

C

naM[

9 8  16 x

x

dUcenH KNna)an

BD DF FH BD  DF  FH    AC CE EG AC  CE  EG BH 33 3    6  12  4 22 2 BD 3 3 AC 3  6  BD    9cm 2 2 AC 2 DF 3 3CE 3 12  DF    18cm CE 2 2 2 FH 3 3EG 3  4  FH    6cm EG 2 2 2

naM[

12  16  6  16.5 cm 16

x

-cMeBaHrUb

N 4

C

B

naM[

x

8  4 32   10.67 3 3

dUcenH KNna)an

x

32  10.67 3

naM[

199

.

x

M 3

BD  9cm , DF  18cm , FH  6cm

128  14.22 9 A

8

b¤ b¤ b¤

8 16 128   14.22 9 9

8 x  3 4

.

-cMeBaHrUb

eyIg)an a6  24 naM[ a  2 4 6  3 cm ehIy b8  6 6 4 naM[ b  810 6  4.8 cm

A x

M

6 4 N

B

dUcenH

C 12

AC MC eday  AB //MN  enaH BC  NC Et AC  x , MC  6 , NC  12  4  8 naM[ 12x  86 enaH x  6 812  728  9

dUcenH KNna)an 8.

10.

nig

kaMTI13

muxQrénkaM

.

x 9

KNnaRbEvg ED nig CD KitCa cm ³

kaMTI1 B

4

8

B

D

2

C

eday BE// CD tamRTwsþIbTtaElseyIg)an ³ AB AE Ggát;smamaRt BC  ED 8 4 b¤ 2  ED naM[ ED  4 8 2  1 cm AB BE mü:ageTot AC  CD 12 b¤ 108  CD naM[ CD  12 810  15 cm dUcenH

ED  1 cm

nig

CD  15 cm

AB 

C

2.40m  0.12m  12 cm 20

ehIy RCugedk BC  3.40m RtUvnwgkñúgbøg; BC 

3.40m  0.17m  17 cm 20

sg;rUb RtIekaN ABC EkgRtg; B ³ A

.

0.12m

KNnaRbEvg a nig b KitCa cm ³

B

0.17m

C

x> etIeKRtUvEck AB nig BC Cab:unµanEpñk ? -eKRtUvEck AB Ca 13 Epñk edIm,IkMNt;TItaMg km
6 a

b

4

2

3.40m

k> sg;RtIekaN ABC EkgRtg; B ³ eyIgmanbøgm; anmaRtdæan 201 naM[ RCugQr AB  2.40m RtUvnwgkñúgbøg;

E

12

.

b  4.8 cm

eyIgmanrUbdUcxageRkam ³ A

A

9.

a  3 cm

8

tamrUbxagelI eyIgmanGgát;edkTaMgBIrRsbKña 200

K> eFVIviFIEck AB nig BC ³

12.

eyIgmanrUbdUcxageRkam ³

y A

N

k> bkRsaysßanPaBenH edayrUbFrNImaRt ³

C

B

A x

M

-eyIgEck AB  0.12m  12 cm eday ³ KUsknøHbnÞat; By rYcedA[)an 13 RbeLaHRkit esµI²Kña ehIyP¢ab; NA nigP¢ab;Ggát;bnþbnÞab;[ Rsbnwg NA enaH AB RtUvEckCa 13 EpñkesµIKña. -eyIgEck BC  0.17m  17 cm eday ³ KUsknøHbnÞat; Bx rYcedA[)an 13 RbeLaHRkit esµI²Kña ehIyP¢ab; MC nigP¢ab;Ggát;bnþbnÞab;[ Rsbnwg MC enaH BC RtUvEckCa 13 EpñkesµIKña. 11. etIbnÞat; II  nig JJ  RsbKñab¤eT ?

P B

tag AB Cakm rkkm
X 







O

/ /

/

I

/

/

/

dUcenH r)armankm
/

J

C

10m

J

I

1.65m 6.50m Q

/

4.714m

.

Y

cm 2 IJ 3cm 2 eday OOII   23cm  nig   3 I J  4.5cm 3 OI IJ naM[ OI   I J  ¬manGgát;smamaRtKña¦ tamRTwsþIbTRcastaEls enaH II  Rsbnwg JJ 

13.

tambRmab;RbFaneyIgKUsrUb)an ³ B F A G

dUcenH bnÞat; II  Rsbnwg JJ  .

D 201

E

C

¬edIm,IgayRsYl ´sUmcmøgrUbdEdlkmvij¦ B F

E

C

A G

D

k> sresrRTwsþIbTtaElskñúgRtIekaN ³ -cMeBaH AGE nig ADC ³ eday AGE nig ADC man GE // DC dUcenH eyIg)an

AG AE GE   AD AC DC

-cMeBaH AFE nig ABC ³ eday AFE nig ABCman dUcenH eyIg)an

.

FE // BC

AF AE FE   AB AC BC

.

x> bgðajfa FG// BD ³ tamsMeNrénRTwsþIbTtaElsTaMgBIrxagelI AG AE AF AE ni g   AB AC AD AC AF naM[ AG  AD AB tamRTwsþIbTRcastaEls enaH FG// BD dUcenH FG// BD RtUv)anbgðajrYcral; .

¤ 202

១៦ 1. N F P

A

M

T

G

E

B

S

R

C

2. B

A 51o

R

H

L 34o

82o

40 o

C

57 o

D

ABC

3.

70

P

T

o

E

F

70 o

80 o



ABC , PMN

G

S

64o

M

N

PM N 

A B

K

C

N

N

M M

C A

B

P

P

(A)

(B)

4. 14

16

16

8

32

7

6

30 36

12

(A)

5.

(B)

ABC

27

40

10 20

(C)

GEF

A G

B

C

G

C

A

E

E F

B

AB BC ...?   GE ...? FG

F

AB ...? BC   EG EF ...? 203

6.

A N

77 o

348m

290m

156.6m

58o

B

400m

7.

ABCD

AD

FB  2.25cm

45o

58o

M

C

130.5 m

BC

FD : FA  8: 5

F

BC

8.

35 dm

56 dm

10 dm

R

A

9.

P

180m

C

BAC  90o

ABC

RS  BC

ABC

S

SRC B

10.

C .

D

MN  11 dm ,

a b

MN

a 3  b 5

ខ.

MN  6 dm ,

N

a 1  b 3

C

M D

11.

AB   , AC   , BC  

ABC BC

I

BC

.

J

ABI

ខ.

AJC

AI  AJ

.

BAJ  CBJ .

JB 2  JA  JI

12.

A

B

D  AC

AC

DE // AB

13.

CD

D

ខ.

E

CA = 1.8 km ,

DE = 150 m

C

AB

ABC M

D

DE AB

CD = 90 m

B

A

C

.

BAC

A

N ABC

AMN

AB  AM  AC  AN 204

AB

AC

14.

CD .

AB

AD = 4 dm , DB = 9 dm

ខ.

CD

AB = 29 dm , CD = 10 cm

AD

DB aha  bhb  chc

15. 16.

A

ABC

E

BC

ADB

17.

AB2  AD  AE

AEB



10 m

P

3m 18.

D

P A

AB

A E

AE = 3 cm BA’

EA’=9dm

EB 19.

b

B

c

h a

h

b D

20.

ABCD

 IB   AD

AD .

C

I I

12 cm

IB

ខ.

A

B

10 cm

P

21.

NMQ

PNQ N

.

MQ

ខ.

3 cm

5 cm

NP Q

M

B 22.

CD I

AB

I

AI  15 cm , IC  12 cm ,

C

ID  4 cm , IB  5 cm , BD  3 cm . ខ.

IAC

IBD

AC

A

205

D

A

23.

P

A C

.

PAC

ខ.

D



PAD

P

AP2  PC  PD

D

C

24.

10 cm 5 cm





4 cm

8 cm

25. . 3

v h r     V H  R ខ.

3

v

V H

h

v  6.28 cm3

h  2 cm , H  4 cm

r

V

DDCEE

3

206

R

១៦ 1.

sresreQµaH nigRCugRtUvKña ³ -cMeBaHKURtIekaNdUcKña ³

-cMeBaH rUb¬K¦ P

L 34o

82o

N

K 64o

M

P

eday PKLman L  180  34 dUcenH PKL MKN eRBaH vamanmMBu Ib:unerogKña . o

B C

÷sresreQµaH ³ NPM  ACB NM PM ÷manRCugRtUvKña ³ NP .   AC AB CB -cMeBaHKURtIekaNdUcKña ³

3.

F

o



 82 o  64 o

eRbóbeFobRtIekaN rYcsresrpleFobdMNUc ³ -cMeBaH rUb(A) A

T

G

B

E

S

B

R

÷sresreQµaH ³ ÷manRCugRtUvKña ³ 2.

N

A

M

.

KURtIekaNxageRkamdUcKñab¤eT? ehtuGVI ? -cMeBaH rUb¬k¦ B

eday  ABC naM[ ABC  -cMeBaH rUb(B)

A

o

51

C

57 o

D

E

P

70

G

P

tamsmµtikmµénrUb PMN nig PM N  man ³ M  M  nig P  P dUcenH PMN  PM N  tamlkçxNÐ m>m

40 o 80 o

N

M

70 o

F

AB AC BC   AB AC  BC 

N

M

RtIekaNTaMgBIrKW ABCnig ADE mindUcKñaeT eRBaH vamanEtmMumYyb:unKña KWxuslkçxNÐTaMgbI . -cMeBaH rUb¬x¦ R T H o

C A

tamsmµtikmµénrUb ABC nig ABC man ³ A  A nig C  C dUcenH ABC ABC tamlkçxNÐ m>m

EFG  TRS EF FG EG   TR RS TS

C

S

RtIekaNTaMgBIrKW HFG nig TSR mindUcKñaeT eRBaH vamanEtmMumYyb:unKña KWxuslkçxNÐTaMgbI .

eday 207



PMN PM N 

PN MN   naM[ PPM M  PN  M N 

4.

KURtIekaNxageRkamdUcKñab¤eT? ehtuGVI ? -cMeBaH rUb(A)

5.

-bMeBjpleFobdMNUc ³ A B G

C

E

16

8

14

F

7

6

edayRtIekaN ABC dUcnwgRtIekaN GEF AB BC CA eyIgbMeBj)an ³ GE .   EF FG -bMeBjpleFobdMNUc ³

12

RtIekaNTaMgBIrCa RtIekaN dUcKñay:agR)akd eRBaH RtIekaNTaMgBIrmanpleFobRCug ³ 6 1 7 1 8 1 6 7 8  ,  ,  enaH   12 2 14 2 16 2 12 14 16 mann½yfa vabMeBj[lkçxNÐdMNUc C>C>C . -cMeBaH rUb(B) 16 32

10 20

G C

A B

F

edayRtIekaN ABC dUcnwgRtIekaN GEF AB AC BC eyIgbMeBj)an ³ EG .   EF GF 6. RsaybBa¢ak;fa RtIekaNdUcKña rYcTajrkvi)ak ³

RtIekaNTaMgBIrCa RtIekaN dUcKña eRBaH RtIekaNTaMgBIrmanpleFobRCug ³ 16 1 10 1 16 10 ehIyRCug  ,  enaH  32 2 20 2 32 20 smamaRterogKñaTaMgBIrenHenAGmnwgmMub:unKñamYy KWmMuTl;kMBUl vabMeBj[lkçxNÐdMNUc C>m>C . -cMeBaH rUb(C) 40

E

A 348m

B

77 o

58o

400m

N 290m

156.6m

C

M

130.5 m 45o

58o

P

180m

edayRtIekaNTaMgBIrxagelImanpleFobRCug ³

27

naM[

30 36

NM 156.6m   0.45 AB 348m NP 130.5m   0.45 AC 290m MP 180m   0.45 BC 400m NM NP MP   AB AC BC

dUcenH ABC NMP tamlkçxNÐ C>C>C -Tajvi)ak ³ A  N  77 eday  ABC nam[  NMP C  P  45

RtIekaNTaMgBIrCa RtIekaN dUcKña eRBaH RtIekaNTaMgBIrmanpleFobRCug ³ 40 4 36 4 40 36  ,  enaH  ehIyRCug 30 3 27 3 30 27 smamaRterogKñaTaMgBIrenHenAGmnwgmMub:unKñamYy KWmMuTl;kMBUl vabMeBj[lkçxNÐdMNUc C>m>C .

o



dUcenH 208

N  77 o , C  45 o

o

.

7.

KNnaRbEvg BC ³ tambRmab;RbFan eyIgKUsrUb)andUcxageRkam ³

AB AC BC   AB AC  BC 

eyIgeRbIlkçN³smamaRt enaHeyIg)an ³ AB AC BC AB  AC  BC    AB AC  BC  AB  AC   BC 

F

A

Et

B

AB  AC   BC   P  56 dm

C

D

AB  AC  BC  P  35 dm

AC BC 35 5 1 naM[ AAB     B AC  BC  56 8 mü:ageTot AMB AM B tamlkçxNÐ m>m ¬eRBaH B  B nig M  M   90 ¦ AB AM vi)ak  AMB   AM B AB AM 

eday ABCD CactuekaNBñayenaH AB// CD naM[ FAB  FDA ¬mMuRtUvKña¦ ehIy FBA FCD ¬mMuRtUvKña¦ eyIg)an FAB FDC tamlkçxNÐ m>m FC FD vi)ak  FDC   FAB FB FA

o

h 2 b¤ AAB  B  H tam 1 nig 2 eyIg)an Hh  85 ehIybRmab;km
8 Et FD: FA  8 : 5 mann½yfa FD  FA 5 nig FB  2.25 m ehIy FC  FB  BC  BC 8 eyIg)an FBFB  5 2.25  BC 8 b¤  2.25 5

dUcenH km
8 2.25  BC   2.25 5 BC  3.6  2.25 BC  1.35

9.

RsaybBa¢ak;fa ABC SRC ³ A

dUcenH KNna)anRbEvg BC  1.35 m . 8.

R

C

S

rkRbEvgkm
B

eday ABC nig SRC man ³ -mMu ACB  SCR ¬mMurYm¦ -mMu BAC  RSC  90 CamMuEkgdUcKña dUcenH ABC SRC tamlkçxNÐ m>m

A

A

o

h

B

M

C

B

H M

>

C

edayRtIekaNTaMgBIrdUcKña eyIg)ansmamaRt ³ 209

edAcMNuc C nig D edIm,IEckGgát; MN xagkñúg nigxageRkA tampleFob ba ³ k> eyIgman MN  11 dm , ba  53 ³

x> eyIgman MN  6 dm , ba  13 ³

10.

N Q

N Q

M

C

dUcenH

.

D

dUcenH

D

.

Eck MN xageRkAtampleFob

DM 1  DN 3

Eck MN xageRkAtampleFob

DM 3  DN 5

Eck MN xagkñúgtampleFob

-enAelIbnÞat; l edA[)ancMNuc ³ MQ  1 , MP  2 Edl M enAcenøaH QP KUsP¢ab; PN rYcKUs QD [Rsbnwg PN Edl D CaRbsBVrvag QD nigbnøayén MN enaH DMQ  NMP tamlkçxNÐ m>m MQ DM 1 vi)ak DM b¤   MN 2 MN MP MN DM  MN DN    b¤ DM 1 2 1 2 3 DN DM 1   b¤ DM eyI g )an 1 3 DN 3

-enAelIbnÞat; l edA[)ancMNuc ³ MQ  3 , MP  2 Edl M enAcenøaH QP KUsP¢ab; PN rYcKUs QD [Rsbnwg PN Edl D CaRbsBVrvag QD nigbnøayén MN enaH DMQ  NMP MQ DM 3   vi)ak DM b¤ MN 2 MN MP MN DM  MN DN    b¤ DM 3 2 3 2 5 DN DM 3 b¤ DM eyI g )an   3 5 DN 5 dUcenH

C

CM 1  CN 3

Eck MN xagkñúgtampleFob

CM 3  CN 5

l

¬eyIgedaHRsaydUclMnaM lMhat; k> Edr ¦ eyIgKUsbnÞat; l kat;tam M rYcedA[)an ³ MA  1, AB  3 Edl A nig B enAmçagén M KUsP¢ab; BN rYcKUs AC [Rsbnwg BN Edl C CaRbsBVrvag AC nig BN tamRTwsþIbTtaElseyIg)anpleFob CM AM CM 1 b¤   CN 3 CN AB

l

B

¬eXIjrUbdUclM)ak Ettamdan[c,as;KWFmµta¦ eyIgKUsbnÞat; l kat;tam M rYcedA[)an ³ MA  3 , AB  5 Edl A nig B enAmçagén M KUsP¢ab; BN rYcKUs AC [Rsbnwg BN Edl C CaRbsBVrvag AC nig BN tamRTwsþIbTtaElseyIg)anpleFob CM AM CM 3 b¤   CN 5 CN AB dUcenH

P B

PA D

A

D

C

C

M

.

.

¬´bkRsayEvg EbbBnül;mUlehtudl;GñkGan>>>¦ 210

11.

tambRmab;RbFaneyIgKUsrUb)an ³ A

naM[ JB  JA  JI dUcenH JB  JA  JI RtUv)anRsaybBa¢ak; . 12. KNnacm¶ay AB ³ 2

2

I C

B

k> RsaybBa¢ak;fa ABI dUcnwg AJC ³ eday ABI nig AJC man ³ -mMu ABC  AJC ¬mMumanFñÚsáat;rmY AC ¦ -mMu BAI  JAC ¬eRBaH AJ CaknøHbnÞat;BuH¦ dUcenH ABI  AJC tamlkçxNÐ m>m . x> KNnaplKuN AI  AJ ³ AI AB eday  ABI   AJC AC AJ naM[ AI  AJ  AB AC Et AB   , AC   enaH AI  AJ   dUcenH KNna)anplKuN AI  AJ   . K> bgðajfa BAJ  CBJ ³ eday BAJ  JAC ¬eRBaH AJ CaknøHbnÞat;BuH¦ ehIy JAC  CBJ ¬mMucarwkFñÚsáat;rYm JC ¦ naM[ BAJ  CBJ dUcenH BAJ  CBJ RtUv)anbgðaj . X> RsaybBa¢ak;fa JB  JA  JI eday ABJ nig BIJ man ³ -mMu BAJ  CBJ  IBJ ¬bgðajxagelI¦ -mMu BJA  IJB ¬mMurYmEtmYy¦ naM[ ABJ  BIJ tamlkçxNÐ m>m JB AJ vi)ak  ABJ   BIJ JI JB

B

A

J

D

E

C

eday DE // AB enaHeyIg)anmMuRtUvKña ³ CDE  CAB nig CED  CBA naM[ CDE  CAB CD DE vi)ak  CDE   CAB CA AB naM[ AB  DECD CA  150 m901m.8 km KNna)an AB  3 km dUcenH RbEvgKNna)an AB  3 km . 13. tambRmab;RbFaneyIgKUsrUb)an ³ A

N M B

C

k> RbdUc ABCnig AMN ³ eday ABCnig AMN man -mMu ABC  PAC  ANM eRBaH ABC  PAC mMucarwkmanFñÚsáat;rYm AC nig PAC  ANM mMuqøas;kñúg -mMu ACB  QAB  AMN eRBaH ACB  QAB mMucarwkmanFñÚsáat;rYm AB ehIy QAB  AMN CamMuqøas;kñúg dUcenH ABC AMN tamlkçxNÐ m>m .

2

211

x> RsaybBa¢ak;fa AB AM  AC  AN ³ AB AC eday  ABC   ANM AN AM Taj)an AB AM  AC  AN dUcenH Rsay)anfa AB AM  AC  AN . 14.

-eyabl;´ ³ RbsinebIeyIgEkRbFanmkCa AB  29 dm , CD  10 dm vijenaHeyIg)an ³ CD 2  AD   AB  AD 10 2  AD  29  AD 100  29 AD  AD2 AD2  29 AD  100  0

eyIgedaHRsayedayeRbIviFIKuNExVg ³

tambRmab;RbFaneyIgKUsrUb)an ³

 AD  25 AD2  100  AD  4   4 AD  25 AD  29 AD

C

A

eyIg)an AD  4AD  25   0 naM[ AD  4  0 enaH AD  4 dm AD  25  0 enaH AD  25 dm -cMeBaH AD  4 dm ³ DB  AB  AD

B

D

eday C CacMNucénknøHrgVg;Ggát;p©it AB enaH ABC CaRtIekaNEkgRtg; C mankm KNna CD ebI AD  4 dm , DB  9 dm ³ naM[ CD  4dm 9dm  36dm  6 dm dUcenH KNna)an CD  6 dm . 2

 29  4  25dm

-cMeBaH AD  25 dm ³ DB  29  25  4dm dUcenH AD  4 dm nig DB  25dm b¤ AD  25 dm nig DB  4dm .

2

x> KNna AD nig DB ³ eyIgman AB  29 dm , CD  10 cm  1dm eday CD  AD DB

>

15.

RsaybMPøW[eXIjfa ah

a

B

c C

CD  AD   AB  AD 2

³

>

A

2

 bhb  chc

b

hb h a h c

1  AD  29  AD 2

A

B

1  29 AD  AD2

a

C

kñúgRtIekaN AAB nigRtIekaN CCB man ³ -mMu A  C  90 ¬ A nig C  CaeCIgkmm AB vi)ak  ACACBB  CACA  CB b¤ hh  ac Taj)an ah  ch ¬k¦

AD2  29 AD  1  0

¬CasmIkardWeRkTI2manb£sminEmnCacMnYnKt; dUcenH sisSBMuGacedaHRsay)aneLIy . ´eXIjmanesovkMEN CaeRcIndak;lk;enAelITIpSar ecHEt edaHRsayy:agRsYl edaymin)anKitBIxñat dm nig cm eFVI[cemøIyrbs;eK xusKW 25dm b¤ 4dm rebobedaHRsayenAfñak;TI 10 ehIycemøIyEdlRtUvKW AD  29  2 837 dm ¦.

o

a c

a

212

c

kñúgRtIekaN AAC nigRtIekaN BBC man ³ -mMu A  B  90 ¬ A nig B CaeCIgkmm AC vi)ak  ABABCC  BABA  BC b¤ hh  ba Taj)an ah  bh ¬x¦ tamTMnak;TMng ¬k¦ nig ¬x¦ eyIg)an ah  bh  ch dUcenH ah  bh  ch RtUv)anRsaybMPøW .

17.

KNnaedImb£sSIBIKl;eTAcMNuc)ak; P ³ P

o

10  x

x

B

3m

A

a

tag x CaRbEvgb£sSIBIKl; A eTAcMNuc)ak; P tamRTwsþIbTBItaK½rcMeBaHRtIekaNEkg PAB ³

b

a

b

a

b

a

16.



32  x 2  10  x 2

9  x  100  20 x  x 2

c

b

x 2  x 2  20 x  100  9 20 x  91

c

A

dUcenH BIKl;eTAcMNcu )ak;manRbEvg 4.55 m . 18.

KNnaCeRmATwk EB ³

D C A

E

A

RtIekaN ADB nigRtIekaN AEB man ³ -mMu BAD EAB ¬mMurYm¦ -mMu ABC  AEB eRBaHedaysarTMnak;TMng ABC  ACB mMu)aténRtIekaNsm)at ABC ACB  AEB mMucarwkmanFñÚsáat;rYm AB dUcenH ADB  AEB tamlkçxNÐ m>m .

E

B

edayépÞTwkEkgnwgpáaQUkQr naM[ EAB EkgRtg; E ehIytamBItaK½r ³ Et AB  AB  AE  EB ¬edImQUkEtmYy¦ eyIg)an  AE  EB   AE  EB eday AE  3dm , AE  9 dm 3  EB   9  EB enaH 2

2

2

2

2

2

2

9  6 EB  EB2  81  EB2 6 EB  81  9

2

AB2  AD  AE

>

AB 2  AE 2  EB2

-rYcTajbBa¢ak;fa AB  AD AE ³ AB AD eday  ADB   ABE AE AB Taj)an AB AB  AD AE b¤ AB  AD  AE dUcenH

91 m 20

x

eRbóbeFobRtIekaN ADB nigRtIekaN AEB³

B



2

EB 

RtUv)anbBa¢ak; .

dUcenH CeRmATwkKW 213

72  12 dm 6

EB  12 dm

.

19.

KNna h eTAtamtémøén b nig c ³

x> KNnaépÞRkLaénRbelLÚRkam ³ eday ABCD CaRbelLÚRkamman)at AD nig mankm
a

h b

tamRTwsþIbTBItaK½r RbEvgGIub:UetnusKW tamlkçN³énRtIekaNEkg eyIg)an ³ h   a  b  a  b 2

a 2  b2

³

2

h

S ABCD  AD  IB  12  8  96 cm 2

dUcenH KNna)an 21.

eyIgmanrUbdUcxageRkam ³

ab

P

a b 2

2

CaFmµta eKminEdlTukr:aDIkal;enAPaKEbg naM[ h  ab  aba a b b 2

a2  b2

2

2

k> KNnargVas; MQ ³ tamRTwsþIbTBItaK½rcMeBaHRtIekaNEkg MNQ ³ eyIg)an MN  MQ  NQ

2

2

2

D

2

2

MQ2  NQ 2  MN 2

C

MQ  NQ 2  MN 2

I

12 cm

A

 52  32  16  4 cm

dUcenH KNna)an

B

10 cm

k> KNna IB ³ eyIgman ABCDCaRbelLÚRkam nig I CacMNuc kNþal AD ehIy IB    AD  enaHeyIg)an ³ AD BC 12 cm    6 cm 2 2 2

2

2

2

IB 

Taj)an

2

AB2  IA2

 10 2  6 2  100  36  64  8 cm

KNna)an

IB  8 cm

.

o

2

2

MQ  4 cm

x> KNnargVas; NP ³ tamsmµtikmµénrUb MNQ nig NPQ man ³ NMQ  PNQ  90 nig PQN  NQM naM[ MNQ  NPQ tamlkçxNÐ m>m MN MQ vi)ak  MNQ   NPQ NP NQ

tamRTwsþIbTBItaK½rcMeBaH RtIekaNEkg AIB eyIg)an IA  IB  AB naM[ IB  AB  IA

dUcenH

Q

M

eyIgmanrUbdUcxageRkam ³

IA 

5 cm

3 cm

2

KNna)antémø h  aba a b b .

dUcenH 20.

N

2

2

.

S ABCD  96 cm 2

MN  NQ MQ 3  5 15 NP    3.75 cm 4 4

NP 

dUcenH KNna)an

. 214

NP  3.75 cm

.

22.

eyIgmanrUbdUcxageRkam Edlman ³ AI  15cm , IC  12cm , ID  4cm , IB  5cm

nig BD  3 cm

x> Taj[eXIjfa AP  PC  PD PA PC eday  PAC   PDA PD PA Taj)an PA  PC  PD dUcenH Taj)anfa PA  PC  PD . 2

>

B

2

D

I

2

C

24.

A

k> eRbóbeFobRtIekaN IAC nig IBD ³ eday IAC nig IBD man ³ IB 5 cm 1 ID 4 cm 1   nig   IA 15cm 3 IC 12cm 3 ehIy BID  CIA ¬mMuTl;kMBUl¦ dUcenH IBD IAC tamkrNI C>m>C . x> KNnargVas; AC ³ BD 1 eday IBD IAC enaH IB   IA AC 3 BD 1 b¤ naM[ AC  3BD  AC 3 eyIg)an AC  3  3cm  9 cm dUcenH KNna)an AC  9 cm . 23.

etIekaNTaMgBIrdUcKñab¤eT ? 10 cm 5 cm





4 cm

8 cm

ekaNTaMgBIrCaekaNdUcKña luHRtaEtpleFob FatuRtUvKñaesµIKña cm 1 h 5cm 1 eday Dd  84cm  ehIy   2 H 10cm 2 eyIg)an pleFob Dd  Hh  12 dUcenH ekaNTaMgBIrCaekaNdUcKña . 25.

eyIgmanekaNBIrdUcKña dUcrUbxageRkam ³

eyIgmanrUbdUcxageRkam ³ A

H

h 

P

C

R

r

D

k> eRbóbeFobRtIekaN PAC nigRtIekaN PAD³ eday PACnig PAD ³ -mMu P CamMurYm -mMu PAC  ADP mMucarwkmanFñÚsáat;rYm AC dUcenH PAC PAD tamlkçxNÐ m>m .

3

v h r     V H  R 1 v  r 2 h 3 1 V  R 2 H 3

3

k> bgðajfa ³ -maDekaNtUc -manekaNFM eyIgeFVIpleFobmaDekaNTaMgBIr enaHeyIg)an ³ 215

1 2 r h v r 2h 3   2 V 1 2 R H R H 3

edayekaNTaMgBIrdUcKña enaHpleFob Rr  Hh naM[ Vv  Rr rR b¤ Vv  Hh hH eyIg)an Vv  Rr b¤ Vv  Hh 2

2

2

2

3

3

3

3

Gacsresr Vv   Rr 

3

h   H

3

3

v r h     V R H 

dUcenH bgðaj)anfa

3

.

x> KNnamaD V énekaNFM ³ ¬esovePABum
3

v h   V H

3

eyIgman eday v  6.28 cm , h  2cm , H  4cm 6.28  2  naM[   V 4 3

3

3

6.28  1    V 2 6.28 1  V 8 V  6.28  8

V  50.24 cm3

dUcenH KNna)an

V  50 .24 cm 3

.

216

១៧ 1.

7 8 9

10

12 4860o

1800o , 2 700o

2. 51300

3.

540o

4.

5.

x x

100o 80 o

3x

x

x

2x

50 o

2x

2x x

x o

2x

2x

160



y

6.

2y

2y

y

2y

y

80o

y

3y

70 o

2y

3y

2y

y

y

2y 2y



150o , 160o

7.

175o

3240o

8.

900o

9. 10.

168o

n

n

11. .

n6

ខ.

n5

.

n 8 . .

12 900o

12. 13.

12 27

14.

o

n

n 217

15.

n  n  3 2

n :

16. 17.

n

30o

n

DDCEE

3

218

១៧ 1.

KNnaplbUkrgVas;mMukñúgénBhuekaN ³ -krNIBhuekaNmancMnYnRCugesµI 7 ³ eday plbUkmMukñúg  n  2180 nig n  7 naM[ plbUkmMukñúg  7  2  180  900 dUcenH BhuekaNEdlmancMnYnRCgesµI 7 vamanplbUkmMukñúgesµI 900 .

-krNIBhuekaNmancMnYnRCugesµI 12 ³ eday plbUkmMukñúg  n  2180 nig n  12 naM[ plbUkmMukñúg  12  2180  1800 dUcenH BhuekaNEdlmancMnYnRCgesµI 12 vamanplbUkmMukñúgesµI 1800 . o

o

o

o

o

o

o

o

-krNIBhuekaNmancMnYnRCugesµI 8 ³ eday plbUkmMukñúg  n  2180 nig n  8 naM[ plbUkmMukñúg  8  2180  1080 dUcenH BhuekaNEdlmancMnYnRCgesµI 8 vamanplbUkmMukñúgesµI 1080 .

2.

o

o

o

o

n  2180o  1800o 1800o n2 180o n  10  2

o

n  12

-krNIBhuekaNmancMnYnRCugesµI 9 ³ eday plbUkmMukñúg  n  2180 nig n  9 naM[ plbUkmMukñúg  9  2180  1260 dUcenH BhuekaNEdlmancMnYnRCgesµI 9 vamanplbUkmMukñúgesµI 1260 .

dUcenH BhuekaNEdlmanplbUkmMukñúg esµI 1800 vamancMnYnRCugesµI 12 .

o

o

o

o

-krNIplbUkmMukñúgesµI 2700 ebIBhuekaNenHmancMnYnRCugesµInwg n eyIg)an ³ o

o

n  2180o  2700o

-krNIBhuekaNmancMnYnRCugesµI 10 ³ eday plbUkmMukñúg  n  2180 nig n  10 naM[ plbUkmMukñúg  10  2180  1440 dUcenH BhuekaNEdlmancMnYnRCgesµI 10 vamanplbUkmMukñúgesµI 1440 .

2700o n2 180o n  15  2

o

o

rkcMnYnRCugénBhuekaN edaysÁal;plbUkmMukñúg ³ -krNIplbUkmMukñúgesµI 1800 ebIBhuekaNenHmancMnYnRCugesµInwg n eyIg)an ³

o

n  17

dUcenH BhuekaNEdlmanplbUkmMukñúg esµI 2700 vamancMnYnRCugesµI 17 .

o

o

219

-krNIplbUkmMukñúgesµI 4860 ebIBhuekaNenHmancMnYnRCugesµInwg n eyIg)an ³

eyIg)anplbUkmMukñúg

o

x  3x  x  80o  4  2180o 5 x  80o  360o

n  2180o  4860o

5 x  360o  80o

4860o n2 180o n  27  2  29

280o x  56o 5

dUcenH témøKNna)anKW

dUcenH BhuekaNEdlmanplbUkmMukñúg esµI 4860 vamancMnYnRCugesµI 29 . o

3.

.

-cMeBaHrUb ¬x¦ ³ CaBhuekaNmancMnYnRCug 5 ³

rkBhuekaNEdlmanplbUkmMukñúgesµI 5130 ebI n CacMnYnRCugénBhuekaN enaH n CacMnYnKt; eyIg)an n  2180  5130 o

o

x  56o

100o x

50 o

2x

o

2x

eyIg)anplbUkmMukñúg

5130 o n2 180 o n  28 .5  2  30 .5

100o  x  2 x  2 x  50o  5  2180o 5 x  150o  540o

tamlT§plbgðajfa cMnYnRCugminEmnCacMnYnKt; dUcenH KµanBhuekaNNaEdlman plbUkmMukñúgesµI 5130 eLIy .

5 x  540o  150o x

390o  78o 5

o

4.

dUcenH témøKNna)anKW

rkcMnYnRCugénBhuekaNe):agenaH ³ ebI n CacMnYnRCugénBhuekaNenaH eyIg)an ³

2x

2x x

x

540o n2 180o n  3 2  5

o

2x

160

eyIg)anplbUkmMukñúg

dUcenH BhuekaNe):agenaHmancMnYnRCugesµI 5 .

160o  x  2 x  2 x  x  2 x  6  2180o 8 x  160o  720o

rktémø x énrUbBhuekaNnImyY ² ³ -cMeBaHrUb ¬k¦ ³ CaBhuekaNmancMnYnRCug 4 ³

8 x  720o  160o x

x

dUcenH témøKNna)anKW

80 o

3x

.

-cMeBaHrUb ¬K¦ ³ CaBhuekaNmancMnYnRCug 6 ³

n  2180o  540o

5.

x  78o

x

220

560o  70o 8

x  70 o

.

6.

KNnatémø y tamrUbnImYy²xageRkam ³ -cMeBaHrUb ¬k¦ ³ manplbUkmMueRkAesµI 360

7.

o

o

2y

y

n  2180o

 150o n 180o n  360o  150o n

y 2y

eyIg)anplbUkmMueRkA

180o n  150o n  360o

y  2 y  y  2 y  360 o

30 o n  360o

6 y  360 o

n

y  60 o

dUcenH témøKNna)an

.

y  60 o

-BhuekaNniy½tEdlmanrgVas;mMukñgú esµI 160 ebI n CacMnYnRCugénBhuekaNniy½t eyIg)an

o

o

y 80o

eyIg)anplbUkmMueRkA

n  2180o

y

o

360o  12 30o

dUcenH BhuekaNniy½tenaHmancMnYnRCug 12 .

-cMeBaHrUb ¬x¦ ³ manplbUkmMueRkAesµI 360 70

KNnacMnYnRCugénBhuekaNniy½t ³ -BhuekaNniy½tEdlmanrgVas;mMukñgú esµI 150 ebI n CacMnYnRCugénBhuekaNniy½t eyIg)an

 160o n 180o n  360o  160o n

y

70o  80o  y  y  y  360o

180o n  160o n  360o

3 y  150o  360o

20 o n  360o

360o  150o y  70o 3

n

360o  18 20 o

dUcenH BhuekaNniy½tenaHmancMnYnRCug 18 .

dUcenH témøKNna)an y  70 . -cMeBaHrUb ¬K¦ ³ manplbUkmMueRkAesµI 360 o

o

-BhuekaNniy½tEdlmanrgVas;mMukñgú esµI 175 ebI n CacMnYnRCugénBhuekaNniy½t eyIg)an

o

2y

2y

3y

2y

3y

n  2180o

 175o n 180o n  360o  175o n

2y 2y

eyIg)anplbUkrgVas;mMueRkA

180o n  175o n  360o

3 y  2 y  2 y  3 y  2 y  2 y  2 y  360o

5 o n  360o

16 y  360o y

dUcenH témøKNna)an

n

360o  22.5 o 16

y  22 .5o

360o  72 5o

dUcenH BhuekaNniy½tenaHmancMnYnRCug 72 .

. 221

8.

KNnargVas;mMueRkAnImYy²énBhuekaNniy½t ³ plbUkrgVas;mMukñúgesµInwg 3240 ebI n CacMnYnRCugénBhuekaNniy½t eyIg)an

rkcMnYn n ³ eday BhuekaNniy½tEdlman n RCug nigman rgVas;mMukñúgmYyesµI 168 enaHeyIg)an ³

10.

o

o

n  2180o

n  2180o  3240o

 168o n 180o n  360o  168o n

o

3240 180o n  18  2

n2

180o n  168o n  360o

n  20

12o n  360o

eyIgdwgfa cMnYnRCug = cMnYnmMueRkA naM[ cMnYnmMueRkA n  20 edaymMueRkAnImYy² énBhuekaNniy½tmanrgVas; esµI²Kña nigmanplbUkesµI 360 eyIg)an rgVas;mMueRkAnImYy²  36020  18 o

n

360o  30 12o

dUcenH cMnYnEdlRtUvrkKW n  30

.

KNnargVas;mMueRkAnImYy²énBhuekaNniy½t ³ eyIgdwgfa mMeu RkAnImYy²énBhuekaNniy½t kMNt;eday 360n Edl n CacMnYnRCug k> qekaNniy½t n  6 eyIg)an 360n  3606  60

11.

o

o

o

dUcenH rgVas;mMueRkAnImYy² énBhuekaN niy½tenaHKW 18 . o

o

o

o

9.

rkcMnYnRCug énBhuekaNniy½tenaH ³ ebI n CacMnYnRCugénBhuekaNniy½tenaH eyIg)an -plbUkrgVas;mMukñúgesµInwg n  2180 -plbUkrgVas;mMueRkA 360 eday plbUkrgVas;mMukñúgrYmnwgplbUkrgVas;mMueRkA esµInwg 900 naM[eyIgGacsresr)an ³

dUcenH mMueRkAnImYy²esµInwg 60 . o

x> bBa©ekaNniy½t n  5 eyIg)an 360n  3605

o

o

o

o

 72 o

dUcenH mMueRkAnImYy²esµInwg 72 . o

o

K> GdæekaNniy½t n  8 eyIg)an 360n  3608

n  2180o  360o  900o n  2180o  900o  360o

o

o

540 180o n  3 2

n2

o

 45 o

dUcenH mMueRkAnImYy²esµInwg 45 . o

n5

X> BhuekaNniy½tEdlmanRCug 12 eyIg)an 360n  360  30 12

dUcenH cMnYnRCugénBhuekaNniy½tenaHKW 5 .

o

o

o

dUcenH mMueRkAnImYy²esµInwg 30 . o

222

rkcMnYnRCug énBhuekaNenaH ³ ebI n CacMnYnRCugénBhuekaNenaH eyIg)an -plbUkrgVas;mMukñúgesµInwg n  2180 -plbUkrgVas;mMueRkA 360 eday plbUkrgVas;mMukñúg nigmMueRkAesµIngw 900 naM[ eyIgGacsresr)an ³

eXIjfa BhuekaN ABCDEFGHJKLM man³ -mMu ABC  ABI  IBC  60  90  150 naM[ mMukñúgnImYy²esµIKña esµInwg 150 -RCug AB  BC  CD  ...  MA eyIgrkcMnYnRCugéBhuekaNtamTMnak;TMng ³

12.

o

o

o

o

o

o

n  2180o

 150o n 180o n  360o  150o n

n  2180o  360o  900o n  2180o  900o  360o

180o n  150o n  360o

540o 180o n  3 2  5

30 o n  360o

n2

n

dUcenH cMnYnRCugénBhuekaNenaHKW

dUcenH BhuekaNEdlekItCaBhuekaN niy½tmancMnYnRCugesµI 12 .

.

5

360o  12 30o

RsaybBa¢ak;farUbEdlekItCaBhuekaNniy½t EdlmancMnYnRCugesµInwg 12

13.

A

RsayfaBhuekaNEdlman n RCugenaHcMnYn Ggát;RTUgrbs;vaesµInwg nn2 3 ³ eKGacKUsBhuekaN)anluHRtaEtcMnYnRCugrbs; vaRtUvFMCagb¤esµI 3 -cMeBaH n  3 vaCaRtIekaN cMnYnGgát;RTUg 332 3  0 -cMeBaH n  4 vaCaRtIekaN cMnYnGgát;RTUg 442 3  2 -cMeBaH n  5 vaCaRtIekaN cMnYnGgát;RTUg 552 3  5 -cMeBaH n  6 vaCaRtIekaN cMnYnGgát;RTUg 662 3  9 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> dUcenH BhuekaNman n RCugenaHcMnnY Ggát;RTUgesµI nn2 3 , n  3 .

14.

M L

B

I

C

K 120o

D

J

E

H F

G

eyIgP¢ab;kMBUlkaerenACab;²Kña enaHeyIgnwg)an BhuekaN ABCDEFGHJKLM eyIgman qekaNniy½tEdlrgVas;mMukñúgnImYy² esµInwg 6  26180  120 naM[ AIB  360  120  90  90  o

o

o

o

o

o

 360o  300o  60o

kñúgRtIekaN AIB man IA IB nig AIB  60 naM[ AIB CaRtIekaNsm½gS vi)ak AIB  IBA  IAB  60

o

o

223

o

KNnamMukñúg nigmMueRkAénqekaNniy½t ³ -plbUkmMukñúgénqekaN KWesµInwg

15.

6  2180 o  4 180 o  720 o

edaymMunImYy²manrgVas;esµIKña naM[ mMukñúgnImYy²esµInwg 7206  120 -plbUkmMueRkAénqekaN KWesµInwg 360 naM[ mMueRkAnImYy²esµInwg 3606  60 o

o

o

o

o

dUcenH kñúgqekaNniy½t KNna)an ³ mMukñúgesµInwg 120 / mMueRkAesµInwg 60 . o

o

KNnacMnYnRCug n énBhuekaNniy½t ³ -plbUkmMueRkAénqekaN KWesµInwg 360 naM[ mMueRkAmYyénqekaNniy½tKW 3606  60 -eKmanmMueRkAmYyénBhuekaNniy½t manrgVas; 30 eRcInCag rgVas;mMueRkAmYyénqekaNniy½t naM[ mMueRkAénBhuekaNniy½tenaHesµInwg 60  30  90 > eyIg)an cMnYnRCugénBhuekaNniy½tenaHesµInwg

16.

o

o

o

o

o

n

o

o

360 o 4 90 o

dUcenH BhuekaNniy½tenaHmancMnYnRCug n  4 ¬BhuekaNniy½tenaHCakaer¦ .

224

១៨ 1. S S

S

14 cm

9 cm 14cm

o

15 cm

8 cm

8 cm

(a)

(b)

(c)

2.

k> R  5cm , h  12cm X> R  5.2 cm , h  11cm

x> R  3.4 cm , h  8.9 cm g> R  5 mm , h  13.4 mm

K> R  3.7 cm , h  7 cm c> R  7 dm , h  16 dm

3.

k> R  3 cm

x> D  18 dm

k>

46 x> S  16 m

K> R  3.7 cm

X> D  23.2 cm

K>

X>

4.

S

36  cm 2 25

2

S

12  dm 2 5

5. . V  288 cm ខ. V 

S  1764 cm

S 3

32  m3 16

6 cm

6. .

o

4.5 cm

ខ.

A

7.

AB // CD

CED

B

BE 1  CE 2 16 cm 2

E

C

AEB

D A

8.

DEFG

ABCD

B

E

F

D

G

C

M N

225

9.

ABCD BD

I

CI

A

AB

o

BIO

O

DOC

C

D

10.

9 cm 2

3 cm

m

6m

2

144 cm 2

11.

256 cm 2

1

18 cm

1

9 600 m 2

12.

B

I

cm

2 1 2 500

cm 2 x

13.

6



6 cm

.

10 cm

4

10

x

ខ.

14.

2

2

SABCD 80 cm

OO’= x

EFGK

. ខ.

 SO

60 cm EFGK

x ខ

x  30 cm

ABCD

BA  6 , SA  8 , SA ' 

15.

EFGK

2 SA 3

S

cm .

A’B’

ខ.

.

ABCD

.

2 SA’B’C’D’     SABCD 3 1 SM '  SM , SO  10 cm , OM  6 cm 2 O'M '

 O '  

1  2

ខ. .

2

SO ' 

H

B

D

C O

3

16.

O

A

2

2 A’B’C’D’     3 2 SO '  SO 3

C

D

A’B’C’D’



A

H B

S

o

O 1 SO 2

M

M

o O’ 226

S

O

3

1   2

17.

1 4

18.

9 10

-

7 10 19.

R R

h

h h

.



ខ.

R S

20.

R

h R 2

A

o

h

B

. ខ.

C

o

R 2

21.



D R

2a a

2a

.

2a

ខ.

2a

22.

r

2 cm



r

 3

23.

2 cm

1 cm 1 cm 1 cm

DDCEE

3 227

1 cm

r

១៨ 1.

rképÞRkLaxag nigépÞRkLaTaMgGs; ³ -cMeBaHrUb (a) S

÷KNnaépÞRkLaTaMgGs; ³ tamrUbmnþ S  S  S EtépÞRkLa)atmanragCaqekaNniy½t eyIg)an ³ T



1  S B  6  8 82  4 2  2   24 48  96 3 cm 2

15 cm

÷KNnaépÞRkLaxag ³ tamrUbmnþ S  12 pa  12  4 15cm  9 cm KNna)an S  270 cm dUcenH épÞRkLaxagKW S  270 cm .

8 cm

naM[ S  336 cm  96 3 cm  502 .28 cm dUcenH RkLaépÞTaMgGs;KW S  502 .28 cm . 2

L

2

2

2

T

2

-cMeBaHrUb (c)

L

÷KNnaépÞRkLaTaMgGs; ³ tamrUbmnþ S  S  S EtépÞ)at S  15 cm 15 cm  225 cm naM[ S  270 cm  225 cm  495 cm dUcenH épÞRkLaTaMgGs;KW S  495 cm .

S

14 cm

B

2

2

2

8 cm

o

B

2

÷KNnaépÞRkLaxag ³ tamrUbmnþ S  Ra  3.14  8 cm 14 cm KNna)an S  351 .68 cm dUcenH épÞRkLaxagKW S  351 .68 cm .

T

2

T

-cMeBaHrUb (b)

2

T

L

L

B



9 cm

T

L

L

2

S

L

2

L

÷KNnaépÞRkLaTaMgGs; ³ tamrUbmnþ S  S  S EtépÞ)at S  R  3.14  8 cm  200 .96 cm naM[ S  351 .68 cm  200 .96 cm KNna)an S  552 .64 cm dUcenH épÞRkLaTaMgGs;KW S  552 .64 cm .

14cm

T

8 cm

÷KNnaépÞRkLaxag ³ tamrUbmnþ S  12 pa  12  6  8 cm 14cm KNna)an S  336 cm dUcenH épÞRkLaxagKW S  336 cm .

L

B

2

2

2

B

2

2

T

L

2

2

T

L

2

2

T

L

228

2.

KNnamaDekaNtamkrNIdUcxageRkam ³ k> eyIgman R  5cm , h  12cm tamrUbmnþ V  13 S h b¤ V  13 R h naM[ V  13  3.14  5 cm 12 cm KNna)an V  314 cm dUcenH manDekaNKW V  314 cm .

g> eyIgman R  5 mm , h  13.4 mm tamrUbmnþ V  13 S h b¤ V  13 R h naM[ V  13  3.14   5 mm 13.4 mm KNna)an V  70.127 mm dUcenH manDekaNKW V  70.127 mm . 2

B

2

2

B

2

3

3

3

3

x> eyIgman R  3.4 cm , h  8.9 cm tamrUbmnþ V  13 S h b¤ V  13 R h naM[ V  13  3.14  3.4 cm  8.9 cm KNna)an V  107 .685 cm dUcenH manDekaNKW V  107 .685 cm .

c> eyIgman R  7 dm , h  16 dm tamrUbmnþ V  13 S h b¤ V  13 R h naM[ V  13  3.14  7 dm 16 dm KNna)an V  820 .59 dm dUcenH manDekaNKW V  820 .59 dm . 2

B

2

2

B

3

2

3

3

3

3.

K> eyIgman R  3.7 cm , h  7 cm tamrUbmnþ V  13 S h b¤ V  13 R h naM[ V  13  3.14  3.7 cm  7 cm KNna)an V  100 .302 cm dUcenH manDekaNKW V  100 .302 cm .

rképÞRkLaEsV‘ nigmaDb‘UltamkrNInmI Yy² ³ k> eyIgman R  3 cm -épÞRkLaEs‘V S  4R  4  3.14  3 cm KNna)an S  113 .04 cm dUcenH épÞRkLaEs‘VKW S  113 .04 cm .

2

2

2

2

B

2

2

3

-maDb‘Ul V  43 R  43  3.14  3 cm KNna)an V  113 .04 cm dUcenH épÞRkLaEs‘VKW V  113 .04 cm . 3

3

3

3

3

X> eyIgman R  5.2 cm , h  11cm tamrUbmnþ V  13 S h b¤ V  13 R h naM[ V  13  3.14  5.2 cm 11cm KNna)an V  311 .32 cm dUcenH manDekaNKW V  311 .32 cm . 2

x> eyIgman D  18 dm naM[ R  D2  182dm  9 dm -épÞRkLaEs‘V S  4R  4  3.14  9 dm KNna)an S  1017 .36 dm dUcenH épÞRkLaEs‘VKW S  1017 .36 dm .

B

2

3

2

2

3

2

2

229

-maDb‘Ul V  43 R  43  3.14  9 dm KNna)an V  3052 .08 dm dUcenH épÞRkLaEs‘VKW V  3052 .08 dm . 3

3

eyIg)an

1 R 2

3

36 1 6 3    25 2 5 5

dUcenH KNna)ankaMEsV‘KW R  53 cm .

3

46 x> eyIgman S  16 m tamrUbmnþ épÞEs‘V S  4R naM[ R  4S enaH R  4S

k> eyIgman R  3.7 cm -épÞRkLaEs‘V S  4R  4  3.14  3.7 cm KNna)an S  171 .95 cm dUcenH épÞRkLaEs‘VKW S  171 .95 cm .

2

2

2

36  25  1  2

2

2

2

2

enaH

-maDb‘Ul KNna)an V  212 .07 cm dUcenH épÞRkLaEs‘VKW V  212 .07 cm . 4 4 3 V  R 3   3.14  3.7 cm 3 3

1 R 2

K> eyIgman S  125  dm tamrUbmnþ épÞEs‘V S  4R naM[ R  4S enaH R  4S

3

1 S 2 

46  16  1 46  46  0.848 m  2 16 8

dUcenH KNna)ankaMEsV‘KW R 

3



46 m 8

.

2

2

X> eyIgman D  23.2 cm naM[ R  D2  23.22 cm  11.6 cm -épÞRkLaEs‘V S  4R  4  3.14  11 .6 cm KNna)an S  1690 .08 cm dUcenH épÞRkLaEs‘VKW S  1690 .08 cm .

2

enaH

2

2

1 R 2



1 S 2 

12  1 12 60 5    2 5 10

2

KNna)an

2

60 15  dm 10 5

dUcenH KNna)ankaMEsV‘KW R 

-maDb‘Ul KNna)an V  6534 .95 cm dUcenH épÞRkLaEs‘VKW V  6534 .95 cm . 4 4 3 V  R 3   3.14  11.6 cm 3 3

15 dm 5

.

X> eyIgman S  1764 cm sUmEkBI S  1764 cm eTACa S  1764  cm eRBaH S CaépÞ minGaceRbIxñatRbEvg)aneT ¡¡¡ tamrUbmnþ épÞEs‘V S  4R naM[ R  4S enaH R  4S  enaH R  1764  441  21 cm 4

3

3

4.

R

rkkaMEs‘VedaysÁal;épÞRkLadUcxageRkam ³ k> eyIgman S  36  cm 25 tamrUbmnþ épÞEs‘V S  4R naM[ R  4S enaH R  4S  12 S

2

2

2

2

2

dUcenH KNna)ankaMEsV‘KW R  21 cm . 230

2

5.

KNnakaMénb‘UledaysÁal;maD ³ k> eyIgman V  288 cm tamrUbmnþ maDb‘Ul V  43 R

1 naM[ V   3.14  4.5 cm  6 cm 3 KNna)an V  127 .17 cm ehIy V  43 R naM[ V  43  3.14  4.5 cm  381.51 cm eyIg)an V  127.17  12  381.51 KNna)an V  317 .925 cm dUcenH maDsUlItKW V  317 .925 cm . 2

C

3

3

C

3

naM[

R3 

enaH

3V 4

R3

3

S

3V 4

3

 eyIg)an R  34V  3  288 4 b¤ R  216  6 cm dUcenH kaMb‘lU KNna)anKW R  6 cm . 3

3

3

3

32 x> eyIgman V  16  m b¤ V  2 m tamrUbmnþ maDb‘Ul V  43 R 3

3

x> rképÞRkLaTaMgGs;énsUlIt ³ épÞénsUlIt S  S  12 S Edl S CaépÞRkLa xagénekaN nig S CaépÞénEsV‘ eday S  Ra Et tamRTwsþIbTBItaK½r a  R  h enaH S  R R  h b¤ S  3.14  4.5  4.5  6

3

3

naM[

R3 

enaH

3V 4

R3

eyIg)an

3V 3 3  2 R3  4 4



3 3 12 3 12   m 2 8 2

R3

3

S

L

3V 4

L

S

S

L

2

2

2

2

L

2

2

L

dUcenH kaMb‘lU KNna)anKW R  6.

3

12 m 2

.

 14.13  56.25  14.13  7.5  105.975 cm 2

ehIy S  4R  4  3.14  4.5 KNna)an S  254 .34 cm eyIg)an S  105.975  12  254.34 KNna)an S  233 .145 cm dUcenH épÞénsUtItKW S  233 .145 cm .

eyIgmanekaN nigknøHEs‘VdUcrUb ³

2

S

2

S

6 cm o

2

S

2

4.5 cm

2

k> rkmaDTaMgGs;énsUlIt ³ maDénsUlIt V  V  12 V Edl V CamaDekaN nig V CamaDEsV‘ eday V  13 S h  13 R h C

rMlwk ³ -maDBIr:amIt ³ V  13 S h -maDekaN ³ V  13 R h -maDEsV‘ ³ V  43 R B

S

C

2

S

3

2

C

B

231

7.

rképÞRkLaén AEB ³

9.

A

B

etIépÞRkLa BIO tUcCagépÞRkLa DOC b:unµandg ? A I B

E

o

C

eday AB// CD enaH AEB CED enaH pleFobépÞRkLa esµIkaerénpleFobFatuRtUvKña BE  eyIg)an SS   CE  

eday AB// DC enaH BIO DOC enaH pleFobépÞRkLa esµIkaerénpleFobFatuRtUvKña BI  naM[ SS   DC   Et AB  DC  2BI eRBaH I kNþal AB eyIg)an SS   2BIBI  b¤ SS  14

2

2

BIO

AEB

CED

b¤ naM[

DOC

2

S AEB  1    16 2 16 S AEB   4 cm 2 4

dUcenH rk)anépÞRkLa S

AEB

C

D

D

2

 4 cm 2

naM[

.

BIO

BIO

DOC

DOC

S BIO

1  S DOC 4

dUcenH eRbobeFob)an 8.

etIépÞRkLakaer DEFG tUcCagépÞRkLakaer ABCD b:unµandg ? A

10.

B

E

F

D

G

N

eday DEFG nig ABCD CakaerdUcKña  eyIg)an SS   DG  DC  2

ABCD

naM[ enaH



DG DM DG 9 DG 3    DC 15 DC DN DC 5 2 S DEFG 9 S DEFG  3     S ABCD 25 S ABCD  5  9 S DEFG  S ABCD 25



dUcenH eRbobeFob)an

S DEFG 

9 S ABCD 25

2

S

2

9 cm 2  36 m 2 9 cm 2

S  36 m 2

.

dUcenH CBa¢agM manépÞBitR)akdKW 36 m . 2

232

.

rképÞRkLaBitR)akdénCBa¢aMgKitCa m ³ eyIgdwgfa CBa¢aMgmYyRtUv)aneKftbRgÜm[eTA CarUbft Edlmankm
DEFG



1 S DOC 4

2

C

M

Et

S BIO 

11.

etIvimaRtenH esµIb:unµan m ebIenAkñúgEpnTITIBrI ? eyIgdwgfa épÞRkLaénTIFøasalamYymanBIr ebI eKdak;vaenAkñúgEpnTIBIrepSgKña mann½yfa épÞRkLaTaMgBIrénsala CarUbdUcKña -ebI x CavimaRtmYyenAkñúgEpnTITIBIrenaH eyIg)anpleFob ³ 144 cm 2  18 cm    256 cm 2  x 

naM[

13.

k> KNna x ³ x

C1

6

C2 C3

2

edaymuxkat;Rsbnwg)at enaHekaNTaMgbIdUcKña eyIg)an pleFob ³

2

18 cm 144 cm 2  x 256 cm 2

V1  x    V2  x  4 

18 cm 12 cm  x 16 cm 18 cm 3  x 4 18 cm  4 x 3 x  24 cm

3



1 2 R1 x 3

 x    1 2 x  4   R2 x  4  3

1

rképÞRkLaénTIFøaCa cm ebIvaenAkñúgbøg;mYy ³ 1 -EpnTImanmaRtdæan 2500 mann½yfa 1m enA elIEpnTI RtUvnwg 2500m énrUbBit -eyIgdwgfa épÞRkLaénTIFøaBit 9600 m -ebItag S CaépÞRkLaénTIFøaenAelIEpnTIenaH eyIg)anpleFob ³

2

x> rkmaDénekaNenaH ³ eyIgmanpleFob ³

2

V1  x    V3  x  4  2  V1  1    V3  2  V3  8V1

2

S  1    2 9600 m  2500  S 1  2 6250000 9600  10000 cm

, x6

3

2

2 1

1

3

1

2

S  15 .36 cm 2

3

Et V  13 R x  13  3.14  3 cm  6 cm KNna)a V  56.52 cm naM[ V  8  56 .52  452 .16 cm dUcenH KNna)anmaDénekaNKW 452 .16 cm .

96 000 000 cm  15.36 cm 2 6 250 000

dUcenH épÞRkLaénTIFøaKW

2

dUcenH KNna)an x  6 cm .

2

S

2

eday R  D2  62  3 nig R  D2  102  5 naM[ x x 4  53 b¤ 5x  3x 12 enaH x  6

dUcenH vimaRtenHesµI 24 cm enAkñúgEpnTITIBIr

naM[

3

R12  x    R22  x  4  R1 x  R2 x  4 1

12.

4

10

3

3

.

3

233

14.

k> rkRCugénkaer EFGK tamtémø x ³ tambRmab; RbFaneyIgKUsrUb)an ³

b¤ V   13  60

 1   80     37 .5 2  50   3   96000  23437.5 2

 72562.5 cm3

S

dUcenH maDkMNat;BIr:amItKW 72562 .5 cm . 3

G

K

80 cm

O

E

F x

D

C O

A

15.



60 cm

B

k> KNna AB ³ eyIgmanrUb Edlman BA  6 cm , SA  8 cm ehIy SA  23 SA S

edayeKkat;Rsbnwg)at enaHBIr:amItTaMgBIrdUcKña eyIg)anpleFob ³ VSEFGK  80  x    VSABCD  80 

O

A

3

H

B D

C O

1 3 S EFGK 80  x   80  x  3   1  80  S ABCD  80 3 2 a EFGK  80  x    2 a ABCD  80  a EFGK 80  x  a ABCD 80

C

D



H

A

B

edayBIr:amIt SABCDdUcBIr:amIt SABCD eyIg)a pleF[bRtUvKñaesµIKñaKW ³

2

2 SA AB SA AB 3   AB SA 6 SA 6 2 AB   4 cm 3



eday a  AB  60 cm naM[ a 60  8080 x b¤ a 60 enaH a  60  34 x cm



AB 2  6 3

naM[

ABCD

EFGK

EFGK

 1

dUcenH KNna)an

x 80

x> KNnaépÞRkLaénkaer ABCD eday S  AB  4cm  16 cm dUcenH KNna)an S  16 cm .

EFGK

2

dUcenH RbEvgRCugénkaer EFGK KW x> KNnakMNat;BIr:amIt ebI x  30 cm ³ naM[ BIr:amIt EFGK man ³ -RCug EF  60  34  30  37.5 cm -km
2

ABCD

.

3 60  x cm  4

.

AB  4 cm

2

2

ABC D

2

2     S ABCD 3

-epÞógpÞat;fa S eday S  AB  6 cm  36 naM[ 16   23   36 b¤ 16  16 Bit ABCD

2

2

ABCD

2

dUcenH BitCaRtwmRtUvcMeBaHkar[epÞógpÞat; . SEFGK

234

eday ekaNTaMgBIrdUcKña eyIg)anpleFob ³

K> bgðajfa SO  23 SO ³ B  eyIgman pleFobRtUvKña SSOO  AAB eday AB  4 cm nig AB  6 cm naM[ SSOO  64 b¤ SO  23 SO dUcenH bgðaj)anfa

-TajbBa¢ak;fa V   23  eyIgmanpleFobRtUvKñaKW SABCD

VSABCD  SO    VSABCD  SO 

naM[ Taj)an

3

naM[

VSABCD  2    VSABCD  3 

 VSABCD

b¤ SS   63  enaH

3

.

dUcenH bgðaj)anfa

k> KNna OM  ³ eyIgmanrUbEdlman SM   12 SM , SO  10 cm nig OM  6 cm S

o

2

1 S     S 2

.

x> bgðajfa SO  12 SO ³ M  eyIgman pleFob SSOO  OOM enaH SSOO  63 naM[ SO  12 SO

2     VSABCD 3

o

2

3

3

³

1 S     S 2

dUcenH epÞógpÞat;)an

dUcenH bBa¢ak;)anfa

16.

2

.

1 S     S 2 2 S   OM     S  OM 

2

2 VSABCD     VSABCD 3

OM   3 cm

eyIgman pleFob

3

VSABCD



enaH

-epÞógpÞat;fa

3

2  SO  VSABCD  3   VSABCD  SO     





dUcenH KNnna)an

.

2 SO  SO 3

1 SM OM  1 OM  2   OM 2 OM SM OM 6 OM   OM    3 cm 2 2

OM  SM   OM SM

K> RsaybBa¢ak;fa eyIgmanpleFob

M

tag S CaépÞRkLafasmanp©it O nig S  CaépÞ RkLafasmanp©it O

3

1 VO   VO     2 VO   OM   3   VO   OM 



VO 



VO 

naM[

M

VO  VO 

3   6

3

1   2

3

³

3

1 VO      VO  2

dUcenH bgðaj)anfa 235

.

1 SO  SO 2

1 VO   VO     2

3

.

17.

rkCeRmIsrbs;GñkTijEpø«Lwk edIm,I[cMeNj³ ÷tag V CamaD«LwktUcmYy mankaM r V CamaD«LwkFMmYy mankaM R eyIgcat;Tukfa «LwkTaMgtUcTaMgFMmanragCaEsV‘ dUcKña enaHeyIg)anpleFobRtUvKña ³ V r 1    EteyIgdwgfa r  R 4 V R

19.

k> KNnamaDekaN nigmaDsIuLaMg ³

1

2

h 

3

R

1

-maDekaN Edlmankm
2

1  R V1  4    V2  R      V1 1  V2 64 1 2V1  2  V2 64

3

3

eyIg)an



V1  1    V2  4 

naM[



1 V1  V2 64 1 2V1  V2 32

2

2

B

dUcenH maDekaNKW V  1.05R h ÉktamaD 2

-maDsIuLaMg Edlmankm
enaH b¤ tampleFob eyIgeXIjfa maD«LwktUcBIrEpø tUcCag maD«LwkFMmYycMnnY 32 dg dUcenH GñkTijRtUvyk«LwkFM eTIbcMeNj .

2

2

B

2

x>eRbóbeFobmaDekaN nigmaDénsIuLaMg ³ eyIg)an VV  13..0514RR hh  0.33 2

18.

rkCeRmIsénm:asuInEdlcMeNjCag ³ tag V CamaDm:asIuntUc nig V CamaDm:asIunFM eday m:asIunTaMgBIrmanragsIuLaMgdUcKña man pleFobvimaRtRtUvKñaénm:asIunTaMgBIresµI 109 1

eyIg)an

2

dUcenH eRbóbeFob)an

2

3

V1  9    V2  10  729 V1  V2 1000



20.

V  0.33V 

.

k> KNnamaDénsIuLaMgenaH ³ S

V1 729  V2 1000

naM[ b¤ V  0.729V Et témøma: sIuntUc  0.7 éntémøm:asIuFM eday maDm:asIuntUcesµI 0.729 énmaDm:asIunFM Et témøm:asIuntUcesµI 0.7 éntémøm:asIunFM dUcenH GñkTijRtUveRCIserIsykm:asIuntUc eTIbcMeNjCag . 1

2

A

C

o

o

B

h



R 2

D R

edayRtIekaN SAB dUcnwgRtIekaN SCD AB eyIg)an SSOO  CD Et 236

R AB 2 1  CD 2R 2 2

naM[

SO  1  SO 2

b¤ SO  12 SO  12 h





dUcenH maDsIuLaMg

V  0.39R 2 h

tag V CamaDKUb nig V  CamaDEsV‘ eyIg)an V  2V  .

x> KNnapleFobmaDénsIuLaMg nigmaDekaN ³ eday maDekaNKW V   13 R h 2

1 2 R h V 3 8  V 1 2 R h 8 3

21.

V 3  V 8

r 1



1 cm

V  S B h  R 2 h

S  1cm   1 cm 2 2

1 S   a  h 2

2

3 3 3 1 h  h 1    4 2 4 2 1 3 3 2 S    1cm  cm  cm 2 2 4 3 S 3 3 S S  S   4 4 S 4 S 1 3  0.4330  43 .30 % 4

Et R  a nig h  2a naM[ V    a  2a  6.28a ÉktamaD dUcenH maDsIuLaMgKW V  6.28a ÉktamaD

2

2a

3

naM[

2

enaH

3

naM[

x> KNnapleFobrvagmaDsIuLaMg nigmaDénKUb maDKUbKW V   2a   8a ÉktamaD naM[eyIg)anpleFobKW ³





eday enaH S   43.30%S

3

V 6.28 a 3   0.785 V 8a 3

dUcenH eebóbeFob)an V  0.785 V

.

1 cm

-épÞRkLakaer -épÞRtIekaNsm½gS

2a

dUcenH KNna)anpleFob

r3 1

.

maDsIuLaMgKW

3

,  3

eRbóbeFobCaPaKryénépÞRkLakaer nigépÞ RkLaénRtIekaNsm½gS ³

k> KNnamaDénsIuLaMgenaH ³

2

4 2 3  2  r 3 3 3 8  8r

dUcenH kMNt;)antémø r  1 cm 23.

dUcenH KNna)anpleFobKW

r

2 cm

KNna)an

naM[

kMNt;témø r edIm,I[maDKUbesµIBIrdgmaDEsV‘ ³

2

R V      OO 2 2 R V   SO  SO  4 2 R  1  R 2 h V   h  h   4  2  4 2 3.14 R 2 h V  0.39 R 2 h 8

enaHmaDsIuLaMg naM[

22.

. 237

S   43.30%S

.

sYs¡þI elakGñkmitþGñkGanCaTIRsLaj;rab;Gan enAkñgú EpñkenHelakGñknwg)aneXIj 288

“No part of this test may be reproduced in any form without permission”

RbsinebIelakGñkmanbBaða b¤cm¶l;Rtg;cMNucNa EdlmanenAkñúgEpñkenH elakGñkGacTak;Tg;eTAkan; RKU b¤mitþPkþirbs;GñkEdlmansmtßPaB b¤GñkeroberogesovePAenHkñúgeBlevlasmKYr . …

iv

1) Calculate and simplify.  x 2  6 x  8   x 2  2 x  8

x

2) Solve the following inequality. 3  x  2   5x  2

3  x  2   5x  2

3) Express a in terms of  2  a  b

2

 6 x  8   x 2  2 x  8

and b .

a

b

 2  a  b

 0, 3

4) Find the equation of the straight line that passed through point  0, 3 with a slope

7។

of 7.

l m n

x

5) Find x when l m n as shown in the figure at right.

l

l 3cm

3cm

4cm

m

4cm

m

5cm

xcm

5cm

n

n

6) Expand and simplify. 2  2x  1   2 x  3 2 x  5

 2x  1   2 x  3 2 x  5

7) Solve the following equation. 2  x 1  0

 x 1

2

238

2

0

xcm

8) Calculate and simplify. 10 5 7 5 5  5









9) Find the range of y when the domain is 2  x  1 regarding the quadratic 1 function y  x 2 . 2

5 7



5 5 

10 5

y 2  x  1

10) The width and diagonal of a rectangle are 5 cm and 35 cm, respectively. Find its length.

11) Factorize the following expression. xyz  xy  xz  x

y

1 2 x ។ 2

35 cm។

5 cm ។

xyz  xy  xz  x

5x2  19 x  4  0 ។

12) Given the quadratic inequality 5x2  19 x  4  0 . ① Solve the quadratic inequality. ② Draw the range of x found in ① on a number line.

13) Find cos A given that sin A 









3 for ABC 5

ABC

cos A 3 sin A  5

with C  90o .

14) How many different ways are there to create a team consisting of one male and one female from among 4 boys and 5 girls?

15) Given that the geometric sequence below. 125 , 25 , A , 1 , B , … ① Find A . ② Find B .

239

①។

x

C  90o ។

4

125 , 25 , ① រក A ។

② រក

B ។

A

5

,1,

B

,…



16) Expand and simplify the following expression.  x  y  4x  y    2x  y  2x  y 

 x  y  4x  y    2x  y  2x  y 

17) Express 2010 as the product of prime numbers.

2010

18) Find x satisfying the following equation. 4 x2  5x  8  0

x

19) Calculate expression.

and



simplify

52 2





4 x2  5x  8  0

the

following 2 5 5 2  2



20) Find the value of a when the parabola y  ax 2 passes through point  2 ,  8 .

 )

52 2





5 2 

y  ax 2

a

 2 ,  8 ។

21) In the diagram on the right, find x when DE BC . C

E

2 5 2

DE BC :

x

C

E

6

6

4 A

x

D

4 A

B

3

22) The diagram on the right shows a right-angled triangle with BC=3cm , AC = 7cm and C=90o . Find the length, in cm, of side AB.

D

x

cm ។

A

A

7cm

B

3cm

7cm

B

C

240

B

C = 90o ។

BC = 3cm , AC = 7cm

AB

3

3cm

C

23) Expand and simplify the following expression.  x  6 y   x2  6 xy  36 y 2 

 x  6 y   x2  6xy  36 y 2 

24) Factor the following expression. x8  1

x8  1

25) Calculate the following expression. Rationalize the denominator if your answer is a fraction. 2 2 2





26) Assume that the universal set consists of integers from 1 to 9. When A = {1 , 3 , 7 , 8 } and B = {1 , 4 , 6 , 7 } find the elements of A  B .

2



)

1 A B ។

B = {1 , 4 , 6 , 7 }



x



x



A  3B B  x2  x 1 ។

A  3x  2 x

sin   cos

 0    180 ។ o

)

10 C8

241

2 x 2  3x  9  0 ។

2

for

30) Calculate the following combinations. ① 10 C2

9។

A = {1 , 3 , 7 , 8 }

28) Calculate A  3B when A  3x 2  2 x and B  x2  x 1 .



22

:

27) Consider the quadratic inequality 2 x 2  3x  9  0 . ① Solve for x in the quadratic inequality. ② Show the range of x in ① on a number line.

29) Find  that satisfies sin   cos 0o    180o .





10



10

C2 C8

o



31) Expand and simplify the following 2 expression.  x  3 y    x  y  x  5 y 

៣១)

32) Factor the following expression. 4 x2  225

៣២)

33) Solve for x in the following equation. x 2  10 x  6  0

៣៣)

34) Simplify the following expression. 15 5 3 2 5  5

៣៤)

35) y is directly proportional to the square of x and y  45 when x  3 . Express y in terms of x .

៣៥)

36) In the diagram on the right, find x when m. x

៣៦)



 x  3 y    x  y  x  5 y  2

4 x2  225

x

x 2  10 x  6  0







5 3 2 5 

15 5

y x  3។

y

x។

m

x

x

4 m

y  45

x

4

1

m

2

1 2

37) For a right-angled triangle, Find the length of the hypotenuse when the other two sides are 5 cm and 12 cm.

242

)

5 cm 12 cm ។

38) Expand and simplify the following expression.  x  2 y   x 2  2 xy  4 y 2 

៣៨)

39) Factor the following expression. x3  6 x 2 y  12 xy 2  8 y 3

៣៩)

40) Solve the following linear inequality. 3x 12  9x 18

៤០)

41) Find the coordinates of the vertex of the parabola y  x 2  8 x  15 .

៤១)

42) ① Solve the quadratic inequality 5 x 2  14 x  3  0 . ② Show the range of x in ① on the number line.

៤២) ①

43) Find the value of

10

 x  2 y   x2  2xy  4 y 2 

x3  6 x 2 y  12 xy 2  8 y 3

3x 12  9x 18

y  x 2  8 x  15 ។



5 x 2  14 x  3  0 x ②

៤៣)

P3 .

44) A bag contains6 white balls and 2 red balls. If three balls are chosen at random without replacement, what is the probability that only one ball is red.

10



P3 ។

៤៤)

6 2។ ។ ។

45) If  is an acute angle and cos   ① find the value of sin  . ② find the value of tan  .

5 , 7



៤៥)

243

cos  



sin  ។



tan  ។

5 ។ 7

46) Expand and simplify the following expression. x  x  2   x 1 x  3

៤៦)

47) Factor the following expression. 9x 2  y 2

៤៧)

48) Solve for x in the following equation. x2  5x  6  0

៤៨)

49) Simplify the following expression.

៤៩)

1  5 

2

9x 2  y 2

50) y is directly proportional to the square of x and y  1 when x  2 . Express y in terms of x .

1  5 

2

 20

y

y 1

x

x  2។

y

x។

51) Find the length of the side of a square whose length of the diagonal is 4 cm.

៥១)

52) In the diagram on the right, find the value m. of x when x 2

៥២)

4 cm ។

m

x

x

6

4

m

53) Expand and simplify the following expression.  x  y   x2  xy  y 2 

x

x2  5x  6  0

 20

6

x  x  2   x 1 x  3

m ៥៣)

244

 x  y   x2  xy  y 2 

2 4

54) Factor the following expression. x3  3x 2 y  3xy 2  y 3

៥៤)

55) Simplify the following expression. 4  1 3 3  3 3 1

៥៥)

56) For the parabola y   x 2  ax  b , find the value of a and b such that the coordinate of the vertex is 1 , 2 .

៥៦)

57) How many different three-member teams can be formed fromed nine students?

៥៧)

58) Solve for x in the inequality 2 x2  5x  3  0 .

៥៨)





x3  3x 2 y  3xy 2  y 3



59) Answer the following when sin  





4  1 3 3  3 3 1



y   x 2  ax  b a

1 , 2 ។

b



x

2 x  5x  3  0 ។ 2

1 for 2

0o    90o . ① find the value of cos  . ② find the value of tan  .

60) Answer the following for two sets, A = { 2 , 3 , 5 , 7} and B = { 1 , 2 , 3 , 4}. ① Find the elements of set A  B and list them. ② Find the number of elements in set A B .

sin  

៥៩)

1 2

0o    90o



cos  ។



tan  ។

៦០)

A = { 2 , 3 , 5 , 7}

B = { 1 , 2 , 3 , 4} ។

A B

① ។



245

A B ។

៦១)

61) Simplify the following expression. a)   8   4  10

b)  56   8   3 c)  1   2    2  4

7 7 1 1 d)     8 9 16 2 e) 6  2



3 2



a)   8   4  10 b)  56   8   3

3

c)  1   2    2  4

7 7 1 1 d)     8 9 16 2





f ) 10 2 5  10  g ) 8x  2  5x  7 

e) 6  2 1 10



5  10



3 2







f ) 10 2 5  10  g ) 8x  2  5x  7 

h) 6  0.6 x  0.4   0.3  2 x  5 

1 10



5  10

h) 6  0.6 x  0.4   0.3  2 x  5 

i) 2  3x  4 y   5  4 x  3 y 

i) 2  3x  4 y   5  4 x  3 y 

3x  5 y x  5 y  8 6 3 2 2 k ) 32 x y  4 x y  8 x

3x  5 y x  5 y  8 6 3 2 2 k ) 32 x y  4 x y  8 x

j)

j)

2

 3   6  3  l )   x3 y 2     x 4    y 2   5   5  2 

2

62) Expand the following expression. a)  4 x  3 3 x  2  b)  x  3 y  x  5 y    x  4 y 



3

2

 3   6  3  l )   x3 y 2     x 4    y 2   5   5  2 

៦២)

2

63) Factorize the following expression. a) 16 x 2  25

b)  x  3 y  x  5 y    x  4 y 

៦៣)

a) 16 x 2  25

b) 9 x 2  24 xy  16 y 2

64) Solve the following equations. a) 4 x  9   x  6

a)  4 x  3 3 x  2 

b) 9 x 2  24 xy  16 y 2

៦៤)

b) 0.5 x  3.2  0.8 x  1.6 c) x 2  14 x  45  0

a) 4 x  9   x  6 b) 0.5 x  3.2  0.8 x  1.6 c) x 2  14 x  45  0

d ) x  8x  9  0 2

d ) x2  8x  9  0

246

2

2



៦៥)

65) Solve the following simultaneous equations. 7 x  5 y  1 a)  3x  2 y  1

(

)

7 x  5 y  1 a)  3x  2 y  1 3 1  x  y 1 b)  4 2 0.5 x  0.5 y  0.1

3 1  x  y 1 b)  4 2 0.5 x  0.5 y  0.1

66) Find the value of a3  b2 when a  2 and b 3.

៦៦)

a3  b 2

a  2

b 3។

67) Solve the following in equation. 4x  11  2x  15

៦៧)

68) y is directly proportional to x and y  4 when x  8 . Find the value of y when x  4 .

៦៨)

69) y is a linear function of x . Express y as a function of x when the graph passes through point  2 , 4 with slope of 3.

៦៩)

70) Is 221 a prime number?

៧០)

71) Find degree measure of each exterior angle of a regular nonagon (regular 9-sided, 9angled, polygon).

៧១)

4x  11  2x  15

y

y  4

x

x 8។

y

x  4 ។

x។

y

y

x

 2 , 4

247

(

3។

?

221

9

,

9

)។

៧២)

72) In the accompanying diagram, find x when m

1cm xcm

8cm

1cm xcm

4cm

8cm

m

4cm

m

73) In the rectangle ABCD with 6 cm length and 3 cm width, find the length of the diagonal AC.

6cm

A

៧៣)

ABCD

6 cm

3 cm ។

AC ។

6cm

A

D

3cm

D

3cm C

B

74) Calculate. a )  13   15    4 

C

B

៧៤)

a )  13   15    4 

b)  8  5  20   5 

b)  8  5  20   5 

c)  2   42

c)  2   42

5 1 d )    0.75    0.2 6 4

5 1 d )    0.75    0.2 6 4

e)  18  72  2

e)  18  72  2

3



3







3 2 5 5  4 5 5 g ) 7  3x  2   9  2 x  5 

3 2 5 5  4 5 5 g ) 7  3x  2   9  2 x  5 

4x  1 5x  3  6 8 i) 3  9 x  y   5  x  2 y 

4x  1 5x  3  6 8 i) 3  9 x  y   5  x  2 y 

f)

m

x

f)

h)

h)

j ) 0.3  x  8 y   8  0.4 x  0.2 y 

j ) 0.3  x  8 y   8  0.4 x  0.2 y 

k ) 18 x y   2 xy   6 x y 2

k ) 18 x 2 y   2 xy   6 x 3 y

3

2

2

 5  1   18  l )   xy    xy 2     y   9  6   5 

2

2

 5  1   18  l )   xy    xy 2     y   9  6   5 

248

75) Expand and simplify the following expressions. a )  7 x  5 y  3 x  4 y   2 y  10 y

៧៥)

b)  x  6    x  5  x  8  2

b)  x  6    x  5  x  8  2

76) Factor the following expressions. a) x 2  3x  54

៧៦)

a) x 2  3x  54

b) x 2 y  4 y 3

77) Solve for x in the following equations. a ) 6 x  16  9 x  11 7 x  3 3x  1 b)  8 4 2 c) x  4 x  21  0

b) x 2 y  4 y 3

៧៧)

7 x  3 3x  1  8 4 2 c) x  4 x  21  0 d ) x2  8x  2  0

៧៨)

8 x  3 y  30 a)  5 x  9 y  3 0.8 x  0.3 y  0.8  b)  2 3 9  5 x  2 y  5

0.8 x  0.3 y  0.8  b)  2 3 9  5 x  2 y  5

79) Find the value of 9 x 2  2 xy when x  3 and y  1 .

x a ) 6 x  16  9 x  11

b)

d ) x2  8x  2  0

78) Solve the following system of equations. 8 x  3 y  30 a)  5 x  9 y  3

a )  7 x  5 y  3 x  4 y   2 y  10 y

៧៩)

9 x 2  2 xy

x  3

249

y  1។

80) A large dice and a small dice are both numbered 1 to 6. When they are rolled, what is the probability that the product of the two numbers on the top faces is 9?

៨០)

6។

1 9។

៨១)

81) Make y the subject of the formula 8x  3 y  7 .

8x  3 y  7 ។

y (

82) y is inversely proportional to x and y  8 when x  3 . Find the value of y when x  2 .

y

85) In the diagram on the right, find x when l m. l 41o

y

x  2 ។

y x  4។

y

x ។

) ។

8។

l m

x

l

41o

95o

m

x

250

y  32

x

95o

m

y  8

x

x  3។

83) y is directly proportional to the square of x and y  32 when x  4 . Express y in terms of x .

84) Find the measure of each exterior angle of a regular octagon in degrees. An octagon is an 8-sided polygon.

8x  3 y  7 )

y

x

86) In the diagram, point A, B, C and D lie on the circumference of circle O. Find x when BD is the diameter of the circle and DBC  38o .

A, B, C

x

BD

DBC  38o ។

D

D

A

A O

x

38o

C

B

B

87) Calculate. a )  12    13   4 

b)  2  5  12   6  c)  4   24

4

2

5 5 d )   0.2   0.5 8 16 e)  2  8  18

5 5 d )   0.2   0.5 8 16 e)  2  8  18

f ) 4  3x  5   8  2 x  3

f ) 4  3x  5   8  2 x  3

5x  3 x  1 g)  2 3 h) 4  6 x  7 y   8  2 x  4 y 

5x  3 x  1  2 3 h) 4  6 x  7 y   8  2 x  4 y  g)

i ) 0.2  5 x  10 y   2  2 x  0.5 y  j ) 28 x y   5 xy   35 xy 2

2

C

a )  12    13   4 

b)  2  5  12   6  c)  4   2

O

x

38o

2

O។

D

i ) 0.2  5 x  10 y   2  2 x  0.5 y  j ) 28 x 2 y 2   5 xy   35 xy 3

3

2

5   5   2  k )  x 2 y     xy 3     y 3  . 6   9   15 

2

5   5   2  k )  x 2 y     xy 3     y 3  6   9   15 

)

88) Expand and simplify the following expressions. a )  x  7 y  x  7 y 

a )  x  7 y  x  7 y  b)  x  4    x  2  x  8  2

b)  x  4    x  2  x  8  2

251

89) Factor the following expressions. a) x 2  8 x  12 . b) ax 2  4axy  5ay 2

b) ax 2  4axy  5ay 2

90) Solve for x in the following equations. a ) 9 x  19  11x  13

x a ) 9 x  19  11x  13

a) x 2  8 x  12

7 x  4 5x  4  8 6 1 c) x 2   0 4 2 d ) x  2x 1  0

7 x  4 5x  4  8 6 1 c) x 2   0 4 2 d ) x  2x 1  0

b)

b)

91) Solve the following systems of equations. x  y  1 a)  3 x  2 y  18

x  y  1 a)  3 x  2 y  18 2 x  y  3  b)  1 1 0.5 x  8 y  2

2 x  y  3  b)  1 1 0.5 x  8 y  2

92) Find the value of 3 xy  6 xy 2 when x  5 and y  2 .

3 xy  6 xy 2

x  5

93) Express 2010 as the product of prime numbers.

252

y  2។

2010



1 94) Solve for h in the equation mgh  mv 2 , 2 where m  0 and g  0 .

)

g 0 ។

m0

95) y is directly proportional to x and y  5 when x  2 . Find the value of y when x  4.

1 mgh  mv 2 2

h

y x  2 ។

y

x4 ។

96) y is directly proportional to the square of x and y  3 when x  3 . Express y in terms of x .

y

y  3

x

x  3។

y

x ។

97) Find the measure of each interior angle of a regular octagon in the degrees. An octagon is 8-sided polygon.

)

98) In the diagram on the right, find x when m. x

)



8។

m៖

x

x

2

6

y5

x

6

4

m

2

4

m

99) In the diagram on the right, points A, B, C and D lie on the circumference of a circle. Find x when BC : CD  1: 2 and CAD  46o .

A, B, C ។

D

x CAD  46o ។

BC : CD  1: 2

A

A

o x 46

o x 46

D

D

B

B C

C

253

100)

Simplify. a)  5  2  8  4

a)  5  2  8  4

b) 18  30   6 

b) 18  30   6 

c)  5   32  4 2

2 5 1 d)     3 6 3 e)  2





c)  5   32  4 2

2

2 5 1 d)     3 6 3



3  2 2  24



e)  2

10 5 g ) 2 8 x  5  6  3x  2  f)

2

5 1 



3  2 2  24



10 5 g ) 2 8 x  5  6  3x  2  f)

h) 0.8  0.6 x  5   0.5  0.9 x  3 

2

5 1 

h) 0.8  0.6 x  5   0.5  0.9 x  3 

i) 3  4 x  8 y   7  2 x  6 y 

i) 3  4 x  8 y   7  2 x  6 y 

3x  5 y 4 x  y j)  6 9 3 k )  28 xy  7 xy 2

3x  5 y 4 x  y  6 9 3 k )  28 xy  7 xy 2 j)

2

5 5  4 l ) x3 y   x 2 y   x 6 3  3

2

5 5  4 l ) x3 y   x 2 y   x 6 3  3

101) Expand and simplify the following expressions. a )  3 x  4 y  3x  4 y  b)  x  6  4 x  3   2 x  5 





2

a )  3 x  4 y  3x  4 y  b)  x  6  4 x  3   2 x  5 

2

102) Factor the following expressions. a) x 2  4 x  12

a) x 2  4 x  12

b)  x  y   12  x  y   36 2

b)  x  y   12  x  y   36 2

254

2

103) Solve for x in the following equations. a ) 7 x  4  4 x  10 x  5 3x  7 b)  1 4 2 c ) 5 x 2  40  0

x a ) 7 x  4  4 x  10

x  5 3x  7  1 4 2 c ) 5 x 2  40  0

b)

d ) x2  8x  4  0

d ) x2  8x  4  0

104) Solve the following systems of equations. 2 x  5 y  2 a)   x  3 y  12

2 x  5 y  2 a)   x  3 y  12 0.3x  0.4 y  0.1  b)  6 4 7  5 x  3 y   15

0.3x  0.4 y  0.1  b)  6 4 7  5 x  3 y   15

105) Find the value of 2ab  b2 when a  4 and b  2 .

2ab  b2

a4

b  2 ។

106) Two dice, A and B, are both numbered 1 to 6. When they are rolled, find the probability that the sum of the numbers on the top faces is 4.

107) Solve for y in the equation 5x  2 y  3 .

A 1

6។ 4។

y

255

B

5x  2 y  3 ។

108) y is inversely proportional to x and y  9 when x  4 . Find the value of y when x  6 .

y x  4។

)

110) Find the sum of the measure of interior angle of a dodecagon. A dodecagon is a 12-sided polygon.

)

x

y 8

y

y x  4។

y

x។



12។

111) In the diagram on the right, find x when m.

x

62o

62o

x

m

x 46o

46o

m

112) In the diagram on the right, four points A, B, C and D lie on the circumference of circle O. Find x when AB = AC and ADB  64o .

A, B, C O។ AB = AC

A

x

O 

x

ADB  64o ។

A

B

y9

x  6 ។

109) y is directly proportional to the square of x and y  8 when x  4 . Express y in terms of x .

m

x

x

64

o

D

O 

C

B

256

64o

D C

D

113) Simplify. a )  8    10    16 

a )  8    10    16 

b) 16  24   8  c )  3     2  2

b) 16  24   8 

4

5 1 d)   4  9 3

c )  3     2  2

2

5 1 d)   4  9 3

e) 18  98  2 2 12 f ) 6 2  6 g ) 7  4 x  3  5  5 x  4 





h) 0.6  3 x  0.7   2  0.3 x  0.2 



h) 0.6  3 x  0.7   2  0.3 x  0.2 

i) 4  9 x  6 y   9  x  2 y 

i) 4  9 x  6 y   9  x  2 y 

5x  3 y 2x  5 y  12 9 2 3 k )  63 x y  9 xy 2

5x  3 y 2x  5 y  12 9 2 3 k )  63 x y  9 xy 2

j)

2

2

e) 18  98  2 2 12 f ) 6 2  6 g ) 7  4 x  3  5  5 x  4 



7 2  5  35 l )  xy   x 2 y 3  y 20  6  48

4

j)

.

2

7 2  5  35 l )  xy   x 2 y 3  y 20  6  48

114) Expand and simplify the following expressions. a )  5 x  y  6 x  y 

a )  5 x  y  6 x  y  b)  x  7    x  8  x  6  2

b)  x  7    x  8  x  6  2

115) Factorize the following expressions. a) x 2  100

a) x 2  100

b) ax 2  6ax  9a

b) ax 2  6ax  9a

257

116) Solve for x in the following equations. a) 9 x  5  6 x  7

x a) 9 x  5  6 x  7

b) 0.2  x  2   0.8  2 x  3

b) 0.2  x  2   0.8  2 x  3

c) x  3x  54  0 2

c) x 2  3x  54  0

d ) x2  8x  9  0

d ) x2  8x  9  0

117) Solve the following systems of equations. 2 x  7 y  11 a)  5 x  2 y  8 1.2 x  3.4 y  1.5  b)  2 4 1  3 x  9 y  3

2 x  7 y  11 a)  5 x  2 y  8 1.2 x  3.4 y  1.5  b)  2 4 1  3 x  9 y  3

118) Find the value of 9a 2  ab2 when a  3 and b  4 .

119) Two dice, A and B, are both numbered 1 to 6. When they are rolled, find the probability the both number facing up even.

120) Which number is the greatest among 3 3 , 2 7 and 5.

258

9a 2  ab2

b  4 ។

a 3

A 1

B

6។ ។

3 3,2 7

5។

121) y is directly proportional to x and y  18 when x  9 . Find the value of y when x  2 .

)

122) y is proportional to the square of x and y  4 when x  4 . Express y in terms of x .

)

123) Find the measure of each interior angle of a regular pentagon. A pentagon is a 5-sided polygon.

)

y x  9 ។

85o

y

A

x  4។

C 68



5។

x

m

107o

85o

x

A, B O។

x

AB  AC

BAC  68 ។

C o

68

O

x

x

B

B

259

C

o

A

O

y

x។

m

o

y  4

x

x

125) In the figure on the right, three points A, B and C lie on the circumference of circle O. Find x when AB  AC and BAC  68o .

y

x  2 ។

124) In the figure on the right, find x when m. 107o

m

y  18

x

126) For each equation, y   x  1 , y  x  1 , y  2 x  2 , y  3x  3 , . Its slope is equal to its y-intercept. These straight lines pass through a certain point. Find the coordinates of this point.

y   x 1 , y  x  1 ,

១២៦)

y  2 x  2 , y  3x  3 , x  0។ ។ ។

127) The figure shows trapezoid ABCD with AD||BC and AE = DE where E is the intersection point of AC and BD.

A

១២៧)

ABCD AD||BC

AE = DE AC

D

A

BD ។

E

C

B

a) Prove that EBC is an isosceles triangle. b) Prove that AB = DC.



EBC AB = DC ។

128) Solve x 4  289 . Note that x is a positive real number. Write only the answer.

១២៨)

129) Three points A, B and C lie on circle O. Each point is connected to the others. Given that AB : BC : CA  3 : 4 : 5 .

១២៩)

x 4  289 ។

x



A

B

D

E C

B

E

A, B



O។

C ។

AB : BC : CA  3 : 4 : 5 ។

A

 O

B

C

 O

C

a) Find CAB , ABC and BCA . Write only the answer. b) Express AB : BC in the simplest ratio.

CAB , ABC



AB : BC

260

BCA ។ ។

1 2 3 x  x  1 . Find 2 2 the vertex, intersection points with coordinate axis, and then draw its graph.

១៣០)

131) Each surface of cube ABCD-EFGH, as shown in the figure at right, has a distinct label starting from 1 to 6. Each vertex, from A to H, is labeled with a number that is the sum of numbers on the surfaces sharing the vertex. For example, vertex C is labeled with a number that is the sum of numbers on surfaces ABCD, BFGC and CGHD. It is possible to label the surfaces so that the numbers labeled on the vertices occur as eight consecutive integers. Find the eight consecutive integers.

១៣១)

130)

Given a parabola y 

A B

F



ABCD-EFGH 6។

1

CGHD។ ។

8 ។

A B

D C

E

H F

G

H G

១៣២)

5x  2 y 5x  2 y   5x  y 

261

H

C ABCD, BFGC

C

132) Simplify. 2 5x  2 y 5x  2 y   5x  y 

A



D

E

1 2 3 x  x 1។ 2 2

y

2

133)

១៣៣)

Solve the following equation. x2  1  5x

x2  1  5x

134) Let y be directly proportional to the square of x and y  20 when x  2 . Express y as a function of x .

១៣៤)

135) Find the length of one side of a rhombus whose diagonals measure 10 cm and 6 cm.

១៣៥)

136) Factorize the following expression. xz  x  2 y  2 yz

១៣៦)

137) In the accompanying figure, how many different shortest paths are there from point A to point B.

១៣៧)

y

x

x  2 ។

y  20 x។

y

10 cm

xz  x  2 y  2 yz

B។

A

B

B

A

A

262

6 cm ។

138) Find  that satisfies sin  

3 where 2

១៣៨)

0o    180o ។

0o    180o .

139) Find the coordinates of the center of mass for ABC that is created by connecting three points A(-2 , 6) , B(7 , -9) and C(1 , 0).

១៣៩)

140) In the diagram shown on the right, quadrilateral ABCD is inscribed in a circle. Prove that AB = DC when AD||BC.

១៤០)

A

B

3 2

sin  



ABC A(-2 , 6) , C(1 , 0) ។

B(7 , -9)

ABCD ។

AB = DC

AD||BC ។

D

D

A

C

C

B

141) Using the equality 8051  72  902 , express 8051 as the product of prime number. Write only your answer.

១៤១)

142) The equality  m2  n2 is satisfied for three positive integers , m and n . Prove that can be factored as the product of prime number when n  m  1.

១៤២)

8051  72  902 ។

8051 ។

263

 m2  n 2

,m

n  m 1 ។

n។

143) The diagram on the right shows rectangular prism ABCD-EFGH. Answer the following when AE = 19 cm, EF = 32 cm and FG = 25 cm. Find the length of diagonal AG.

D

ABCD-EFGH ។ AE = 19 cm, EF = 32 cm FG = 25 cm. AG ។

C

D

A 19 cm

១៤៣)

B

H

A

B

G 32 cm

H

19 cm

25 cm

E

C

G

F

25 cm

E

144) Find the remainder when the polynomial x3  2 x2  4 x  8 is divided by x  2 .

១៤៤)

145) Find the value of sin135o .

១៤៥)

sin135o ។

146) Find the value of tan 1  2  when

១៤៦)

tan 1  2 

tan 1  2 and tan  2  3 .

147) When the quadratic equation 3x 2  4 x  8  0 has two roots,  and  , find the value of    .

x3  2 x 2  4 x  8

tan 1  2

x2 ។

tan  2  3 ។

១៤៦)

២ 3x  4 x  8  0 2



264

F

32 cm



 



148) The diagram on the right shows a semicircle whose center is O and diameter is line segment AB. Point P lies on arc AB and point H lies on AB such that PH is perpendicular to AB, AH = 3 cm and BH = 7 cm.

១៤៨)

AB ។

O P

AB

AB



3cm H

AB ។

PH BH = 7 cm ។

AH = 3 cm

P

A

H

P

O





A

B

7cm

O





3cm H



PH ។

OP

a) Find the lengths of line segments OP and PH. Write only your answer. b) Find the ratio of the lengths of line segment PA to line segment PB, PA:PB.

B

7cm



PA

PB

PA:PB ។

149) Consider the quadratic equation x 2  x  a  0 where a is a constant. If one of the roots of the quadratic equation is 5, find the value of a and the other root. Write only your answer.

១៤៩)

150) For two consecutive odd numbers, prove that the square of the smaller odd number subtracted from the square of the larger odd number is equal to 4 times the even number between the two odd number.

១៥០)

២ x xa 0 2



a

5



a ។

265

4 ។

151) Let x cm be the radius of a sector whose perimeter is 20 cm. a) Express the length of the arc using x . Write only your answer. b) Find the radius of the sector such that the area of the sector has the maximum value. Also find the maximum area.

១៥១)

x cm

20 cm ។ x។ ។ ) ។

152) A die numbered 1 to 6 is rolled 3 times. Find the probability that the same number is on the top face on the 1st and 2nd rolls and a different number is on the top face on the 3rd roll.

១៥២)

153) For ABC, AB=2 , AC=3 and

១៥៣)

1 3 ១



២ ៣។

15 for 90o  A  180o . 4 a) Find the area of ABC . Write only your answer. b) Find the length of side BC. sin A 

ABC, AB=2 , AC=3 sin A 

15 90o  A  180o ។ 4 ABC ។ ។

BC ។

154) Expand and simplify the following express expression.  x  3 y   x2  3xy  9 y 2 

១៥៤)

155) Factor the following expression. x3  3x 2 y  3xy 2  y 3

១៥៥)

 x  3 y   x2  3xy  9 y 2 

x3  3x 2 y  3xy 2  y 3

266

6

១៥៦)

156) Simplify the following expression.

52 6

52 6

157) Find the value of cos  when tan   3 for 90o    180o .

១៥៧)

158) Six students are divided into 2 rooms, A and B, containing 3 students each. How many different ways can the students be divided ?

១៥៨)

159) For two sets, A = { 1 , 4 , 7 , 10 } and B = { 1 , 3 , 5 , 7 , 9 }, find the elements of set A  B and list them.

១៥៩)

160) Find the value of a such that the polynomial x3  3x2  ax  4 is divisible by x  2 .

១៦០)

tan   3

cos  90o    180o ។

6

A ។ ។

A = { 1 , 4 , 7 , 10 } B = { 1 , 3 , 5 , 7 , 9 }។ ។

A B

x3  3x2  ax  4

a

x 2។

161) Find the shortest distance between point (0 , 1) and the straight line x  3 y  7  0 .

B

១៦១)

267

(0 , 1) x  3y  7  0 ។

162) Find all sets of integer,  x , y , z  , satisfying the following equality. Write only your answer. x 6  y 6  z 6  3xyz

១៦២)

163) A sector has a perimeter 20 cm and its central angle is less than 360o . Find the range of the radius of the sector such that the range of the area, A , is given by 16 cm 2  A  24 cm 2 .

១៦៣)

164) Let P and Q be the points of intersection between the circle x 2  y 2  5 and the straight line x  y  1 , where the value of the x -coordinate of point P is less than of point Q. a) Find the coordinate of points P and Q. b) Let R be the point of intersection between the tangent line to the circle at P and the tangent line to the circle at Q. Find the coordinates of point R.

១៦៤)

165) Find all sets of integer,  x, y, z  , satisfying the following equality. Write only your answer. x 4  y 4  z 4  3xyz

១៦៥)

 x , y , z ។ ។

x 6  y 6  z 6  3xyz

20 cm 360 ។ o

A។ 16 cm  A  24 cm ។ 2

2

P

Q

x  y 1

x  y 5 2

2

P Q។ P R Q។

P R។

 x, y, z  ។ ។

x 4  y 4  z 4  3xyz

268

Q។

166) Consider the following proposition for integer n . “If n2  2n is an odd number, then n is an odd number.” a) Give the contrapositive of the proposition. Write only your answer. b) Prove that the proposition is true using your answer in (a).

១៦៦)

n។

n  2n 2

n

។” ។ ។ ។

167) When polynomial P  x  is divided by

x  3 the remainder is 3. When P  x  is divided by x  4 the remainder is 1. Find the remainder when P  x  is divided by

x 3

P  x

3។

x4

1។

P  x

 x  3 x  4 .

168) A rectangular piece of land has length 100m and width 50m. This land is drawn 1 on a scale map. 1000 Find the area, in cm 2 , of the piece of land drawn on the map. You don’t need to write your steps. Write only your answer.

P  x

១៦៧)

 x  3 x  4 ។

១៦៨)

50m ។

100m

1 ។ 1000 ។

cm 2

។ ។

169) The surface area of a sphere of radius r cm can be express as 4 r 2 cm2 , where  is the ratio of the circumference of a circle to its diameter. a) Find the surface area of a sphere when the radius is 5 cm. You don’t need to write your steps. Write only your answer. b) Find the radius of a sphere when the surface area is 81 cm 2 .

១៦៩)

269

r cm

4 r cm 2

2

 ។

5 cm។ ។

81 cm 2 ។



170) Expand and simplify the expression.  x  4 y   x2  4xy  16 y 2 

following

១៧០)

171) Factor the following expression. 125x3  75x 2  15x  1

១៧១)

172) Find the volume of a sphere with radius of 6.

១៧២)

173) A is an acute angle. Find the value of 2 tan A when cos A  . 3

១៧៣)

174) How many six-digit integers can be formed using all of the following six number 0, 1, 2, 3, 4 and 5 ?

១៧៤)

175) Find the coordinates of the vertex of the parabola y   x 2  8 x  5 .

១៧៥)

 x  4 y   x2  4xy  16 y 2 

125x3  75x 2  15x  1

6។



A cos A 

2 ។ 3

0, 1, 2, 3, 4

270

tan A

5?

y   x2  8x  5 ។

176) Given the parabola y  2 x 2  4kx  3k  9 . ① Find the range of k such that the parabola and the x -axis intersect at two distinct points. ② Show the range of k in ① on the number line.

១៧៦)

177) On the x - y plane, find the equation of the circle that has its center at the origin and passes through point (5, 12).

១៧៧)

178) Solve for x in the following equation. 4 x3  8x2  11x  3  0

១៧៨)

179) Find the range of  that satisfies the 1 inequality cos   , where 0o    360o . 2

១៧៩)

180) Given the two points A(-3) and B(3) on a number line. a) Find the coordinate of point P which divides internally the line segment AB such that the ratio of AP to PB is 1:2. b) Find the coordinate of point Q which divides externally the line segment AB such that the ratio of AQ to QB is 1:2.

១៨០)

y  2 x 2  4kx  3k  9 ។

k ។ ។

k

x-y

(5, 12) ។

4 x3  8x2  11x  3  0

 cos  

271

1 2

0o    360o ។

A(-3)

B(3)



P

AB

AP:PB=1:2 ។

Q

AB

AQ:QB=1:2 ។

181) How many pages are there in x percent of a 120-page book?

១៨១)

182) Express y as a function of x , given that y is directly proportional to x and y  8 when x  2 .

១៨២)

183) Find the value of y when x  2 , given that y is inversely proportional to x and y  2 when x  4 .

១៨៣)

184) Square tiles with 30 cm sides are arranged without spaces on the floor of Robert’s class. a) What is the area of one tile in cm 2 ? Include units in your answer. b) The area of Robert’s class is 54 m 2 . How many tiles are used in total.

១៨៤)

185) There is 20 g of sugar dissolved in a 160 gram beverage. a) In decimal, what is the weight ratio of sugar to the beverage? b) What is the percentage of sugar in the beverage?

១៨៥)

x ។

120

y

y

x

y  8

x

x  2 ។

x2

y x

y

y2

x  4។

30 cm Robert ។ cm 2 ។

Robert

272

54 m 2 ។

160 g។

20 g ។

១៨៦)

186) In the accompanying diagram of quadrilateral ABCD, answer the following with units. You may use a ruler.

ABCD ។ ។ ។

D

A

D

A

C

B

C

B

a) What is the area of ACD in cm 2 ? Answer this question after measuring the length of sides AD and CD. Round off your answer to one decimal place. b) Find the area of quadrilateral ABCD in cm 2 . Round off your answer to one decimal place.

187) There are 50 identical nails. The total weight is 80 g. a) In grams, what is the weight of 100 nails? b) Some nails are put in a 150 g box such that the total weight is 790 g. How many nails must be in this box? Explain your steps leading to the answer.

ACD

cm 2

AD CD ។ ។

cm 2 ។

ABCD



១៨៧)

50 80 g ។ 100 ។

150 g ។ 790 g។ ។

188) Answer the following. a) How many m is 5 km? b) How many m2 is 30 000 cm 2 ? c) How many cm3 is 10 ?

១៨៨)

m

m

5 km? 2

cm3

273

30 000 cm 2 ? 10 ?

189) In parallelogram ABCD shown on the right, let the intersection of the diagonals be O and the intersection points of sides AB and CD with the straight line that passes through point O be M and N, respectively. Answer the following to prove BM = DN.

A

១៨៩)

ABCD O AB O

CD M



N

BM = DN ។

A

D

D

N

N

O

M

C

B

O

M

C

B

a) To prove BM = DN, which triangles should be shown to be congruent in the simplest way ? b) Explain in words the congruence condition in your answer for a). There is no need to prove this.

190) Find the volume of the solids below and answer with units. Note that (a) is a rectangular prism and (b) is a solid of combined rectangular prism. (a).

BM = DN ? ។



១៩០)

។ )

) ។

)

6cm

6cm 8cm

8cm

10cm

10cm 12cm

(b).

6cm

)

3cm

10cm

12cm 6cm

3cm

10cm 3cm

3cm

6cm

6cm

6cm

6cm

274

191) The table shows the results of mathematics examination for five students A, B, C, D and E. The table shows the difference of each student’s score to 72, which is the average score for the five students. When the score exceeds 72, it is express as a positive number and when it is less than 72, it is expresses as a negative number. Name

A

B

C

Difference to the average score

+4

-1

-8

D

១៩១)

E។

A, B, C, D 72 ។

72 72 ។

E +5

a) Find the score for A. b) Find the difference between B’s score and C’s score as a positive number. c) Find the score for D.

A

B

C

+4

-1

-8

D

A

B

C



១៩២)

ABCD BC = b cm ។

AB = a cm



D

A

a cm

D

a cm C

B

C

B

b cm

b cm

a) What is the length of the perimeter of the rectangle ABCD in term of a and b? b) What is the area of rectangle ABCD in terms of a and b ?

ABCD

b។

a

ABCD

b។

a

193) Find the area, in cm 2 , of a circle with diameter d cm . Express your answer in terms of d and  , the ratio of the circumference of a circle to its diameter.

+5

A។

D។

192) The figure shows the rectangle ABCD with AB = a cm and BC = b cm. Include units in your answer.

E

១៩៣)

275

cm 2 d cm ។

d

 ។

194) Isosceles triangle ABC with AB = AC is rotated clockwise about vertex A comes to the extension of side BC. Let the rotated vertices A and B be A’ and B’, respectively. Consider a special case when three points A, B’ and A’ are on the same straight line.

១៩៤)

ABC

A BC ។ A’

B



A, B’

A’



A

B

C

A

B’

A

B

AB=AC

B A'

B

ABC ?

a) How many angles are there that are equal to ABC ? b) Indicate all the angles that are equal to BAC . c) Find the size of ABC and answer with unit.

195) Linda bought 8 cakes consisting of some 90 pesos lemon cakes and some 120 pesos fruitcakes. She paid 870 pesos for the cakes. Let x and y be the number of lemon cakes and fruitcakes she bought respectively. a) Write simultaneous equation in terms of x and y . b) Find the number of lemon cakes and fruitcakes she bought.

A'

C

BAC ។ ។

ABC

១៩៥)

8 90 120 ។

870 ។

x

-

y ។

x

y។ ។

១៩៦)

196) Find the greatest common factor (GCF) of each set of numbers. a) (14, 35) b) (26, 39, 52)

276

(PGCD) (14, 35) (26, 39, 52)

197) The diagram shows rectangular piece of paper ABCD with AB = 4 cm and AD = 5 cm. Point P lies on side AB and the paper is folded along DP so that vertex A comes to side BC. Let A’ be the image of vertex A with DP as the reflection axis. Include units in your answer.

១៩៧)

ABCD AD = 5 cm។

P

AB DP

BC។ A

A A’ ។

DP

5cm

A

AB = 4 cm



D

5cm

A

4cm P

B

A'

D

4cm P

C

B a) What is the length in cm of segment A’C? b) What is the length in cm of segment PB?

A’C

១៩៨)

199) One year ago, the price of a digital camera was 8400 pesos. Today, the price is 5040 pesos. By what percent has the price of the digital camera decreased?

១៩៩)

cm ? cm ?

PB

198) There is one melon and one apple. The melon weighs 1.05 kg and the apple weighs 0.3 kg. a) How many kilograms heavier is the melon than the apple? b) How many times more does the melon weigh than the apple?

C

A'



0.3 kg ។

1.05 kg

?

277

8400 5040





200) Kevin and Linda are talking about the properties of their favorite quadrilaterals. Kevin: “I like quadrilateral in which the four side are the same length and the four angles are all 90o .” Linda: “I like quadrilateral in which the two opposite sides are the same length and the opposite angles are equal in measure. But the lengths of the adjacent sides are not equal and all angle are not 90o . a) What kind of quadrilaterals does Kevin like? Write your answer in the most appropriate name. b) What kind of quadrilaterals does Linda like? Write your answer in the most appropriate name.

២០០)

។ :

90o ។ :”

90o ។ ។ ។

201) Lucy bought a bag of snacks. It contained 15% more than the normal bag and weighed 276 g. What is the weight, in grams, of the normal bag of snacks? Include units in your answer.

២០១)

202) Consider the integers from 50 to 150. a) How many integers are a multiple of 6? b) How many integers are multiples of both 6 and 8?

២០២)



15% 276 g ។ ។

50

6? 6

278

150 ។

8?

203) There is a triangle in which the ratio of the base to the height is 5:8. Answer the following questions and include units in your answer? a) Find the height, in cm, of the triangle when the base is 40 cm. b) Find the base and height, in cm, of the triangle when the area is 320 cm 2 .

២០៣)

5:8 ។ ។

cm 40 cm ។ cm 320 cm 2 ។

1 liter bottle of juice. 2 2 Yesterday, she drank liters of juice. 5 2 Today, she drank of the rest of the juice. 5 a) How many liters of juice did she drink today? Include units in your answer. b) How many times more juice did she drink today than she did yesterday? c) How many liters of juice are left? Include units in your answer.

204) Ellie bought a 1

២០៤)

1

1 2



2 5

2 5

។ ។





២០៥)

205) Answer the following.

3 of an hour? 4 b) How many mm is 8 cm? c) How many m2 is 400 cm 2 ?

mm

3 4 8 cm ?

m2

400 cm 2 ?

a) How many minutes are

206) Find the values of following expression when x  1and y  5 . a) 7 x  9 y  4 b) 3x 2  2 xy

២០៦)

279

x  1 y5 7x  9 y  4 3x 2  2 xy

207) The table below contains information of the heights of five mountains. The numbers show the difference in meters between 500 m and the actual height. Positive numbers indicate heights higher than 500 m. Negative numbers indicate heights lower than 500 m. Mountain Height

A

B

C

D

E

(difference between 500 m)

99

258

-339

-106

-92

២០៧) ។ ។

500 m

500 m។ 500 m។

(

A

B

C

D

E

99

258

-339

-106

-92

500 m)

E

a) How many meters higher is mountain E than mountain D? b) Find the difference of the height between the highest mountain and the lowest mountain. Write your answer as a positive number. Write the steps leading to your answer.

208) There is a cylinder-shaped log with base diameter 20 cm and height 45 cm. Answer the following question and include units in your answer. Use 3.14 for the ratio of the circumference of a circle to its diameter.

D ។





២០៨)

45 cm ។

20 cm ។

3.14 ។

20cm 20cm





45cm 45cm   2

a) Find the total surface area, in cm , of the log. b) There is paint that can 2000 cm 2 per liter. How many liters of this paint are required to paint the whole surface? You only need to apply one coat of paint.

280



cm 2 2000 cm ។ ។

2

209) Mae’s father gave her x pesos for her one 3 day trip. She thought she would spend 5 of the money for transportation fees and 2 food and of the money for souvenirs but 5 she actually spent 120 pesos more for souvenirs than she expected. Therefore, she had 120 pesos less to spend for transportation fees and food than she originally planned. Answer the following questions and include units in your answer. a) Express the actual cost for souvenirs in terms of x . b) Express the actual cost for transportation fees and food in terms of x . c) Let’s assume that the actual cost for the souvenirs was equal to the actual cost for the transportation fees and food. Find the value of x . Write the steps leading to your answer.

២០៩)

-

x

3 5



2 5 120 ។

120 ។ ។

x។ x។ ។

x។ ។

210) Solve for a in the equation s 

abc . 3

២១០)

211) Find the value of y when x  4 in the linear function y  2 x  5 .

២១១)

212) Find the measure of each interior angle, in degrees, of a regular decagon. A decagon is a 10-sided polygon.

២១២)

a

s

x4

y

y  2x  5 ។



10

281



abc ។ 3

213) In the diagram, find x when

២១៣)

m.

58o

m

m។

x 58o

m

32o

32o

x

x

214) The table on the right shows the ingredients needed to make chocolate chip cookies. Ingredient Amount Butter 120 g Sugar 50 g Egg 1 Cake flour 150 g Chocolate chips 60 g

២១៤) ។

<

> 120 g 50 g 1 150 g

a) Express the weight ratio of the sugar to cake flour in simplest form. b) Tracy has 40 g of chocolate chips in the kitchen. If she uses all the chocolate chips to make chocolate chip cookies, how much butter in g does she need? Include units in your answer.

60 g



40 g ។ ។ ។

215) Two different number are selected from 1, 2, 3, 4 and 5 to make two-digit integers. a) How many two-digit integers can be created when 1 is in the tens place? b) How many two-digit integers can be created in total?

២១៤)

282

1, 2, 3, 4 ។

5 1



216) The figure on the right has the axis of symmetry .

A

H

C

D

B

២១៦)



A

G

C

E

F

E

D

B

F A

a) Find the vertex that is symmetric to vertex A with respect to line . b) Find the side that is symmetric to side EF with respect to line .



EF ។

217) Shelly bought three sheets of drawing paper and one color pen set. The total cost was 340 pesos. One sheet of drawing paper cost x pesos and one color pen set cost 100 pesos. a) Write the total cost in terms of x . b) Find the price, in pesos, of one sheet of drawing paper. Include units in your answer.

២១៧)

218) The figure shows square ABCD with a side 8 cm. A semicircle with a diameter of AB is in the square. Include units in your answer. Use  for the ratio of the circumference of a circle to its diameter. A D

២១៨)





340 x ។

100

x។ ។



8 cm ។

ABCD

AB ។



 ។

A

8 cm

B

G

H

D

8 cm

C

a) Find the perimeter, in cm, of the shaded region. b) Find the area, in cm 2 , of the shaded region. Write the steps leading to your answer.

283

C

B



cm ។

cm2 ។

219) The figure shown on the right is rhombus ABCD with acute angle A . Points E and F are located such that CE = CF. Let G be the intersection point between BF and DE. BF = DE will be proved by using congruent triangle in the simplest way.

២១៩)

A ។ CE = CF ។

ABCD F

F

G

DE ។ BF = DE

BF ។

A

A G

B

D

F

E

G

B

D

F

E

C a) Which two triangles should be shown to be congruent? b) Explain in words the condition for congruent triangles in your answer for a). c) Find EGF when ABC  117o and CBF  46o . Include units in your answer.

220) The figure on the right shows right-angled triangle ABC with AB = 8 cm, BC = 6 cm and B  90o . Point P moves on side AB. Let x cm be the length of AP and let y cm 2 be the area of PBC .

C



ABC  117o

EGF CBF  46o ។



២២០)

ABC B  90o ។

AB = 8 cm, BC = 6 cm AB ។

P

y cm

AP

A

x cm

PBC ។

2

A

x cm

x cm

8 cm P

B

8 cm P

6 cm

C

B

a) Find the length, in cm, of PB in terms of x . Include units in your answer. b) Express y in terms of x . c) When the area of PBC is a cm 2 , express x in terms of a . Write the steps leading to your answer.

cm

6 cm

x។

PB ។

x។

y PBC x

a។ ។

284

C

a cm 2 ។

221) In the diagram on the right, the straight line y  ax and the retangular hyperbola b y  intersect at point A(4, 3). Point B x lies on the rectangular hyperbola and its x -coordinate is -2. The straight line passing through points O and B is drawn.

y b y x

២២១)

y  ax A(4, 3) ។ O

-2 ។ ។

B

y y

b x

A 

y  ax A 

x

O x

b x

B

x

y  ax

O

y

B

B a។

b។

a) Find the value of a . b) Find the value of b . c) Find the equation of the line that passes through points O and B.

222) The cone shown on the right has base radius 6 cm and height 12 cm. Answer the following questions and include units in your answer. Express the answer in terms of  which is the ratio of circumference of a circle to its diameter.

O

២២២)

12 cm

6 cm 12 cm។ ។

 ។

12 cm

6 cm

6 cm

a) Find the area, in cm 2 , of the base. b) Find the volume, in cm3 , of the cone.

cm 2 ។ cm3 ។

285

B។

223) Frank went to a store to buy foods for a party. One rice meal set and one burger set cost 220 pesos altogether. When he paid 3000 pesos for 10 rice meal sets 15 burger sets, the change was 200 pesos. Let x and y pesos be the costs of one rice meal set and that of one burger set, respectively. a) Write the system of equations in terms of x and y . b) Find the cost of one rice meal set and the cost of one burger set. Include units in your answer.

២២៣) ។

220 ។

3000 10 ។

200

15

y

x



x

។ ។

224) The figure on the right shows a rightangled triangle ABC with BAC  90o and ABC  60o . AH is perpendicular to side BC and BH = 2 cm. Answer the following questions and include units in your answer. A

២២៤)

ABC

2 cm

ABC  60o ។ AH

BAC  90

o

BH = 2 cm ។

BC ។

60o

B

A

60o

H

C

B

a) Find the length, in cm, of line segment AH. Write the steps leading to your answer. b) Find the length, in cm, of line segment CH. c) Find the area, in cm 2 , of ABC .

225) Find the volume, in cm3 , of a cube with edges of length 10 cm.

y។

2 cm

C

H AH ។

cm



CH ។

cm cm

២២៥)

286

cm3

10 cm ។

2

ABC ។

226) Find the value of the following expression when x  5 and y  2 . a) 2 x  3 y b) xy  2 y 2

២២៦)

227) y is inversely proportional to x and y  2 when x  6 . Find the value of y when x  3 .

២២៧)

228) Solve for x in the following equations. a) 3x 13  11x  3 4 x  5 3x  2 b)  3 4

២២៨)

229) Find the greatest common (GCF) of each set of numbers. a) (14, 21) b) (10, 15, 20)

២២៩)

230) For triangle ABC, the measures of the three angle A , B and C are x o , 2 x o and 3xo , respectively. a) Find the value of x ? b) What kind of triangle ABC ? Write the most appropriate name.

២៣០)

x 5 y  2 ។ 2x  3 y xy  2 y 2

y

y  2

x

x  6 ។

y

x 3 ។

x

3x 13  11x  3 4 x  5 3x  2  3 4

(GCD) (14, 21) (10, 15, 20)

287

A , B

ABC

C

o

x , 2x x។

ABC ។

o

3x o ។

231) Kevin saw an advertisement for an apartment with the following information written on it: “15 minutes walk from station A.” The distance from station A to the apartment is 1200 m. a) Find the average speed, in meters per minute, of the “walk” written on the advertisement. b) It took 20 minutes for Kevin to walk form station A to the apartment. Find Kevin’s average speed, in meters per minute.

២៣១)

232) When computing 3.14 × 25, some people do it using the way shown in figure 1. Figure 2 displays the detailed version of Figure 1 which shows the decimal position. Only look at figure 2 and answer the following questions.

២៣២)

3.14  25 1570 628 78.50

Figure 1

15

A 1200 m ។

A

” ។

20 ។

A



3.14  25 15.70 62.80 78.50

3.14 × 25 1។ 1 ។

2 ។

3.14  25 15.70 62.80 78.50

3.14  25 1570 628 78.50

rbUTI 2

rbUTI 1

Figure 2

a) What number is multiplied by 3.14 to give 15.70 in ①? b) What number is multiplied by 3.14 to give 62.80 in ②? c) Express 3.14×25 as a single expression in terms of 3.14 and the two numbers from questions a) and b).

3.14

15.70

3.14

62.80

①? ②? 3.14×25 3.14 ។

288

2

233) Find area, in cm 2 , of each the following figures. Include units in your answer. a) Triangle

២៣៣)



cm 2 ។

3 cm

3 cm

6 cm

6 cm

b) Parallelogram

5 cm

4 cm

4 cm

5 cm 4 cm

4 cm

234) Consider the integers form 1 to a given integer added together like such, 1  2, 1  2  3 , 1  2  3  4 Let’s take the ratio of their sums. For example, the ratio of 1  2 to 1  2  3 is 3: 6  1: 2 . a) Express the ratio of 1  2  3 to 1  2  3  4 in simplest form. b) The ratio of 1  2  3  4  5  6 to a certain sum is 3: 4 . Find the sum and write it in addition form.

២៣៤)

1 1  2, 1  2  3 , 1  2  3  4 ។

1 2

1 2  3

3: 6  1: 2 ។

1 2  3 ។

1 2  3  4

1 2  3  4  5  6 3: 4 ។ ។

235) The figure on the right has axes of symmetry and a point of symmetry.

២៣៥)

a) Construct the point of symmetry using only a ruler. Label the point O. b) Find the total number of axes of symmetry.

289





O។ ។

236) Charlie collected 400 plastic bottle caps that weighed 1000 g in total. A recycle company buys 400 plastic bottle caps for $1.00. Another company sends polio vaccines to countries in need. Vaccine for one person is sent for every $2.00 donation from the recycle company. Answe the following questions. a) How many plastic bottle caps does Chalie need to collect to send a polio vaccine for one person? b) Suppose each plastic bottle cap has the same weight. Find the weight, in gram, of one plastic bottle cap. Include units in your answer. c) When burning 400 plastic bottle caps, 3150 g of carbon dioxide ( CO 2 ) are emitted. How many times greater is the amount of CO 2 emitted when burning 400 plastic bottle caps than the weight of 400 plastic bottle caps?

២៣៦)

400 1000 g។ $1.00 ។

400



$2.00 ។

។ ។ ។ ។

400 ។

( CO 2 ) 3150 g

CO 2

400 400



២៣៧)

237) The product of integers from 1 to n is express as n ! . For example, 4!  1 2  3 4  24 and 5!  1 2  3 4  5  120 . a) Calculate 6! b) Calculate  6! 5!   6! 4!   6! 3! .

1

n !។

n

4!  1 2  3 4  24 5!  1 2  3 4  5  120 6! ។

 6! 5!   6! 4!   6! 3! ។

238) Brian wants to make a formula to find the area of a circle with circumference a cm in terms of a . Answer the following questions and use  for the ratio of the circumference of a circle to its diameter. a) Find the radius, in cm, of the circle. Include units in your answer. b) Let S cm 2 be the area of the circle. Express S in terms of  and a . Write the steps leading to your answer.

២៣៨)

a។

a cm

 ។ ។

cm ។

S cm S



2



a។ ។

290

២៣៩)

239) Answer the following. a) How many hours is 20 minutes? b) How many g is 0.3 kg? c) How many m2 is 20000 cm2 ?

20

m

240) Solve the following systems of equations. 3x  2 y  11 a)   x  y  5  y  6x  3 b)   y  4x  7

២៤០)

241) Solve for x in the following equations. a) 2 x  4  x  6 b) 0.4x  5  0.9 x  5 2 x  1 3x  2 c)  3 4

២៤១)

2

20000 cm 2 ?

3x  2 y  11   x  y  5  y  6x  3   y  4x  7

x

2x  4  x  6 0.4x  5  0.9 x  5 2 x  1 3x  2  3 4

242) Find the measure of each exterior angle of a regular 18-sided polygon in degrees.

243) In the diagram below, find x when

0.3 kg?

g

m.

២៤២) ។

18

២៤៣)

52o

52o

x

m

m។

x

x

43o

m

291

43o

244) Patrick and Kim play a game using a spinner labeled from A to D as shown on the right. Both players start the game with 10 points. A player spins the spinner and computes their score according to the following rules. When spinning the spinner more than once, each operation is done after computing the previous score.

២៤៤)

A

D



10 ។ ។ ។

A: Add 3 B: Subtract 3 C: Multiply by 2 D: Multiply by -2



a) When Patrick spun the spinner, it landed on B. Find Patrick’s score. b) When Kim spun the spinner two times, she got the letters A and D in this order. Find Kim’s score. c) When spinning the spinner two times, find the lowest possible score.

A:

3

B:

3



C:

2

D:

-2 B។



A



D

។ ។

245) For parallelogram ABCD shown in the figure, diagonals AC and BD intersect at O.

A

31o

ABCD AC A

D O

B

២៤៥)

D O

79 o

C

31o

B

a) AOB and COD are a pair of angles with a certain name. What is this pair of angles called? b) ABO and CDO are a pair of angles with a certain name. What is this pair of angles called? c) Find CAD when DBC  31o and DOC  79o . Include units in your answer.

292

AOB

O។

BD

79 o

C

COD ។

ABO

CDO ។

DBC  31o

CAD DOC  79o ។ ។

246) The product of integers from 1 up to n is expressed as n ! . For example, 3!  1 2  3  6 and 4!  1 2  3 4  24 . a) Compute 5!. b) Find the value of integer n satisfying the following equality.  n! 5! n! 4!   n! 3!  2010

២៤៦)

1

n

n !។ 3!  1 2  3  6

4!  1 2  3 4  24

5!។ n

 n! 5! n! 4!   n! 3!  2010 247) Linda does not know why the addition method is true when solving systems of equations. Explain the reason why a  c  b  d is satisfied when a  b and cd. ab

២៤៧) ។

ac bd

cd។

ab

ab

) c  d ac bd

) c  d ac bd

248) For triangle ABC, the measures of the three angles A, B and C are x o , 2 x o and 3xo , respectively. Find the value of x .

២៤៨)

249) For quadrilateral ABCD, the measures of the four angles A, B, C and D are y o , 2 y o , 3 y o and 4 y o , respectively. Find the value of y .

២៤៩)

250) For pentagon ABCDE, the measures of the five exterior angles A, B, C, D and E are z o , 2 z o , 3z o , 4 z o and 5z o , respectively. Find the value of z .

២៥០)

A, B

ABC

C

o

x , 2x

o

3x



o

x ។

293

A, B,

ABCD

C

D

4 yo



o

o

y , 2 y , 3 yo

y ។

ABCDE

E

A, B, C, D

z o , 2 z o , 3z o , 4 z o z ។

5z o



251) For parallelogram ABCD shown in the figure, diagonals AC and BD intersect at O.

A

២៥១)

AC

D

A

D

O

B

O។

BD

O

C

C

B

a) AOB and COD are a pair of angles with a certain name. What is this pair of angles called? b) ABO and CDO are a pair of angles with a certain name. What is this pair of angles called? c) Find the measure of DAB  ABC in degrees. Include units in your answer.

AOB

COD ។

ABO

CDO ។ ។

DAB  ABC ។

252) A triangle has base 6a cm and height 5 cm. Express the area, in cm2, using a .

២៥២)

253) Kevin weighs 52.5 kg. a) Kevin’s brother weighs 1.2 times more than Kevin. Find Kevin’s brother’s weight, in kg. Include units in your answer. b) Kevin’s sister weighs 42 kg. How many times heavier is Kevin’s sister than Kevin?

២៥៣)

5 cm។

6a cm

a ។

2

cm

52.5 kg. 1.2 ។

kg។ ។

42 kg ។ ។

254) There are 80 students in Jim’s grade. a) 36 students in Jim’s grade are girls. What percent of students in Jim’s grade are girls? b) In Jim’s grade, 15% of students belong to a soccer club. How many students belong to the soccer club?

២៥៤)

294



80



36

។ , 15% ។ ។

255) In the following figures, find angles X and Y by calculating. Include units in your answer. a) Quadrilateral

២៥៥)

X

Y





72o

72o

X

X 116o

116o

AD

b) Line segments AD and BC cross at E.

A 74o

A

C

E

E

Y 43o

35o

D

B

C

74o

Y 43o

35o

E។

BC

D

B

256) Find the volume, in cm3, of each of the following figures. Include units in your answer. a) Cube

២៥៦)

8 cm



cm3 ។

8 cm

b) Solid made up of rectangular prisms. 10 cm

10 cm

2 cm

2 cm

6 cm

6 cm 5 cm

5 cm

9 cm

9 cm

295

257) There are several identical nails in a box. 50 nails weigh 140 g. a) Find the weight, in g, of 200 nails. Include units in your answer. b) The total weight of all nails in the box is 2800 g. How many nails are in the box? Write the steps leading to your answer.

២៥៧) ។

140 g។

50 g



200 ។

2800g។ ។

258) Charlie gives candies to his friends. When he gives 8 candies to each of them, 11 candies are left over. Let x be the number of friends he has. a) Express the total number of candies using x . b) When he gives 8 candies to each of his friends, 11 candies are left over. When he gives 10 candies to each of his friends, he is 5 candies short. Write the equation using x . c) Find the number of friends he has.

២៥៨)

259) In the diagram on the right, each number from 1 to 16 is assigned to each of the 16 squares so that the sum of the 4 number in any row, column or diagonal is the same. (This kind of square is called a magic square) Seven numbers are already assigned. a 14 15 b

២៥៩)

12

c

6

d

e

f

10

g

h

i

3

16



8 11 ។



x

x ។

8 11 ។ 10

5 x ។ ។

a) Find the sum of four numbers in a row, column or diagonal. b) Find the numbers for a and h .

1 16 ។ 4 ។ ) ។

a

14 15

b

12

c

6

d

e

f

10

g

h

i

3

16



a

296

16

h។



260) In the diagram on the right, point C lies on segment AB such that AB = 12 cm and AC = 8 cm. There are three semicircles whose diameters are segments AB, AC and BC, respectively. Include units in your answer and use  for the ratio of the circumference of a circle to its diameter.

២៦០)

C AC = 8 cm ។

AB = 12 cm

AB, AC

 ។

12 cm

C

8 cm

B

A

261) In the diagram below, find x when m.

B

C

8 cm

a) Find the area, in cm2, of the semicircle of diameter 12 cm. b) Find the area, in cm2, of the shaded part. Write the steps leading to your answer.

cm2 12 cm ។ ។

cm2



២៦១)

m។

x

63o

63o

x

x o

m

BC



12 cm

A

AB

38

38o

m

262) There are two fish tanks, A and B. Tank A can hold 27 L of water and tank B can hold 36 L of water. a) Write the ratio of the volume of tank A to the volume of tank B in simplest form. b) 35 fish are divided into the two tanks such that the ratio of the number of fish in tank A to tank B is equal to the ratio of their volumes. Find the number of fish in tank A and in tank B.

២៦២)

A 27 L

A

B

36 L



A ។

B 35 A



B A

297

B។

B។

263) Becky walks at a speed of 80 m per minute. Answer the following and include units in your answer. a) It takes 8 minutes for Becky to go to school from her home. Find the distance, in m, to school from her home. b) The distance to a station form her home is 2 km. How long, in minutes, does it take for Becky to go to the station from her home?

២៦៣)

264) The figure on the right has axis of symmetry .

២៦៤)



8 ។

E

m ។

2 km។ ។



A B



80 m

A

C

H

D

G

I

B

C

H

D

G

E

F

F ។

C

a) Find the vertex that is symmetric to vertex C with respect to . b) Find the side that is symmetric to side GF with respect to .

265) 17 added to a number is equal to 15 subtracted from that number then multiplied by 5. Let that number be x and answer the following. a) Write the equation in terms of x . b) Find the value of x .

I

GF ។

២៦៥) 17

298

15 5។

x x ។

x ។

266) In the diagram on the right, There is a semicircle of diameter 8 cm in a sector whose radius is 8 cm and its central angle is 90o . Include units in your answer and use  for the ratio of the circumference of a circle to its diameter.

២៦៦)

8 cm 8 cm

90o ។

 ។

8 cm

8 cm

a) Find the area, in cm2, of the sector whose radius is 8 cm and its central angle is 90o . b) Find the area, in cm2, of the shaded part. Write the steps leading to your answer.

267) In the diagram on the right, the straight line y  2 x  6 , denoted by , passes through the y -axis and x -axis at A and B, respectively. The coordinates of point C is (2, 1). Let m be the straight line that passes through points A and C. y m 

B

90o ។

8 cm



cm2



២៦៧)

y  2x  6

y C

m

a) Find the coordinates of point B. b) Find the equation of straight line m . Write the steps leading to your answer.

299

(2, 1) ។

m

C។

y A



B

x

B

A



C

A

x

A



O

cm2

x

O

B។ m ។ ។

C



268) The table below contains information on the highest and lowest temperatures for each day from July 20th to July 24th in Osaka city. The numbers show the difference in temperature between 30 o C and the actual temperature. Positive numbers indicate temperatures higher than 30 oC . Negative numbers indicate temperatures lower than 30 oC .

២៦៨) ២០ ២៤ ។ ។

30 oC

30 oC 30 oC ។ ២០

July 20th 21st 22nd 23rd 24th Highest +3.9 +4.2 +5.3 +6.0 +5.6 Lowest -3.6 -3.8 -3.8 -2.5 -2.7

២១

២២

+3.9 +4.2 -3.6 -3.8

+5.3 -3.8

a) Find the actual lowest temperature on the 20th. Include units in your answer. b) Which day has the greatest difference between the highest and lowest temperatures?

269) The diagram on the right shows a rectangular prism of length 5 cm, width 5 cm and height a cm. Include units in your answer.

២៤

+6.0 +5.6 -2.5 -2.7 ២០។ ។ ។

២៦៩)

5 cm

a cm

២៣

5 cm

a cm ។

5 cm ។

5 cm 5 cm

a cm

a) Find the volume, in cm3, of the rectangular prism. b) Find the surface area, in cm2, of the rectangular prism.

300

5 cm



cm3 2

cm



270) There are two numbers, x and y . The sum of x and y is 30. The sum of 7 times x and 2 times y is 95. a) Write a system of equation using x and y . b) Find the value of x and y .

២៧០)

271) In the graph shown on the right, the parabola y  ax 2 has its vertex at O and passes through point A(1, 2). Point B lies on y  ax 2 and its x -coordinate is 2. Point H lies on the y -axis and line BH is perpendicular to the y-axis. Point C lies on line BH such that HB = BC. The parabola y  bx 2 has its vertex at O and passes through point C.

២៧១)

30 ។

x

y ។

7

x

x

y។

y។

y  ax 2

A(1, 2) ។

O

y  ax 2

B 2។

H ។

BH y  bx

C

HB = BC ។

BH 2

O

C។

y y  ax 2 y  bx 2





B

y  ax 2 y  bx 2



C

H

A





B



C

A



O

y 95 ។

2

x

y

H

y

x



x

x

O

a) Find the value of a . b) Find the y -coordinate of point B. c) Find the value of b . Write the steps leading to your answer.

a ។

B។

b ។ ។

301

២៧២)

272) The figure on the right shows trapezoid ABCD with AD || BC and AD  DC . Point H lies on side BC and line AH is perpendicular to side BC. Answer the following when AB = 6 cm, BC = 7 cm and AD = 5 cm. 5 cm A D

AD  DC ។

AD || BC BC

H BC ។

AH

AB = 6 AD = 5 cm ។

cm, BC = 7 cm

5 cm

A

D

6 cm 6 cm

B

H 7 cm

C

B

C

H 7 cm

a) Find the length, in cm, of AH. b) Find the area, in cm2, of trapezoid ABCD.

AH ។

cm 2

cm ABCD ។

273) Consider the following six integers. 6,  5,  1, 2, 4, 5 a) If you choose two integers and add them, find the least possible sum of the two integers. b) If you choose two integers and multiply them, find the least possible product of the two integers. c) Three difference integers are assigned to each of the letters, A, B and C in the expression below. Find the set of integers, A, B and C such that the expression takes the minimum value. A C B

២៧៣)

1 2 x . 2 a) Find the value of x when y  4 . b) For the problem “Find the range of y in the interval 2  x  4 ” Nick’s answer was “ 2  y  8 ”. Is his answer correct? If it is correct, write “Correct” on your answer sheet. If it is not correct, give your reason.

២៧៤)

274) Consider the function y 

6,  5,  1, 2, 4, 5 ។ ។

A, B

C



A, B

C ។

A C B

302

y

1 2 x ។ 2

y  4។

x

y

2  x  4 ”

“2 y 8” ។ ” ។



275) Find the volume, in cm3, of each of the following solids. Include units in your answer and use  for the ratio of the circumference of a circle to its diameter. a) Cylinder

២៧៥)

 ។

2r cm

r cm



cm3

2r cm

r cm





b) Cone 2r cm

2r cm

r cm

r cm





276) 2 students are selected form 4 students, A, B, C and D, at random. a) How many different ways can 2 students be selected? b) What is the probability that student A will be selected? c) After selecting 2 students, a president and a vice president will be selected from the 2 students at random. What is the probability that student A will be president?

២៧៦)

2 B, C

4 ។

D 2



A 2 ។

2

277) Circles are arranged according to a rule as shown below. 1st 2nd 3rd 4th …

A,

A

២៧៧) ១









...

Find the number of circles in the 8th arrangement.



303



278) The table on the right shows the number of doctors per 1000 people for the top four countries. Japan is added to the table for comparison. Country Cuba Greece Belarus Russia Japan

២៧៨) ។

1000 ។

Number of doctor per 1000 people 6.4 5.4 4.9 4.3 2.1

1000 6.4 5.4 4.9 4.3

a) How many times more is the number of doctors per 1000 people in Cuba than in Russia? Round your answer off to one decimal place. b) To find the number of doctor per 1000 people in a country, we need two values, “the total number of doctors” and “population” of the country. Let x be the total number of doctors and let y be the population of a country. Express the number of doctors per 1000 people using x and y . c) Suppose that the population of Japan is 130,000,000. Find the total number of doctors in Japan.

2.1 1000 ។

1000 ”



y

x ។

1000 x

y ។

130,000,000 ។

279) The figure on the right shows two rightangled triangles ABC and CDE, where point E is the midpoint of side AC. AB = 2 cm, BC = 4 cm and DE = 5 cm. Include units in your answer. D 5 cm A 2 cm

B



២៧៩)

ABC CDE

E

AC ។ AB = 2 cm, BC = 4 cm



B

a) Find the length, in cm, of side AC. b) Find the length, in cm, of side CD. c) Find the sum of the areas, in cm2, of ABC and CDE .

304

E C

4 cm

cm

AC ។

cm

CD ។ cm2

CDE ។

D

5 cm

A 2 cm

C

DE = 5

cm ។

E

4 cm



ABC

280) The diagram on the right shows equilateral triangle ABC. Points D and E lie on side AB and AC, respectively such that AD = CE. ACD  CBE will be proven in the simplest way using congruent triangles. A

២៨០) រូបខាងស្តាំបង្ហាញពីររីកោណសម័ងស ABC ។

ចំណុច D នង ិ E កៅកលើរជុង AB នង ិ AC ករៀងគ្នា ដែល AD = CE ។

ACD  CBE នឹងររូវ

បង្ហាញកោយោរករបើលក្ខខណឌប៉ន ុ គ្នាននររីកោណ។

A D

D

E

E B

C

B

C

១) ករគ ុ គ្នា? ើ ូររកី ោណណា ដែលគួបង្ហាញថាវាប៉ន

1) Which two triangles should be shown to be congruent? 2) Which conditions are required to prove that the two triangles in your answer for 1) are congruent? Choose three conditions from the following and write the corresponding letters. (a) AD = CE (b) AC = CB (c) CD = BE (d) ADC  CEB (e) ADC  CEB (f) CAD  BCE 3) Explain in words the condition for congruent triangles in your answer for 1).

២) ករល ើ ក្ខខណឌណា ដែលររូវយក្មក្បញ្ជាក្់ចំកោះ

ររីកោណទាំងពីរ ដែលថាវាប៉ន ុ គ្នាក្ាុងចកមលយ ើ របស់

អ្ាក្សរាប់សំណួរទី ១)។ ចូរករជស ខណឌ ើ ករសលក្ខ ើ បនី នបណា ា លក្ខខណឌខាងករោម ក

យ ើ សរកសរ

អ្ក្សរដែលររូវគ្នានឹងលក្ខខណឌកោះ។

ក្. AD = CE

ខ. AC = CB គ. CD = BE ឃ.

ADC  CEB

ង.

ACD  CBE

ច.

CAD  BCE

៣) ពនយល់ជាោក្យ នូវលក្ខខណឌប៉ន ុ គ្នាននររីកោណ ក្ាុងចកមលយ ើ របស់អ្ាក្ សរាប់សំណួរទី ១)។

281) In the figure on the right, a square with sides of length 4 cm is equally divided into 4  4 small squares, each with a side of length 1 cm.

២៨១) ក្ាុងរូបខាងស្តាំ ោករមួយានរង្ហវស់រជុងរបដវង 4 cm

In this figure, construct a line segment of length 5 cm using only a ruler. You can only use the ruler for drawing lines.

305

គរឺ រូវដចក្កចញជាោកររូច

ានរង្ហវស់របដវង 1 cm ។

4  4 កសមើៗគ្នា ដែលរជុង

ក្ាុងរូបកនះ ចូរែឹក្បោារ់ដែលានរបដវង 5 cm

កោយោរករបរើ ាស់ដរបោារ់បកុ៉ ណា ោ ះ។ អ្ាក្អាចករបើ ានដរបោារ់បកុ៉ ណា ោ ះកែើមបគ ី ូសបោារ់។

282)

ំ ស ២៨២) ក្ាុងរូបនម ួ ៗបង្ហាញពអ្ ួ ឱ្យកលខ។ ី យ ី ំពូល៥ ដែលជន

In the accompanying figures, each shows 5 bulbs to represent a number. Each electric bulb can be either on or off. Figure 1 shows all electric bulbs are off and it represents 0. When the electric bulbs are on as in Figure 2 to Figure 6, they represent 1, 2, 4, 8 and 16, respectively. Some othe numbers can also be represented by a combination of these 5 bulbs. For example, Figure 7 is a combination of Figure 2, 5 and 6. Thus Figure 7 represents 1 + 8 + 16 = 25. Answer the following.

អ្ំពូលអ្គគស ួ ៗអាចកឆះភលឺ ឬមន រូបទ១ ិ នន ី ម ី យ ិ កឆះភល។ ឺ ី បង្ហាញពីអ្ំពូលអ្គគិសនីទាង ំ អ្ស់មន ួ ឱ្យ ិ កឆះដែលជំនស

កលខ 0 ។ កៅកពលដែលអ្ំពូលអ្គគិសនីកឆះភលឺ ែូចក្ាុង រូបទ២ ួ ឱ្យកលខ 1, 2, 4, 8 ី ែល់ទី៦ ដែលពួក្វាជំនស

និង 16 ករៀងគ្នា។ កលខកផសងកទៀរអាចររូវានជំនស ួ

កោយោរផសំចូលគ្នាននអ្ំពូលទាំង៥កនះ។ ជាឧទា រណ៍ រូបទី ៧ ជាបនសំននរូបទី 2, 5 នង ិ 6។ ែូចកនះរូបទី ៧ ជំនស ួ ឱ្យកលខ 1 + 8 + 16 = 25 ។ ចូរកឆលើយនឹងសំ ណួរខាងករោម។

Figure 1

រូបទី 1

Figure 2

រូបទី 2

Figure 3

រូបទី 3

រូបទី 4

Figure 4

រូបទី 5

Figure 5

រូបទី 6

Figure 6

រូបទី 7

Figure 7 a) What number is represented when all bulbs are on? b) Configure these bulbs to represent 10. Draw your figure using and just like the figure above. 283) In the rectangle shown on the right, points M and N are the midpoints of sides AD and BC, respectively. BD is the diagonal. MBD  NDB will be proved in the simplest way by using congruent triangles.

A

M

D

B

N

C

ក្. ករកើ ៅកពលអ្ំពូលទាំងអ្ស់កឆះភលឺ វាជំនស ួ ឱ្យកលខអ្វ? ី ខ. រូបននអ្ំពូលទាំងកនះជំនស ួ ឱ្យកលខ 10។ ចូរគូសរូប របស់អ្ក្ ា កោយករបរើ ាស់

និង

ែូចរូបខាងកលើ។

២៨៣) ក្ាុងចរុកោណដក្ងបង្ហាញក្ាុងរូបខាងស្តាំ, ចំណុច M និង N គឺជាចំណុចក្ណា ា លករៀងគ្នាននរជុង AD និង

BC ។ BD គជា ឺ អ្ងកររ់ ទូង។ MBD  NDB

នឹងររូវ បង្ហាញកោយោរករបើលក្ខខណឌប៉ន ុ គ្នានន ររីកោណ។

1) Which two triangles should be shown to be congruent? 2) Which conditions are required to prove congruency of the two triangles in your answer for 1)? Choose three conditions from the following and write the corresponding letters. a) AM  CN b) DM  BN c) BD  DB d) MBD  NDB e) A  C f) MDB  NBD 3) Explain in words the condition for congruent triangles in your answer for 1). 306

A

M

D

B

N

C

១) ករើគូររីកោណណា ដែលគួបង្ហាញថាវាប៉ន ុ គ្នា?

២) ករើលក្ខខណឌណា ដែលររូវយក្មក្បញ្ជាក្់ចំកោះ

ររីកោណទាំងពីរ ដែលថាវាប៉ន ុ គ្នាក្ាុងចកមលយ ើ របស់

អ្ាក្សរាប់សំណួរទី ១)។ ចូរករជស ខណឌ ើ ករសលក្ខ ើ បនី នបណា ា លក្ខខណឌខាងករោម ក

អ្ក្សរដែលររូវគ្នា។ ក្. AM  CN គ. BD  DB ង. A  C

យ ើ សរកសរ

ខ. DM  BN ឃ. MBD  NDB ច. MDB  NBD

៣) ពនយល់ជាោក្យ នូវលក្ខខណឌប៉ន ុ គ្នាននររកី ោណ ក្ាុងចកមលយ ើ របស់អ្ាក្ សរាប់សំណួរទី ១)។

284) The diagram shows rectangle ABCD. Let M be the midpoint of side AB. When connecting point M to vertices C and D, AMD  BMC will be proven in the simplest way using congruent triangles.

A

២៨៤) រូបបង្ហាញពីចរុកោណដក្ង ABCD ។ កគឱ្យ M ជា

ចំណុចក្ណា ា លននរជុង AB ។ កៅកពលដែលកយង ើ ភ្ជាប់ ចំណុច M កៅក្ំពូល C និង D,

នឹងររូវបង្ហាញកោយោរករបើលក្ខខណឌប៉ន ុ គ្នាននររីកោណ

A

D

M B

AMD  BMC

D

M B

C

១) ករើគូររីកោណណា ដែលគួបង្ហាញថាវាប៉ន ុ គ្នា?

1) Which two triangles should be shown to be congruent? 2) Which conditions are required to prove that the two triangles in your answer for 1) are congruent? Choose three conditions from the following and write the corresponding letters. a) AD  BC b) MD  MC c) AM  BM d) AMD  BMC e) MAD  MBC f) ADM  BCM 3) Explain in words the condition for congruent triangles in your answer for 1).

285) In the figure on the right, a square with sides of length 8 cm is equally divided into 8  8 small squares, each with a side of length 1 cm.

C

២) ករើលក្ខខណឌណា ដែលររូវយក្មក្បញ្ជាក្់ចំកោះ

ររកី ោណទាំងពរី ដែលថាវាប៉ន ុ គ្នាក្ាុងចកមលយ ើ របស់

អ្ាក្សរាប់សំណួរទី ១)។ ចូរករជស ខណឌ ើ ករសលក្ខ ើ បីននបណា ា លក្ខខណឌខាងករោម ក

ើយសរកសរ

អ្ក្សរដែលររូវគ្នា។ ក្. AD  BC ខ. MD  MC គ. AM  BM ឃ. AMD  BMC ង. MAD  MBC ច. ADM  BCM

៣) ពនយល់ជាោក្យ នូវលក្ខខណឌប៉ន ុ គ្នាននររកី ោណ ក្ាុងចកមលយ ើ របស់អ្ាក្ សរាប់សំណួរទី ១)។

២៨៥) ក្ាុងរូបខាងស្តាំ ោករមួយានរង្ហវស់រជុងរបដវង 8 cm

In this figure, construct a line segment of length 10 cm using only a ruler. You can only use the ruler for drawing lines. You don’t need to write your steps leading to your answer.

307

គឺររូវដចក្កចញជាោកររូច

ានរង្ហវស់របដវង 1 cm ។

8  8 កសមើៗគ្នា ដែលរជុង

ក្ាុងរូបកនះ ចូរែឹក្បោារ់ដែលានរបដវង 10 cm

កោយោរករបរើ ាស់ដរបោារ់បកុ៉ ណា ោ ះ។ អ្ាក្អាចករបើ ានដរបោារ់បកុ៉ ណា ោ ះកែើមបគ ី ូសបោារ់។ អ្ាក្មន ិ ចាំ ាច់សរកសរជំហានននចកមលយ ើ របស់អ្ាក្កទ។

286) Three marbles are picked from a jar containing 6 white marbles and 3 red marbles. Let A be the event “three marbles picked are red”. Three marbles are picked from a jar containing 7 white marbles and 3 red marbles. Let B be the event “three marbles picked are red”. How many time more is the probability of occurring event A than that of event B?

២៨៦) ក្ូនឃលីបីគឺររូវានករជស ា យ ដែល ើ ករសព ើ ីក្ុ ងរក្ឡមួ

287) Cube A has a side of length a . Cube B is a cube that is obtained by extending each side of cube A by length b . a) Write the volume of cube B in terms of a and b . Write only your answer in expanded form. b) How many times more is the volume of cube B than that of cube A? Express your answer in term of t , b where t  . a

២៨៧) គូប A ានរទនុង a ។ គូប B គជា ឺ គូបដែលាន

288) Prove x  y  z  a when x  y  z  3a and x 2  y 2  z 2  3a 2 , where a, x, y and z are real numbers.

២៨៨) បង្ហាញថា

ានផាុក្ក្ូនឃលស ី 6 នង ិ ក្ូនឃលរី ក្

ម 3 ។ តាង A ជា

រពឹរាិោរណ៍ “ក្ូនឃលីទាង ំ បីានករជើសករសគ ើ ឺរក្

ម”។

ក្ូនឃលីបីគឺររូវានករជើសករសព ា យ ដែល ើ ីក្ុ ងរក្ឡមួ

ានផាុក្ក្ូនឃលស ី 7 នង ិ ក្ូនឃលរី ក្

ម 3 ។ តាង B ជា

រពឹរាិោរណ៍ “ក្ូនឃលីទាង ំ បីានករជើសករសគ ើ ឺរក្ ករើបោ ុ៉ ម នែង

ម”។

ដែលរបូាបកក្ើរានកឡង ើ ននរពឹរាិ-

ោរណ៍ A ករចន ាិ រណ៍ B ? ើ ជាងរបូាបននរពរ ឹ ោ

កោយក្វើោរពរងីក្រទនុងនីមយ ួ ៗននគូប A របដវង

ក្. ចូរសរកសរាឌននគូប B ជាអ្នុគមន៍នន a និង

b។

b។

សរកសរចកមលយ ើ របស់អ្ាក្ជាទរមង់ពោលរ។

ខ. ករើបោ ុ៉ ម នែងននាឌគូប B ករចើនជាងាឌននគូប A? បញ្ជាក្់ចកមលយ ើ របស់អ្ាក្ជាអ្នុគមន៍នន ដែល t 

b ។ a

x  y  z  a កៅកពលដែល

2 2 2 2 x  y  z  3a នង ិ x  y  z  3a ដែល

ួ ពិរ។ a, x, y និង z គឺជាចំនន

លំហាត់ត្តឹមលលខ ២៨៨ លេះ ខញំបា ុ េបកប្ត្បជាភាសាជាតិ េិងលោះត្សាយរកចលមលើយ ជូេដល់មិតអ្ ត នកអាេរួចរាល់ល ើយ។ សូមមមើលដំមោះស្រាយបន្ទាប់ពីទំព័រមេះ មដើមបីម្ាៀងផ្ទាត់ជាមួយចមមលើយរបស់អ្នកមស្រោយពីមោះស្រាយរួច។

3 308

t ,

1)

x

2

6)

 6 x  8   x  2 x  8

 2 x  1   2 x  3 2 x  5 2

2

 4 x 2  4 x  1   4 x 2  10 x  6 x  15 

 x2  6 x  8  x2  2 x  8  4 x  16

 4 x 2  4 x  1  4 x 2  4 x  15  8 x  16

2) 3 x  2  5x  2

7)

3x  6  5 x  2

 x 1

3 x  5 x  2  6

2

x 1  0

 2 x  8

8)

a



b  2 a  b

2 2

x 1 x1  x2  1 ។

2 x 8  2 2 x4

3)



0

57





5 5 

 5  5 5  7 5  35  2 5   30

 ab

y

9)

b  a

2  x  1

 2b ។ a 2

x

0  x 1

y  ax  b x  0, y  3

0 y

a7

1 2 x 2 y0

0 y2 1 0 y 2

2  x  0

y  ax  b

y

x2  0

4)

 0, 3

10 5

1 2

0 y2 0 y2

3  7  0  b



b  3 y  7x  3 ។

5)

10)

x

l m n 3 cm 4 cm 3 4  ឬ  5 cm x cm 5 x

x

20 3

2

2

 35  5

2

 30

2

5 cm

35 cm

30 cm



30 cm ។

309



11)

14)

xyz  xy  xz  x  x  yz  y  z  1

4

 x  y  z  1   z  1  

4! 5!  3! 1! 4! 1!  4  5  20

C  4, 1  C  5, 1 

x  y  1 z  1

20

២ 5x  19 x  4  0 2

12)





f  x   5x 19x  4

f  x  0

2

125 , 25 ,

   19  4  5 4  361  80  441   19   441 2  5

  19   441

x2 

2  5

 

q



4

19  21  4 10

A

19  21 1  10 5

-

0

f  x  0

x  4 ឬ x  ②

+

1 5 0

② រក

) 4

x

5 ។

B



B

1 1  1  5 5

1 ។ 5

 4 x 2  xy  4 xy  y 2   4 x 2  y 2 

1 5

 4 x 2  3 xy  y 2  4 x 2  y 2   3 xy

( 01 5

x

cos A ABC

2010 2010  2  3  5  67

18)

x

4 x2  5x  8  0

C

   5  4  4   8  25  128  153 2

B

cos A   1  sin A cos A  0 A

C

  5   153 5  3 17  2 4 8   5   153 5  3 17 x2   2 4 8

x1 

A

sin A 

cos A  1  sin 2 A

A

 x  y  4 x  y    2 x  y  2 x  y 

17)

2

,…

16) -

1 5

sin 2 A  cos2 A  1 cos 2 A  1  sin 2 A

B



x

x  4 ឬ x 

,1,

U 2 25 1   U1 125 5 1   25  5 5

B

x

A

① រក A

2

x1 



15)

f  x   0   5x2 19x  4  0

13)

5

3 5

25  9 4 3 cos A  1      25 5 5 2

x

310

5  3 17 ។ 8



19)

23)



52 2





2 5 5 2  2

 x3   6 y 

 5  10  2 10  4  10

24)

a

 2 ,  8

y  ax 2

x8  1   x 4  1 x 4  1   x 2  1 x 2  1 x 4  1

x  2 , y  8

8  a   2 

3

 x3  216 y 3

 1 20)

 x  6 y   x 2  6 xy  36 y 2 



8  4a

2

 x  1 x  1  x 2  1 x 4  1

a  2 ។ 25) 21)

C

x

2

E





6

4 A



D

x

3

x6 ។

6x  4x  12 22)

AB

2

A  B   1, 3, 4, 6, 7, 8 

U   1, 2, 3, 4, 5, 6, 7, 8, 9  A  B   2, 5, 9  ។ ២

27)

f  x   2x2  3x  9

C AB  BC  AC 2

2 x 2  3x  9  0 ២

① 2

f  x  0

f  x   0  2x2  3x  9  0   32  4  2   9  9  72  81

BC = 3cm , AC = 7cm 2

AB2  32  7  9  7  16cm2

AB   16cm  4cm 2

AB  0

22

B = {1 , 4 , 6 , 7 }

C

2



A = {1 , 3 , 7 , 8 }

7cm

ABC

2 2

A B

26)

cm

3cm





24

A

B

2

 2  2 2  2  2   2

B

EAD CAB x 4 ឬ  x3 6

DE BC AD ED  AB CB

2 22

22 

AB AB  4 cm ។

311

x1 

3  81 3  9 3   2  2 4 2

x1 

3  81 3  9   3 2  2 4





x

f  x  0

3

+

0

x  3 ឬ x  ②

-

3 2 0



33)

x

x 2  10 x  6  0

 '   5   6   25  6  31

+

2

3 2

x

x

x  3 ឬ x 

x

) 3

34)

3 2

0





15 5

5 3 2 5 

( 3 2

 3 5  10  3 5

x

 10

A  3B

28)

A  3x  2 x

B  x2  x 1

2

y

35)

A  3B  3x 2  2 x  3  x 2  x  1

x

y  ax

2

y  45

 3x 2  2 x  3x 2  3x  3  5x  3 29)

  5   31  5  31 1

x 3

45  a  32

a5 y  5x



2

sin   cos

 sin   cos

cos 

36)

x

tan   1 o

0o    180o

  45o

x

l

  45  180 k , k  o

4



1

m

2 30)

10! 10  9  8! ① 10 C2  C 10, 2     45 8! 2! 8! 2 10! 10  9  8! ② 10 C8  C 10,8    45 2! 8! 2  8!

2 1  24 x

m ឬ

x 3 ។

2x  6

37)

31)

5 cm

 x  3 y    x  y  x  5 y  2

 x 2  6 xy  9 y 2   x 2  5 xy  xy  y 2 

2

12 cm

  5cm   12cm  2

 x 2  6 xy  9 y 2  x 2  6 xy  y 2

 25cm2  144cm2

 8 y2

 169cm2

2

 169cm2  13 cm 32) 13 cm ។

4 x 2  225   2 x   152 2

  2 x  15  2 x  15  312



38)

 x  2 y   x 2  2 xy  4 y 2   x  2 y 3

 x  8y 3

x

3





+

0

f  x  0

3

1 5 -

3



0

+

1   x3 5

39) x3  6 x 2 y  12 xy 2  8 y 3   x  2y



x

3

1   x3 5

40)

[ 10  5

x

3x  12  9 x  18 3 x  9 x  18  12  6 x  6 6 x 6  6 6 x 1

43)

10

] 3

x

P3

P  P 10,3 

10 3

10! 10  9  8  7!   720 7! 7!

44) 6

41) y  ax 2  bx  c -

 C  8 ,3 

 b b  4ac  S  ,  4a   2a b x 2a 2

2  8 8   4 115   ,    2 1  4  1  



 45) ①

5 x 2  14 x  3  0 f  x   5x2 14x  3

30 15  56 28

sin  sin 2   cos2   1

sin   1  cos2  ,  5 cos   7



42) ①

8!  56 5! 3!

 C  6 , 2  C  2 ,1 6! 2!    30 4! 2! 1!1!

y  x 2  8 x  15

 4 , 1

2

f  x  0

49  25 2 6 5 sin   1      49 7 7 2

f  x   0  5x2 14x  3  0  '   7   5   3  49  15  64



2

  7   64 7  8 1   5 5 5   7   64 7  8 x2   3 5 5 x1 

tan  sin  tan    cos 

313

2 6 7  2 6 5 5 7



46)

53)

x  x  2    x  1 x  3

 x  2 x   x  3 x  x  3 2

 x  y   x2  xy  y 2  



x3  y 3

2

 x2  2 x  x2  2x  3  3

54)

x3  3x2 y  3xy 2  y3   x  y  ។ 3

47)

9 x 2  y 2   3x   y 2 

3x  y 3x  y 

2

48)

55)



x

x2  5x  6  0 S  5  2  3  P  6  2  3

 x2 , x3

1  5 

4







3 1



3 1



3 1



3 3 3 3 3

 2 3 22 3  2

49) 2



4  1 3 3  3 3 1

56)

a

b

 20

y   x 2  ax  b

1 , 2

 1 2 5  5  2 5  6

y  ax 2  bx  c

y

50)

 b b2  4ac   ,  4a   2a

x

y  ax 2

y 1

 b  2a  1  b  2 a  2  2 b  4ac  8a  b  4ac  2  4a a  2  1 a  2  2  2 a  4  1 b  8  1 a  4b  8

x2

1  a  22

a y

1 4

1 2 x ។ 4

51) a

a

d a 2

d 2

57)

d  4 cm 4 cm a  2 2 cm 2

52)

m x 6  2 4 x 3

9 3 9

3

C  9,3

m

x

b 1 ។

a2

d

x

6

9! 6! 3! 9  8  7  6!   84 6! 3  2

C  9,3 

2 4

84 ។

m

314



58)

x

a )   8   4  10  2

2 x2  5x  3  0

f  x   2x2  5x  3

f  x  0

b)  56   8   3  10

f  x   0  2 x 2  5x  3  0

c)  1   2    2    10 4

 '   5  4  2   3  25  24  49 2

7 7 1 1 d )      1 8 9 16 2

  5   49 5  7 1   2 2 4 2   5   49 5  7 x2   3 2 2 4 x1 



x

f  x  0

+

x 59) ①

1  2 0 -

3

e) 6  2





3 2  2





f ) 10 2 5  10 

1 10



5  10



3



21 2  11 2 g ) 8 x  2   5 x  7   3x  5

0

+

h) 6  0.6 x  0.4   0.3  2 x  5   3 x  0.9



i ) 2  3 x  4 y   5  4 x  3 y    14 x  7 y

1 ឬ 3 x 2

3x  5 y x  5 y 13 x  35 y   8 6 24 3 2 2 k ) 32 x y  4 x y  8 x  y j)

cos  1 0o    90o 2 2 sin   cos2   1

sin  

2

2

2  3   6  3  l )   x3 y 2     x 4    y 2   x 2 3  5   5  2 

cos  1  sin 2  , 0o    90o 4 1 3 1 cos   1      4 2 2 2



 12 x 2  8 x  9 x  6  12 x 2  x  6

3 3

 x  3 y  x  5 y    x  4 y 

b)

2

 x 2  5 xy  3 xy  15 y 2   x 2  8 xy  16 y 2   x 2  8 xy  15 y 2  x 2  8 xy  16 y 2

A B

  y2

A = { 2 , 3 , 5 , 7}

B = { 1 , 2 , 3 , 4}

A  B   1, 2,3, 4,5,7 ②

 4 x  3 3x  2 

a)

tan  1 sin  1 tan    2   cos  3 3 2

60) ①

62)

63)



16 x 2  25

a)

  4 x   52 2

A B



A  B   2 , 3

A B

 4 x  5 4 x  5

9 x 2  24 xy  16 y 2

b)

  3x   2  3x  4 y   4 y  2

n  A  B  2





61) 315

 3x  4 y 

2

2



64)

a3  b 2

66) a) 4 x  9   x  6

a  2

5 x  15

b3

a3  b2   2  32  8  9  1 3

x  3 b) 0.5 x  3.2  0.8 x  1.6

67)

5 x  32  8 x  16

4 x  11  2 x  15

 3 x  48

2x  4

x  16

x2

c) x  14 x  45  0 2

 S  14  5  9   P  45  5  9

y

68)

y  ax y  4

x5 , x9 ។ d ) x  8x  9  0

 '   4  9  16  9  7 2

1 y     4   2 2

x  4

65)

y

69)

7 x  5 y  1 a)  3x  2 y  1

x

y  ax  b

 2 , 4

D  14  15  1 Dx  2  5  3

4  3 2  b

b  2

y  3x  2 ។ 70)



221

?

221  1317

3 1  x  6 y  4 1  x  y 1 ឬ  b)  4 2 5 x  5 y  1  2  0.5 x  0.5 y  0.1



221 71)

x  6 y  4 3 1 3  2  2 : 5  6 y  4   5 y  1 35 y  21  y  

x2, y4

a 3

Dx 3  3 D 1 D 4  y y   4 D 1

 x

x  3 , y  4 ។

 3

1 2

1 y x 2

  4   7  4 7 1

Dy  7  3  4

a

4  a  8

2

x

x 8

n

 n  2  180o n 3 5

)

n9 9  2  180o  

 140o

9  180  140o  40o

2  3 x  6    4  5  5

o

40o ។

2 3 x ,y ។ 5 5

316



72)

x

m

xcm

8cm

1 8 x  4 x ឬ

76)

1cm

a) x 2  3 x  54  x 2  9 x  6 x  54  x  x  9  6  x  9

4cm

b) x 2 y  4 y 3  y  x 2  4 y 2 

32  x 5

x  32  4 x

73)

 x  9  x  6 



m

y  x  2 y  x  2 y 



AC A

AC 2  AB 2  BC 2

6cm

D

77)

3cm

AC  AB 2  BC 2

B

x a) 6 x  16  9 x  11

 3x  27 x  9 7 x  3 3x  1 b)  8 4 7x  3  6x  2 x5

C

AB  3 cm , BC  AD  6 cm

AC  32  62  45  3 5 cm 74) a)  13   15    4    2

c) x 2  4 x  21  0

b)  8  5  20   5    44

 S  4   7   3   P  21   7   3

c)  2   4   24 3

2

5 1 15 d )    0.75    0.2  6 4 8

x  7 , 3 d ) x2  8x  2  0

e)  18  72  2  4 2



 '   4    2   16  2  18 2



3 f) 2 5 5  4 5  6 5 5 g ) 7  3 x  2   9  2 x  5   3 x  59 4x  1 5x  3 x  13   6 8 24 i ) 3  9 x  y   5  x  2 y   22 x  13 y h)

x

24 x  9 y  90   5x  9 y  3 29 x  87

2

40  5  1   18  l )   xy    xy 2     y    y  9  6   5 

x  3

75)

8  3  3 y  30 x  3, y  2 ។

 21x 2  28 xy  15 xy  20 y 2  20 y 2

0.8 x  0.3 y  0.8 8x  3 y  8  ឬ  b)  2 3 9 x y  4 x  15 y  18  2 5 5 1 4 x ,y ។ 2 3

 21x  13xy 2

 x  6    x  5 x  8 2

 x 2  12 x  36   x 2  8 x  5 x  40  

x  3

3 y  30  24  y  2

 7 x  5 y  3x  4 y   2 y 10 y

b)



8x  3 y  30 a)  5x  9 y  3

k ) 18 x 2 y   2 xy   6 x 3 y   6 y

a)

  4   18  43 2 1

78)

j ) 0.3  x  8 y   8  0.4 x  0.2 y   3.5 x  0.8 y 2



 9 x  76 317



9 x 2  2 xy

79)

85)

x

y 1

x  3

l m

9 x2  2 xy  9  3  2  31  81  6  87

m

1

A x

BC ) BDC  90  38  52 o

1 ។ 36

o

O 38o

o

B

C

x  BDC  52o ។

y 8x  3 y  7 3 y  7  8x 7  8x y 3

82)

D

x  BDC

3

81)

x

x

86)

 6  6  36 9

95o

 54o

9 6

41o

x  95o  41o

2

80)

l

87) a )  12    13   4    3 b)  2  5  12   6    12 c )  4   2 4  0 2

y

5 5 1 d )   0.2   0.5  8 16 2 e)  2  8  18  0

a y x y  8 x 3 a 24 8   a  24 y 3 x 24 y  12 ។ x  2 2

f ) 4  3x  5   8  2 x  3   4 x  4 5 x  3 x  1 13 x  11   2 3 6 h) 4  6 x  7 y   8  2 x  4 y   8 x  4 y g)

i ) 0.2  5 x  10 y   2  2 x  0.5 y   5 x  y

83)

y

j ) 28 x 2 y 2   5 xy   35 xy 3   4 x 2

x

y  ax 2

2

y  32 32  a  4

5   5   2  1 k )  x 2 y     xy 3     y 3   x 3 y 2 6   9   15  6

x4  a  2

2

y  2 x 2 ។

88) a)

84)

b)

n

 n  2  180o n

8  2  180o  

 x 2  8 x  16   x 2  8 x  2 x  16 

)

n 8

 x 2  8 x  16  x 2  10 x  16  18 x

 135o

8  180  135o  45o o

 x  7 y  x  7 y   x 2  49 y 2 2  x  4    x  2  x  8 

89)

 x  2  x  6   4axy  5ay 2  a  x  y  x  5 y 

a) x 2  8 x  12 

45o ។

b) ax 318

2



90)

93)

x a ) 9 x  19  11x  13

2010

2010  2  3  5  67

 2 x  32 x  16 7 x  4 5x  4 b)  8 6 21x  12  20 x  16 x  4 1 c) x 2   0 4 1 x2  4 1 x 2 2 d ) x  2x 1  0

94)

h 1 mgh  mv 2 2 1 2 mv h 2  mg

y

95)

y  ax y5

x  2 5 5 5  a   2   a   y x 2 2 5 y    4   10 ។ x4 2

 '  12   1  1  1  2 x

1  2  1

1 2

y

96)

91)

x

y  ax

x  y  1 a)  3x  2 y  18 2 x  2 y  2  3x  2 y  18 5 x  20

2

y  3

x 3 1 3  a  32  a   3 1 2 y x ។ 3

x4

x  4 : 4  y  1  y  3 x  4 , y  3 ។

2 x  y  3 2 x  y  3  b)  1 1 ឬ  4 x  y  4 0.5 x  8 y  2 2 x  y  3  7 4 x  y  4 x 6 6x  7 7 7 2 x  : 2  y  3  y  6 6 3 7 2 x , y 6 3

97) n

 n  2  180

o

n 8

n



98)

 8  2  180o 8

x



3 xy  6 xy 2

x  5

)

 135o ។

x

6 92)

v2 2g

2

4

m

y2

3xy  6 xy 2  3  5 2   6  5  22   90

m 319

x 6  2 4

x 3 ។



x

99)

BC : CD  1: 2 CAD BAC  2 o 46  23o ឬ x  2

103)

A

x a ) 7 x  4  4 x  10

3 x  6 x  2

o x 46

D B

b) C

100)

a)  5  2  8  4   7 b) 18  30   6   23

x  5 3x  7  1 4 2 x  5  6 x  14  4  5 x  15 x3

c) 5 x 2  40  0 5 x 2  40

c)  5   32  4   11 2

x2  8

2

2 5 1 2 d)       3 6 3 3 e)  2





x  2 2



d ) x  8x  4  0 2

3  2 2  24  4  6



 '   4   4   16  4  20 2

10  6 5 g ) 2  8 x  5   6  3 x  2   34 x  2 f)

2

5 1 

h) 0.8  0.6 x  5   0.5  0.9 x  3  0.03 x  2.5 i ) 3  4 x  8 y   7  2 x  6 y   26 x  66 y

x

  4   20  1

104)

2 x  5 y  2 a)   x  3 y  12

3 x  5 y 4 x  y x  17 y j)   6 9 18 3 2 k )  28 xy  7 xy   4 y

D  6  5  11

2

5 2 5  4 l ) x3 y   x 2 y   x  6 5y 3  3

Dx 66  6 D 11 D 22  y y   2 D 11

Dx  6  60  66  x  Dy  24  2  22

101)

x  6 , y  2 ។

a )  3 x  4 y  3 x  4 y   9 x 2  16 y 2 b)

 x  6  4 x  3   2 x  5 

42 5

2

0.3x  0.4 y  0.1  b)  6 4 7 ឬ x y   3 15 5

 4 x 2  3 x  24 x  18   4 x 2  20 x  25   4 x 2  21x  18  4 x 2  20 x  25   x  43

3x  4 y  1  18x  20 y  7

D  60  72  12 Dx 8 2   D 12 3 D 3 1 Dy  21  18  3  y  y   D 12 4 Dx  20  28  8  x 

102)

a) x 2  4 x  12  x 2  2 x  6 x  12 

 x  2  x  6 

2 1 x ,y ។ 3 4

 x  y   12  x  y   36 2   x  y  6

b)

2

320



2ab  b2

105)

a4

x

111)

b  2

62o

m

2ab  b2  2  4   2    2    20 2

x

x  62  46 o

106)

A

B

 6  6  36 4

x

x

112)

O 

AB = AC

3

ABC  ACB

1 , 3 ;  2 , 2 ; 3 , 1 

46o

m

 108o

4 A

o

3 1  36 12

x  180o  2ACB



64o

B

ACB  ADB  64o

D C

AD

x  180o  2  64o  52o

y

107)

5x  2 y  3 2 y  3  5x 3  5x y 2

108)

113) a)  8    10    16    2 b) 16  24   8   13 c)  3   2    7 2

4

2

5 1 d )   4     1 9 3

y y

a x

y9

e) 18  98  2   5 2 2 12 f ) 6 2   10  2 6 6 g ) 7  4 x  3  5  5 x  4   3 x  1

x4 a  a  36 4

9

y y

x  6

36  6 ។ 6

y

109)



36 x

h) 0.6  3 x  0.7   2  0.3 x  0.2   2.4 x  0.02 i ) 4  9 x  6 y   9  x  2 y   45 x  6 y 5 x  3 y 2 x  5 y 23 x  29 y   12 9 36 2 3 2 k )  63 x y  9 xy   7 xy

x

j)

y  ax 2

y 8



x4

2

7 2 y  5  35 l )  xy   x 2 y 3  y  20 3  6  48

x2 y 2

1 8  a  42  a  2

114) 110)

a) n

 30 x 2  5 xy  6 xy  y 2

 n  2 180

o

 30 x 2  xy  y 2

n  12

12  2 180o  10 180o 

 5 x  y  6 x  y 

b)

 x  7    x  8 x  6  2

 x 2  14 x  49   x 2  6 x  8 x  48 

1800o

 x 2  14 x  49  x 2  14 x  48  1 321



12 x  34 y  15  12 x  8 y  6 42 y  21 1 y 2

115) a ) x  100  2

 x  10  x  10 

1 2 1 6 x  4    3 2 1 ឬ 6 x  1  x   6 1 1 x , y ។ 6 2

b) ax 2  6ax  9a  a  x 2  6 x  9  

116)

a  x  3

2

x a) 9 x  5  6 x  7

3 x  12 x  4

a 3

x  2  8 x  12  7 x  14

b  4

9a 2  ab 2  9  32  3   4 

2

 81  48  33

x2 x 2  3 x  54  0

c)

9a 2  ab2

118)

b) 0.2  x  2   0.8  2 x  3 

y

119)

x 2  6 x  9 x  54  0

A

x  x  6  9  x  6  0

B

 6  6  36

 x  6  x  9   0

9

x  6  0 x  6  x  9  0 ឬ  x  9   ឬ x  6 , 9 ។

 2, 2  ;  2, 4  ;  2 , 6  ;  4, 2  ;  4, 4  ;  4 , 6  ;  6, 2  ;  6, 4  ;  6 , 6  

d ) x  8x  9  0 2

 '   4  9  16  9  7

9 1  36 4



2

  4   7 x  1

?

120)

4 7

3 3,2 7

3 3  32  3  27

117)

2 7  2 2  7  28

2 x  7 y  11 a)  5 x  2 y  8 D  4  35  39

5  52  25 27  27  28

78 2 39 39  y 1 39 x  2 , y 1 ។

2 7 ។

Dx  22  56  78  x  Dy  16  55  39

5

121)

y y  ax y  18

x  9

18  a  9  a  2

1.2 x  3.4 y  1.5 12 x  34 y  15  b)  2 4 1 ឬ   x y  6 x  4 y  3  9 3  3

x  2

y  2  2  4 y4 ។

322

y  2 x



122)

y

x

y  ax

EBC

127)

2

A

D

y  4

x4 1 4  a  42  a   4 1 y   x2 ។ 4

E C

B

BCA  CAD

AD||BC

CBD  ADB

CAD  ADB

AE = DE 123)

BCA  CBD

n

E

 n  2  180o n5

124)

BD ។

EBC

n 

AC

 5  2  180 5

AB = DC

o

EBC

 108o ។

x

EC = EB

 AE  DE   EC  EB AC  DB

107o

m

ABCD

x  180o  107 o

85o

m

AC  DB

x

AB = DC ។

 73

o

128) 125)

x

A

x 4  289

C o

68

x 2   289

O

x 2  17

x

x 2  17

B

180o  68o ABC   56o 2 180o  2  68o OBC   22o 2

x   17

129)

x

x   17 )

x ។

CAB , ABC

BCA A

AB : BC : CA  3 : 4 : 5

126)

AB BC CA   3 4 5

y   x 1 , y  x  1 , y  2 x  2 , y  3x  3 ,

x  1

x 2  17

x  17

x  ABC  OBC  56o  22o  34o

2x  2  3x  3



B

 O

C

AB BC CA AB  BC  CA 360o      30o 3 4 5 3 45 12

y0

x  1, y  0 ។ 323



AB  30o 3

 AB  90o

BC  30o 4

 BC  120o

CA  30o 5

 CA  150o

BCA 

AB 90o   45o 2 2

CAB 

BC 120o   60o 2 2

ABC 

CA 150o   75o 2 2

-

BCA  45o , CAB  60o , ABC  75o

AB : BC AB : BC  3: 4

AB : BC  3 : 4 ។

131) 1

6

130) -

A

ABCD = 1 , ABFE = 2 EFGH = 5 , CDHG = 3 ADHE = 4 , BCGF = 6

1 3 y  x2  x  1 2 2  b b2  4ac  S  ,  4a   2a

B

D C

E F

2   3 1  3       4   1  2 2  S  2 ,    1 1 4   2 2     2   9   3 4 2  3 1 S  ,   S  ,  2   2 8 2  

G

A = ABCD+ ABFE +ADHE =1+2+4 = 7 B = ABCD+ ABFE+ BCGF = 1+2+6 = 9 C = ABCD+ CDHG+BCGF = 1+3+6 = 10 D = ABCD+ CDHG+ADHE = 1+3+4 = 8 E = ABFE + EFGH+ ADHE = 2+5+4=11 F = ABFE + EFGH+ BCGF = 2+5+6 = 13 G = EFGH +CDHG+ BCGF = 5+3+6 = 14 H = EFGH +CDHG+ ADHE = 5+3+4 = 12

 3 1  ,   2 8

7, 8, 9, 10, 11, 12, 13, 14 -

y0

H

132)

1 2 3 x  x  1  0 ឬ x 2  3x  2  0 2 2 a bc  0 c 2 x1  1 , x2    2 a 1 1, 0  ;  2, 0  ។

 5 x  2 y  5 x  2 y    5 x  y 

2

 25 x 2  4 y 2   25 x 2  10 xy  y 2   25 x 2  4 y 2  25 x 2  10 xy  y 2   5 y 2  10 xy

324



133)

138) x  1  5x ឬ x  5x  1  0 2

2

3 2 o   60  360o k ឬ   120o  360o k sin  

   5  4 1  1  25  4  29 2

x

  5  29 5  29  2 1 2

y

134)





k 0o    180o

x

  60o ,   120o

y  ax 2

y  20

x  2 y  5x

2

ABC

139)

20  a   2   a  5 2

G

A xA , yA  ; B  xB , yB  ; C  xC , yC 



y y y  x x x G A B C , A B C  3 3   ABC

135) 10 cm



6 cm

A(-2 , 6) , B(7 , -9)

6 cm

C(1 , 0)

 2  7  1 6   9   0  G ,  ឬ G  2 ,  1 ។ 3 3  

10 cm 140)

a 2

 6 cm   10 cm  a      2   2  a 2  9 cm2  25 cm 2

AB = DC

D

A

AD||BC

2

2

AB  DC

C

B

AB  DC

a 2  34 cm2 a  34 cm

141)

8051

8051  72  902

34 cm ។

8051  902  7 2 8051   90  7  90  7 

136)

8051  83  97

xz  x  2 y  2 yz

83

 x  z  1  2 y 1  z 

97

8051  83  97

 1  z  x  2 y  142)

 m2  n 2 ឬ

137)

B

 n 2  m2

  n  m n  m

n  m 1

A A

B។ 325

(





143)

AG

tan 1  2 

146)

D

tan 1   2  

C

A

tan 1  2

tan  2  3 23 5 tan 1   2     1 1  2  3 5

B

H

19 cm

G 25 cm

E

F

32 cm

tan 1  tan  2 1  tan 1  tan  2

 

147)

EG 2

3x 2  4 x  8  0

EG 2  EF 2  FG 2   32 cm    25 cm  2





2

b a

  S  

 1024 cm 2  625cm 2  1649 cm 2

AG 2  EG 2  AE 2  1649 cm  19 cm  2

148)

OP

2

4 4 ។  3 3

PH

P

 1649 cm 2  361cm 2  2010 cm 2 AG   2010 cm , AG  0

A

AG  2010 cm ។



O



3cm H



B

7cm

AB 3cm  7 cm   5cm 2 2 OP  OA  5 cm

OP  OA  144)

f  x x 

OH  OA  AH  5 cm  3 cm  2cm

R  f  

R (

PH 2  OP2  OH 2

១០)

x3  3x 2  4 x  8

PH  OP2  OH 2 , PH  0 PH  52  22 cm

x2

PH  21 cm

R   2  3  2  4  2   8 R  8  12  8  8 3

2

PA

AP 2  AH 2  PH 2 , AP  0

R4 145)

PB

AP  AH 2  PH 2  32  212  30 cm

o

sin135

sin 180o     sin 

PB 

sin135o  sin 180o  45o   sin 45 

AB  PH 10  21 2100    70 cm PA 30 30

PA 30 3   PB 70 7

o

2 2

PA : PB  3 : 7 326





149)



a



a  30 , x2  6 x xa 0

360

x1  5

2

20  2 x 2 x



  20  2x ) 

5  5  a  0  a  30 2

S   R2 

x2  x  30  0

a  30

o

360 20  2 x S   x2  2 x  10  x  x

x1 x2  P  30 30 30 x2    6 ។ x1 5

  x 2  10 x    x 2  10 x  25   25

150)

2n  1

2n  1

   x  5   25 2

2n

 x  5

n

 2n  1   2n 1 2

 x  5

 8n  4  2n 2

2

  x  5  25  25 2

S

2

 2n  1   2n 1

 0    x  5  0 ឬ

2

 4n  4n  1   4n  4n  1 2

2

2

*

0 ឬ x 5

25 cm 2 2

 4  2n

x  5cm ។

-

2x  20

6

3

6  6  6  216

x

20 cm

២ ៣



151)



152)

4

-





6

 x cm

-



5

 20  2 x  cm 

-

6  5  30 30 5 ។  216 36

ABC

153)

0  20  2x  2 x 0  20  2 x  x  10 10 20  2 x  2 x  x  1 10  x  10 *  1

3 15 4 1 SABC   AB  AC  sin A 2 1 15 3 15   2  3  2 4 4 SABC 

S ABC 327



BC

158) BC

6

BC  AB  AC  2  AB  AC  cos A sin 2 A  cos2 A  1 2

2

A

B

2

cos A  1  sin A 2

, 90  A  180

2

o

cos A   1  sin 2 A

6

, cos A  0

C  6,3 

2

 15  16  15 1   1       16 4  4   1 BC 2  22  32  2  2  3      4

BC 2  13  3

3

o

6! 6  5  4  3!   20 3! 3! 3! 3  2



A B

159)

A = { 1 , 4 , 7 , 10 } B={1,3,5,7,9}

 BC  4

A  B   1 , 7 ។

154)

 x  3 y   x 2  3xy  9 y 2  

x3  27 y 3

160)

a

f  x   x3  3x2  ax  4

155) x  3 x y  3 xy  y   x  y  3

2

2

3

x2

0

f  2  0

3

2  3  22  a  2  4  0 3

156)

8  12  2a  4  0 52 6  

157)

3 2 6  2 2



3 2



2



2

3 2

a  12 161)

cos 

 x1 , y1 

d

sin   3 tan   3 ឬ cos  sin  cos   3 2 cos A  1  sin 2 A , 90o  A  180o

ax  by  c  0

d

ax1  by1  c a 2  b2 x  3y  7  0

(0 , 1)

cos A   1  sin A , cos A  0 sin    1  sin 2  3 sin   3 1  sin 2  2

sin 2   9  9sin 2 

d

12   3

2



10 10

 10

 x , y , z

162)

10sin 2   9 sin  

1  0  3 1  7

x 6  y 6  z 6  3xyz

3 10

, sin   0

x ,

3 sin  1 10 cos    10     3 3 10 10

y , z    0, 0, 0  , 1,1,1 , 1, 1, 1 ,

 1,1,  1 ,  1,  1,1

328



163) x cm

x  1

y  1   1  2

x2

y  1  2  1

 20  2x cm

P  1 , 2 

Q  2 ,  1

o

360

R x  y2  5 2

0  20  2x  2 x 0  20  2 x  x  10 10 20  2 x  2 x  x  1 10  x  10 *  1 20  2 x A   x2  2 x  10  x  x   x 2  10 x

O  0 , 0 -

 x2  10x  24

2

-

1  2

Q  2 , 1

y  2x  5

-

Q

R

 3x  15 x5 x  5 : y  25  5  5

Q

R  5 , 5 ។

165)

y  1 x

 x, y, z  x 4  y 4  z 4  3xyz

1 x ,

2x2  2x  1  5

y , z    0, 0, 0  , 1,1,1 , 1, 1, 1 ,

 1,1,  1 ,  1,  1,1

x2  x  2  0

 x  2  x  1  0

Q

1 5 x   2x  5 2 2 x  5  4 x  10

1  2

 2 : x  y  1  2 1 : x 2  1  x   5

1 5  1  b  b  2 2 1 5 P y  x 2 2 O  0 , 0 Q  2 ,  1

Q

P

P

 x2  y 2  5  x  y  1

OQ

1 2

1  2  2  b  b  5

cm  x  4 cm , 6 cm  x  8 cm ។

164)

P  1 , 2

a2

10  x4 , 6 x8  1 10 10 ) 2  5  1 10

y  ax  b

1 y x 2 y  a'x b'

1 : x2  10 x  16  0  x  2 x  8  0  2  x  8 3  2  : x 2  10 x  24  0  x  6  x  4   0  x  4, 6  x  4  * , 3  4

 1

P

2

 cm 

P  1 , 2

y  2 x

a

16 cm 2  A  24 cm 2

 x2  10x  16

O  0 , 0

OP

 x  1 , 2 329



166)

cm 2

168)

n 2  2n

50 cm 2

។”

n

1 1000 1000 cm

-

pq qp

1 cm -

n ”។

n 2  2n

100 m = 10000 cm 10 cm

50 m = 5000 cm 5 cm

n  2k

n

 10cm  5cm  50cm2

k n2  2n   2k   2  2k  2

5 cm

169)

 4k  4k 2

20 cm 2

 2  2k  2k  2

2k  2k

4 r 2 cm2

n  2n

2

2

2

4 5 cm2  20 cm 2

r  5 cm



81 cm 2 ។

P  x

167)

Q  x

4 r 2 cm 2  81 cm 2

4r 2  81

 x  3 x  4

r

ax  b

P  x -

 x  3 x  4 P  x    x  3 x  4 Q  x   ax  b 3 x 3 P  x 3a  b  3 1 P  3  3 1 x4 P  x 4a  b  1  2 P  4  1 1  2

3a  b  3   4a  b  1

r

9 , r 0 2 9 r  cm ។ 2

170)

 x  4 y   x2  4 xy  16 y 2  

x3  64 y 3

171) 125 x 3  75 x 2  15 x  1   5 x  1

D  3  4  7 Da 2 2   D 7 7 D 15 15 Db  3  12  15  b  b   D 7 7 2 15 ។  x 7 7 Da  3  1  2

81 4

3

 a

172)

6

4 V   r3 3

4 V    63  288 3

330

r 6 ។



173)

2 x 2  4kx  3k  9  0

tan A 2 3 2 sin A  cos2 A  1

'  0

cos A 

 2k   2   3k  9  0 2  2k   2   3k  9   0 2

A

sin A  1  cos2 A

4k 2  6k  18  0

94 5 2 sin A  1      9 3 3 2

5 sin A 5 tan A   3  2 cos A 2 3

2k 2  3k  9  0

f  k   2k 2  3k  9

f  k   0  2k  3k  9  0



  32  4  2   9  9  72  81 3  81 3  9   3 2 2 4 3  81 3  9 3 k2    2 2 4 2

k1 

174) 0, 1, 2, 3, 4

5 ១

-



5

-



3

-



5

-



2

-



4

-



1

0

-



+

3 k 2

k



k  3 ឬ

k' y  ax 2  bx  c

3 2 0

3

+

k  3 ឬ

175)

-



k

f k   0

5  5  4  3  2  1  5  120  600

-

f k   0

2

) 3

3 k 2 ( 0 3 2

k

177)

 b b 2  4ac  S  ,  4a   2a b x 2a

x2  y 2  R2 , R

(5, 12) 52  122  R2 ឬ R 2  169

y   x2  8x  5

x 2  y 2  169

2  8   4   1  5   8 ,    2   1  4   1    

 4 , 21 176)

178)

4 x3  8x2  11x  3  0



x  3

 x  3  4 x2  4 x  1  0

k

 x  3 2 x  1

y  2 x  4kx  3k  9 2

2

0

x  3 ,

y0 331

1 2





179)

182)

cos  

1 2

y  8

x  2

8  a   2  a  4 y  4x ។

45o

y

183)

y

cos 

2 2

a x

y2

x4

a  a 8 4 8 y 4 x2 2

o

315

2

45o    315o 180)

x

y  ax

0o    360o 2 2

cos  

y



P

30 cm 30 cm  30 cm  900 cm 2

AB mb  na ។ mn AB

x

m:n

Q  x

-

y4 ។

B b

P  x

-

54 m 2  540 000 cm 2

540000 cm2   600 900 cm2

mb  na ។ x mn

m:n

A(-3)

B(3)

P

185)

AP:PB=1:2

AB

20 g

160 g

P x

1 3  2   3 3   1 1 2 3

20 g  0.125 160 g

P  1

Q Q

AB

AQ:QB=1:2 x

Q

1 3  2   3 9   9 1 2 1

20 g 100%  12.5% 160 g

Q  9 

186) 181)

ACD

cm 2

x x

120

8 x

cm 2 ?

184)

A a

y

AD

x 120 6 x ។  100 5

CD 2។

332



187)

100 50

80 g

80 g  1.6 g 50



1

OBM

100

1.6 g 100  160 g

-

ABD  CDB

-

OB  OD ( O

-

BOM  DON OBM

150 g

790 g

ODN BD)

ODN

190)

 790 g  150 g  640 g 6cm

640 g  400 1.6 g

188)



8cm 10cm

m

V  10 cm  8 cm  6 cm  480 cm3

5 km?

1 000 m

1 km

12cm

5 km។

5 000 m

6cm

30 000 cm 2 ?

m2

3cm 6cm

3 m2 ។

30 000 cm 2 cm3

6cm

V   6cm  6cm  10cm    6cm  3cm 10cm 

10 ?

1  1dm3

1 000 cm3

 360cm3  180cm3  540cm3

10 000 cm3 ។

10

10cm

1 m2

10 000 cm 2

3cm

191)

A 72  4  76

A



189) B

A

D N

B

72 1  71

C

72  8  64 71  64  5

O

M

C

B

D D

x

MB

C

OBM

DN

E

ODN

72  5  77

72

OBM

76  71  64  x  77  72 5

ODN ។

D

333

x  360  288  72





192)

ABCD

A

195) x  y  8  90 x  120 y  870

D

a cm

x  y  8 x  y  8 ឬ   3x  4 y  29 90 x  120 y  870

C

B b cm

2  a  b  cm

ABCD

1 3

ABCD

x  y  8  y  8  x 3

 2 3x  4  8  x   29

 a  b  cm2

ABCD

3x  32  4 x  29 x3

cm 2

193)

4

3 : y  8  x  8  3  5

x 3

d cm

d2

1  2

3  5  8  90  3  120  5  870

cm2

5។

3,

ABC

194)

196)

A

(PGCD) (14, 35)

B

17  2  7

35  5  7

PGCD(14, 35) = 7 ។

B

A'

C

(26, 39, 52)

ABC

4

26  2 13

BAA '

ACB , CB ' A ' , B ' CA '

39  3 13 52  22 13

BAC BAC

PGCD( 26, 39, 52) = 13 ។

3

B ' A ' C , CAB ' , ACB ' ។

A ' C  A ' D  CD 2

ABC ABC BAC  ABC  BAA ' 2

xx

ABC

PB

x 5  180o  x  180o  x  72o 2 2

ABC  72

2

 A ' C  3 cm

ABC

o

2

cm

5cm

A

D

A ' C 2  AD 2  AB 2 4cm P  52  4 2  9

BAC  CAB ' x

A’C

197)

PA  PA'



B

A'

cm

BA '  BC  A ' C  2 cm

PB  PA  4  PA  4  PB 334

C



202)

PBA '

6

PB 2  BA '2  PA '2

50

PB 2  BA '2  PA2

6

PB 2  22   4  PB 

9

6 6

PB  4  16  8 PB  PB 8 PB  12

2

6 6

3 cm 2

8

50 24

8

24

150

3

24

198)

24 1.05 kg

25

 25  9  1  17

2

2

 PB 

150

6

 6  3 1 

4

0.3 kg

1.05kg  0.3kg  0.75kg

203)

cm

b

h b : h  5:8 ឬ

1.05 kg  3.5 0.3 kg

b 5  h 8

40 cm 40  8 h  64 cm 5

199) 8400

8400  5040  100%  8400

5040

cm 320 cm 2

1 bh  320 ឬ bh  640 2 b  bh 5  640 2 ឬ b  400  h 8

40%

200)

b  400  20 cm , b  0 ។

h

640 640   32 cm ។ b 20

204) ។

2 1 2 23 2 1       5 2 5 52 5 2 15  4 2 11     5 10 5 10 11  25

201) x

x  15%x  276 ឬ 1.15x  276 x

276  240 g 1.15 335



cm 2

208)

11 25  11  5  11  1.1 2 25 2 10 5

20cm 

45cm 1  2 11  3 10  11 3 21 1        2  5 25  2 25 2 25 



75  42 33  50 50

d2  d  S  2S B  S L  2    2   h 2  4 

205) 1



60

3 4

  202 

d2

  dh     20  45  2 2  200  900  1100

3 4

  3.14

3  60  45 4 8 cm ?

mm 1 cm

10 mm

8 cm

8 10  80 mm

10 000 cm 2

2000 cm 2

1

3454  1.727 2000

400 cm 2 ?

m2 1 m2

S  1100  3.14  3454 cm 2

209)

x

400  0.04 m 2 10000

400 cm 2



2 x 5

206)

x  1

y5

120

7 x  9 y  4  7  1  9 5  4  34

2 x  120 5

3x2  2 xy  3  1  2  1 5  13 2

207)

E

D

D

500  106  394 m

E

500  92  408 m

D

E



x

3 x 5

408  394  14 m 120

B

3 x  120 5

C

258   339  597 m 336





x

60 g

120 g

40 g 2 3 x  120  x  120 5 5 1 x  240 5 x  1200

40 g 120 g  80 g 60 g

215) 1

210)

1

a

4

abc 3 a  b  c  3s

a  3s  b  c

5 4

y

211)



5  4  20

y  2x  5

x4



1 4  4

s

y  2 4  5  3

216)

A

212)

A

10  2  180o 10

213)

G

H

 144o

C

x

B

m

E

D

F

58o

G។

A EF

m

32o

CB ។

EF

x

217)

x

x  58o  32o  26o

x

214) 340

3x 100  340

50 g 1 ។  150 g 3

3x  240 x  80 337

3 x  100



218)

cm

220)

A

cm

D

x

A x cm

8 cm

8 cm P

C

B

B 8cm  3 

PB

  8cm

 24  4  cm 

2

C

6 cm

PB  AB  AP PB  8 cm  x cm

cm2

PB   8  x  cm

1   82  64  8 8  8   2 4

y

 cm  2

PBC

y

1 y   BC  PB 2 1 y   6  8  x    24  3x  cm 2 2

219) A

G

B

x

x

D

PBC

F

E

a

ya

a cm 2

a  24  3x 3x  24  a

C

BF = DE

x

DCE ។

BCF

221)

BCF -

24  a cm 3

a

y y

DCE

b x

y  ax A 

CE = CF

x

O

C

B

BC = DC

BCF

DCE

y  ax EGF

ABC  117

o

3  a4  a 

CBF  46

o

BAD  180  117o  63o o

y

BGD  360   2  71  63   155 o

3 4

b

ABG  117o  46o  71o o

A(4, 3)

o

o

EGF  BGD  155o

3 338

b x

b  b  12 4

A(4, 3)



O -

B

y

b  12 12 x 12 y  6 2 y

224)

2

-

60o

B  2,  6

B

O  0 , 0

ABH

B  2,  6

90o

BH : AH : AB  1: 3 : 2

6  a   2  a  3

BH : AH  1: 3

y  3x ។ cm

C

H

2 cm

30o , 60 o

y  ax

222)

AH

A

12 x

B

y  ax

cm

AH 

BH  3 1

AH  2 3 cm

AH  2cm  3

2

cm

CH

CAH 30o , 60 o

90o

12 cm

AH : CH : AC  1: 3 : 2

AH : CH  1: 3

6 cm

S B   R 2     6 cm   36 cm2 2

CH 

AH  3 1

CH  2 3 cm  3

cm3

CH  6 cm

1 1 V   S B  h   36 12  144 cm3 3 3 x

223)

cm 2

1 SABC   BC  AH 2 1    BH  CH   AH 2 1    2  6  2 3 2

y

 x  y  220  10 x  15 y  3000  200

 8 3 cm 2

 x  y  220  2 x  3 y  560 D  3  2  1 , Dx  660  560  100

ABC

225)

cm3 V  a3

Dy  560  440  220

a

10 cm

x  100

V  10 cm   1 000 cm3 3

y  120 339



226)

ABC y  2

x 5

ABC

2 x  3 y  2  5  3  2  10  6  16 xy  2 y 2   5 2  2  2   5  8  3 2

227)

y

30o , 60o ,90o

x o , 2 x o ,3x o

231)

y

a x

y  2

2 

x 3

228)

vm 

x  6

d  1 200 m t  20 1 200 vm   60 20 232)

x  2

3.14

15.70

3.14

4 x  5 3x  2  3 4 16 x  20  9 x  6 7 x  14

15.70

15.70  5 ។ 3.14 3.14

62.80

3.14

x2

14  2  7

62.80

62.80  20 ។ 3.14 3.14×25

(GCD) (14, 21)

d

d  1 200 m t  15 1 200 vm   80 15

x

229)

d t

t

a 12  a  12 y 6 x 12 y  4 3

3x 13  11x  3 8x  16

21  3 7

3.14

GCD 14, 21  7

3.14  25  3.14  5  3.14  20

(10, 15, 20) 10  2  5 , 15  3  5 , 21  22  5

GCD 10, 15 , 20   5

230)



ABC

cm 2

233)

3 cm

1 S   6cm  3cm 2

x

ABC

x o , 2 x o ,3x o

6 cm

 9 cm 2

xo  2 xo  3xo  180o 6 x o  180o

S  4cm  4cm

x  30o

 16 cm

5 cm

4 cm

2

4 cm

340



234)

237)

1 2  3

1 2  3  4

6! 6!  1 2  3  4  5  6  720

1 2  3 6 3   1  2  3  4 10 5

 6! 5!   6! 4!   6! 3!  6! 5!   6! 4!   6! 3!   720  120    720  24    720  6 

-

S

 600  696  714  2010

1  2  3  4  5  6 21  S S

3: 4 21 4 S  28 3

21 3  S 4

238)

cm

a  cm  r

-

28  1  2  3  4  5  6  7

2 r  a

r

235)

a  cm  ។ 2



S

a

2

a2 a2  a  S r      2  cm2   4 4  2  2

O

239) 20

6

1

60

20

1 20 1  60 3 g

1 kg

O

0.3 kg 236)

0.3 kg? 1000 g 0.3 1000  300 g 1

m2 400

10000 cm 2

$1.00 $2.00

20000 cm 2 800

20000 cm 2 ?

1 m2 20000 1  2 cm2 10000

240)

3 x  2 y  11  3x  2 y  11 3x  3 y  15 ឬ  y4  x  y  5

1000  2.5 400 CO 2 CO 2 3150  3.15 1000

x  y  5  4  5  1

x  1 , y  4 ។



341



 y  6x  3   y  4x  7 6x  3  4x  7 2 x  4 x  2

244) 10  3  7

y  4  2  7  15

x  2

A

x  2 , y  15 ។

241)

3)

B(

A:

3

D

D:

-2

10  3   2 

26

x

2x  4  x  6

១ ២

x2

D

10  2   2 

0.4x  5  0.9 x  5 4 x  50  9 x  50  5 x  100

AOB

245)

COD D O

2 x  1 3x  2  3 4 8x  4  9 x  6  x  2

B

79 o

31o

AOB

C

COD ។

x2

ABO

CDO

ABO

242)

CDO ។

18

18  2  180o 18

CAD  160

CAD  ADB  79o

o



243)

o

o

CAD  48o

246)

x

5! 5!  1 2  3  4  5  120

m

n

52o

 n ! 5!   n! 4!   n! 3!  2010

x

n ! 120  n ! 24  n ! 6  2010 3  n ! 150  2010

o

m

CAD  DBC  79o CAD  31o  79o

180 160  20 o

40

A

x  20

C

43

n !  720

720  1 2  3 4  5  6  6!

x  180o   52o  43o   85o

n!  6! 342

n6 ។



ac bd

247)

251)

AOB

-

COD A

D O

ab

ac bc

cd

c

d

248)

AOB



ac bd

C

B



x

ABO A, B

ABC

C

o

x , 2x

o

3x

COD

CDO

ABO

CDO

o



x  2 x  3x  180 o

o

o

o

DAB  ABC

6 x o  180o x  30

ABCD

AB / /CB

DAB  ABC  180o 249)

y

AB ABCD

D

A, B, C yo , 2 yo , 3 yo

cm2

252)

4 yo

a

6a cm

1 S   6a  5  15a cm2 2

y o  2 y o  3 y o  4 y o  360

10 y o  360o y  36

5 cm

253)

kg 52.5 kg

250)

z

1.2 ABCDE

A, B, C, D

E

z o , 2 z o , 3z o , 4 z o

5z o

52.5 1.2  63 kg

z o  2 z o  3z o  4 z o  5z o  360o 15 z o  360o

52.5 kg

z  24o

42 kg

o

360

42 kg  0.8 52.5 gk



343





254)

cm3

256) 80 36

8 cm

36 100%  45% 80 V  a3  8 cm3   512 cm3

15% 10 cm

15%  80 

15  80  12 100

2 cm 6 cm

255)

X

5 cm

Y

9 cm

V  10  4  6    5 10  2 

72o

X

 240  100  340 cm3

116o

257) X  116  90  72  360 o

o

o

o

X  278  360 o

X  82

AD

BC

200

50

o

140 g

200 140 g  200  560 g 50

o

E

A

C

74o

g

E

50

Y

1

43o

35o

D

B

140 g 140 g  2.8 g 50 2800 g 2800 g  1000 ។ 2.8 g

258)

x

8

74  35  Y  43 o

o

o

11

109  Y  43 o

o

8 x  11

Y  66o

344



cm2

x

10 1    4 2  1    82  18      2 4  2 4  1 1  18   4   16  2 2  18  2  8

5 8 x  11  10 x  5

 12 cm 2 x 8 x  11  10 x  5

261)

8 x  10 x  5  11

x 63o

 2 x  16 x8

x ។

8

m



259)

38o

m

a

14 15

b

x  180o   38o  63o 

12

c

6

d

 180o  101o  79o

e

f

10

g

h

i

3

16

262) 27 L 3  ឬ 36 L 4

3: 4 ។

A

15  6  10  3  34

A, B

a, b a

h

a  b  35 1  a 3  2   b 4 1 : b  35  a

..........

a  1 , h  13 260)

12 cm

8 cm

C

3

 2

a 3  35  a 4 4a  105  3a

7a  105

12 cm

A

B

B a  15

a  15 3

12 cm

b  35 15  20

1   122  1 2     36  18 cm ។ 2 4  2

A

15

B

20

345





263)

m

cm2

266)

d t v  80 m / mn v

d  vt t  8 mn

d  80  8  640 m

8 cm

d d v t t v d  2 km  2000 m v  80 m / mn 2000 m t  25 mn 80 m / mn



90o S r      8 cm   360o 360o 1 2     8 cm    16 cm 2 4 2



25

90o

8 cm 2

cm2 264)

1 82  16       16  8  8 cm 2 2 4

C

A B

C

H

267)

I

B m

G

D E

y 

A

F

H។

C



B

265)

x

O

GF

y  2x  6

DE ។

GF

C

y0

B 2x  6  0

x

x  3 B  3, 0  ។

17  x   x  15  5

m

x0

A y  2 0  6  6

x

m

17  x   x  15   5

y  6 1 6  x0 20 5 y6   x 2 5 y   x6 2

17  x  5 x  75 4 x  92 x  23

346

A  0 , 6 A 0 , 6 ; C  2,1



២០

268) ២០

២១

២២

+3.9 +4.2 -3.6 -3.8

+5.3 -3.8

២៣

271)

a

y

២៤

y  ax 2 y  bx 2

+6.0 +5.6 -2.5 -2.7

H







C

B

២០

30   3.6   26.4 oC

A



x

O ២២

y  ax 2

a2 ។

2  a 1  a  2

5.3   3.8  9.1 oC ២២



B y  ax 2 ឬ y  2 x 2

B

3

269)

A(1, 2)

2

cm

x2

B

5 cm

y 8 ។

y  2 2  8 2

5 cm

a cm

b C

yC  yB  8

BH

xC  2 xB  2  2  4

HB = BC

C

V  5  5  a  25a cm3

C  4 , 8

C  4 , 8

y  bx 2

2

cm

8  b  42

S  2  5  5  4  5  a   50  20a  cm2  272) 270)

x

b cm

A

 x  y  30  7 x  2 y  95 x

AH 2  AB2  BH 2 AH 2  62  22

y

B

AH  32  4 2 cm

cm2 ABCD

35 7 5 115 Dy  95  210  115  y   23 5 x  7 ; y  23 ។  x

S

 AD  BC   AH

2  5  7   4 2  24 2 cm2  2

347

5 cm

D

6 cm

 36  4  32

 x  y  30  7 x  2 y  95 D  2  7  5 Dx  60  95  35

AH

y AH 2  BH 2  AB2

1 ។ 2

C

H 7 cm

AH  0 ABCD



273)

276)

2

6,  5,  1, 2, 4, 5

4

6   5  11

A, B, C

D

2

AB, AC, AD, BC, BD, CD ។

6

 65 

A

30

AB, AC, AD A, B A C B

C

A

5   6   11 1 A  5 , B  1 , C  6 ។ 274)

1 2

A

1 2

A

x

1 2 y4 x 2 1 4  x 2 ឬ x 2  8 ឬ x  2 2 ។ 2 y

A

y

“2 y 8”

1 y  x2 2 x0 1 y   02  0 ។ 2 “2 y 8” 275)

3 1  6 2

A

1 1 1    25% ។ 2 2 4 277)





2  x  4





៤ ...

x0



cm3

1

1  02  12

2

5  12  22

3

13  22  32

4

25  32  42

......................................

7 2  82  49  64  113

8 2r cm

r cm



278)



6.4  1.5 4.3

V  S B h   r 2  2r  2 r 3 cm3



1000 x

2r cm

y

x r cm

y



1000

1 1 2 V  S B h    r 2  2r   r 3 cm3 3 3 3 348

x 1000 ។ y



280) ១) តរើគូររីតោណណា ដែលគួបង្ហាញថាវាប៉ន ុ គ្នា?

A y  130 000 000 x 1000  2.1 y x 1000  2.1 130 000 000

D E



x  273000

279)

cm

គូររតី ោណដែលគួបង្ហាញថាវាប៉ន ុ គ្នាគៈឺ

ACD នង ិ CBE

AC

D

5 cm

A

អក្សរដែលររូវនឹងលក្ខខណឌទាំងបីររឹមររូវគឺៈ ក្, ខ និង ច

B



២) តរជើសតរសលក្ខ ខណឌទាំងបដី ែលររម ើ ឹ ររូវៈ

E

2 cm

C

B

៣) ពនយល់ជាពាក្យ នូវលក្ខខណឌប៉ន ុ គ្នាននររីតោណ

C

4 cm



ររីតោណទាំងពីរប៉ន ុ គ្នាតាមលក្ខខណឌទី២ ជ.ម.ជ គឺៈ មុម ំ យ ួ ប៉ន ុ គ្នា អមតោយរជុងពរី ប៉ន ុ តរៀងគ្នា។ (តរពាះ

ABC

ររីតោណ

AC 2  AB 2  BC 2

-រជុង AD = CE បរមាប់របធាន

AC 2  22  42  20 AC  2 5 cm cm

ACD និង CBE មាន៖

-មុំ

, AC  0

CAD  BCE មុនំ នររតី ោណសម័ងស

-រជុង AC = CB រជុងននររីតោណសម័ងស)

281) គូសអងករដ់ ែលមានរបដវង 5 cm ក្ាុងរូប៖

CD CDE

CD  ED  CE 2

CE 

2

2

AC 2 5   5 cm 2 2

តរពាះតាមរទស ត ទពតា ឹ ីប ី គ័រ 3  4  5 2

2

CD  5  5  20 2

2

2

282) ក្. តពលអំពូលទាំងអស់តឆះភលឺ វាជំនស ួ ឱ្យតលខអវី?

CD  20 , CD  0

តពលអំពូលទាំងអស់តឆះភលឺ វាជាបនសំននអំពូលចាប់ពី

CD  2 5 cm

ABC

រូបទ២ ួ គឺ៖ ី ែលទី៦ តនះតលខដែលវាររូវជំនស

CDE

1  2  4  8  16  31

S  SABC  SCDE

ំ ស ខ. គូសរូបននអំពូលទាំងតនះជន ួ ឱ្យតលខ 10

1 1   AB  BC    CE  CD  2 2 1 1   2  4  52 5 2 2



2

ក្ាុងចំតណាមចំនន ួ ពី 1, 2, 4, 8, 16 មានជតរមស ើ ដរមួយ



គរ់ ដែលបូក្តសមើ 10 គឺ

2  8  10 ររូវជាបនសំននអំពូល

ក្ាុងរូបទី 3 និងរូបទី 5 ែូចតនះតយើងគូសរូបបាន៖

 4  5  9 cm 2

349



283) ១) តរើគូររីតោណណា ដែលគួបង្ហាញថាវាប៉ន ុ គ្នា? A M D

B

N

285) គូសបន្ទារ់ដែលមានរបដវង 10 cm ក្ាុងរូប

C

គូររតី ោណដែលគួបង្ហាញថាវាប៉ន ុ គ្នាគៈឺ

MBD នង ិ NDB



២) តរជស ខណឌទាំងបដី ែលររម ើ តរសលក្ខ ើ ឹ ររូវៈ

អក្សរដែលររូវនឹងលក្ខខណឌទាំងបរី រម ឹ ររូវគៈឺ ខ, គ និង ច

តរពាះតាមរទឹសី តបទពីតាគ័រ 6  8  10 2



A តរចន ើ ជាងរបូបាបននរពឹរតិោរណ៍ B -របូបាបននរពឹរតិោរណ៍ A គឺ

C  3 , 3

ររីតោណទាំងពីរប៉ន ុ គ្នាតាមលក្ខខណឌទី២ ជ.ម.ជ គឺៈ

P  A 

ររតី ោណ

-របូបាបននរពរ តិ រណ៍ B គឺ ឹ ោ

មុម ំ យ ួ ប៉ន ុ គ្នា អមតោយរជុងពីរប៉ន ុ តរៀងគ្នា។ (តរពាះ

-មុំ

MBD នង ិ NDB មាន៖

ត លរជុងរសបគ្នា DM  BN ជាពាក្់ក្ណា

P  B 

ំ ល ស់ក្ុ ង ា MDB  NBD មុឆ្ល

-រជុង

A

D

M

1 120

តោយមាឌននគូប B មានរបដវងរទនុងគឺ

C

គូររតី ោណដែលគួបង្ហាញថាវាប៉ន ុ គ្នាគៈឺ

AMD នង ិ BMC

ន្ទំឱ្យ មាឌ ែូចតនះ



VB   a  b 

VB  a3  3a 2b  3ab 2  b3 ។

តោយគូប A មានមាឌគឺ VA  a

អក្សរដែលររូវនឹងលក្ខខណឌទាំងបីររឹមររូវគឺៈ ក្, គ និង ង

a b

3

ខ. រក្ចំនន ួ ែងននមាឌគូប B តរចន ើ ជាងគូប A

២) តរជើសតរសលក្ខ ខណឌទាំងបដី ែលររម ើ ឹ ររូវៈ

3

តយើងបានផលត ៀបរវាងមាឌគូប B និងគូប A គឺៈ



VB a 3  3a 2b  3ab 2  b3  VA a3

៣) ពនយល់ជាពាក្យ នូវលក្ខខណឌប៉ន ុ គ្នាននររីតោណ

2

b b b  1 3  3      a a a b តយង ួ t ន្ទំឱ្យតយង ើ ជំនស ើ បានៈ a VB  1  3t  3t 2  t 3 VA

ររីតោណទាំងពីរប៉ន ុ គ្នាតាមលក្ខខណឌទី២ ជ.ម.ជ គឺៈ មុម ំ យ ួ ប៉ន ុ គ្នា អមតោយរជុងពរី ប៉ន ុ តរៀងគ្នា។ (តរពាះ

MBD និង NDB មាន៖

AD  BC រជុងរសបគ្នាតសមើគ្នា

MAD  MBC  90o មុដំ ក្ងែូចគ្នា

-រជុង

C 10 , 3



P  B  ដែលៈ

287) ក្. សរតសរមាឌននគូប B ជាអនុគមន៍នន a នង ិ b

B

-មុំ

C  3 , 3

1 84

P  A

284) ១) តរើគូររីតោណណា ដែលគួបង្ហាញថាវាប៉ន ុ គ្នា?

-រជុង

C  9 , 3



P  A ដែលៈ

1 120 10 -ន្ទំឱ្យចំនន ួ ែង ែង  84   1 P  B 84 7 120

BD  DB ជារជុងរួម)

ររីតោណ

2

286) រក្ចំនន ួ ែង ដែលរបូបាបតក្រ តិ រណ៍ ើ មានត ង ើ ននរពរ ឹ ោ

៣) ពនយល់ជាពាក្យ នូវលក្ខខណឌប៉ន ុ គ្នាននររតី ោណ

-រជុង

2

ត លរជុង AB AM  BM , M ក្ណា

350

3



288) បង្ហាញថា x  y  z  a ពិនិរយ

 x  a   y  a   z  a 2

2

តរពាះ x  y  z  3a និង x  y  z  3a 2

2

2

2

ចំតពាះ

2

 x 2  y 2  z 2  2a  x  y  z   3a 2

x  a  0  តយើងបាន  y  a  0 z  a  0 

 3a 2  2a  3a  3a 2

ែូចតនះ តយង ើ បញ្ជាក្់បានថា

 x 2  2ax  a 2  y 2  2ay  a 2  z 2  2az  a 2  x 2  y 2  z 2  2ax  2ay  2az  3a 2

0

351

x  a  ន្ទំឱ្យ  y  a z  a 

x yza ។

sYsþI¡ elakGñkmitþGñkGanCaTIRsLaj;rab;Gan enAkñúgEpñkenHelakGñknwg)aneXIj BIvBi aØasaFøab; ecjRbLgDIsbøÚm P¢ab;CamYycemøIyRKb;qñaM KWcab;BIqñaM 1981 rhUtdl;qñaM 2012 . CaFmµtaviBaØasa nig cemøIyrbs;va énqñaMnImYy² RtUv)anerobcMCa 4 TMBr½ dUcenHebIviBaØasaxøHxøI eFVI[sl;TMB½rTMenr. elakGñkGaceFVIkarkMNt;TuknUvlkçN³énviBaØasaEdl)anecjRbLgrYcehIyenH edIm,IeFVIkar):an;sµan nUvviBaØasaEdlnwgecjCabnþbnÞab;enAqñaMxagmux. RbsinebIelakGñkmanbBaða b¤cm¶l;Rtg;cMNucNa EdlmanenAkñúgEpñkenH elakGñkGacTak;Tg;eTAkan; RKU b¤mitþPkþirbs;GñkEdlmansmtßPaB b¤GñkeroberogesovePAenHkñúgeBlevlasmKYr . …

v

9

sm½yRbLg ³ 06 kkáda 1981 viBaØasa ³ KNitviTüa ry³eBl ³ 60 naTI BinÞú ³ 10  I. BICKNit

1> rktémø a edIm,I[RbPaK F  3a3a 0.213a2a 26 ³ k> esµInwgsUnü . x> Kµann½y . 2> edaHRsayRbB½n§smIkartamRkaPic  yy  2xx4500 12 .  3> mnusSmñak;Gayu 51 qñaM ehIykUnrbs;Kat;manGayu 21 qñaM . etIb:unµanqñaMeTAmuxeTot eTIbGayu«Buk esµInwg 2 dgGayukUn .

II. FrNImaRt

1> rgVg;BIrmanp©ti O nig O kat;KñaRtg; A nig B . eKKUsGgát;p©it AC  kat;tam O nigGgát;p©it AD kat;tam O . RsaybMPøW[eXIjfa cMNucTaMgbI C , B nig D sßitenAelIbnÞat;EtmYy ehIybnÞat; AB   CD . N 2> MN CargVas;BI)atdIdl;páaQUk nigEpñkput A B BITwk AN  10 cm . eRkamGMNacxül;bk; mYy enaHedImQUkeRTtRbkan;yksßanPaB MB ¬emIlrUb¦ eday AB  30 cm M rkCeRmATwk MA . ENnaM ³ kñúgRtIekaNsm)at MNB KUskm
8

352

9

cemøIy I. BICKNit

y  2x  5  0

1> rktémø a edIm,I[RbPaK F ³ k> esµInwgsUnü eyIgman F  3a3a 0.213a2a 26 ³ 3a  0.07  2a  3 3a  3a  2 2a  0.07a  3  a  3a  2

y x40



tamRkaPic ³ cMNucRbsBVénbnÞat;TaMBIrKW 3,1 dUcenH RbB½n§smIkarmanKUcemøIy x  3, y  1 . 3> rkcMnYnqñaMeTAmuxeTot tag x CacMnYnqñaMeTAmuxeTot EdlRtUvrk tambRmab;RbFan eyIgsresr)ansmIkar ³

eyIgGacKNna F )ankalNavamann½y ehIyvamann½yluHRtaEtPaKEbgxusBIsUnü ³ naM[ aa  32  00 b¤ aa  23   -edIm,I[ F  0 luHRtaEt PaKykrbs;vaesµIsnU ü eyIg)an 2a  0.07 a  3  0 naM[ aa  30.070 0 b¤ aa  30.07 

51  x  221  x  51  x  42  2 x 51  42  2 x  x x9



dUcenH ebI F  0 enaHtémø a  0.07 , a  3 . x> Kµann½y RbPaK F Kµann½ykalNa PaKEbgrbs;vaesµI 0 naM[ aa  32  00 b¤ aa  23 

epÞógpÞat; ³ 51  9  221  9  60  60 Bit dUcenH cMnYnqñaMteTAmuxKW ³ 9 qñaMeTot . II. FrNImaRt

1> RsayfacMNuc C , B nig D enAelIbnÞat;EtmYy



A

dUcenH ebI F Kµann½y enaH a  3 , a  2 . 2> edaHRsayRbB½n§smIkartamRkaPic ³ eyIgman  yy  2xx4500 12  eyIgeRbItaragtémøelxedIm,Isg;bnÞat;TaMgenH ³ y  2x  5  0 y x40





O

O C

B

D

eday ABˆC  90 ¬mMucarwkknøHrgVg;Ggát;p©it AC ¦ ABˆ D  90 ¬mMucarwkknøHrgVg;Ggát;p©it AD ¦ naM[ ABˆC  ABˆD  CBˆD  90  90  180 eXIjfa CBˆ D  180 CamMurab dUcenH cMNcu C , B nig D enAelIbnÞat; EtmYy ehIy AB   CD . o

o

o

x 1 2 y  3 1 x 2 3 y 2 1

o

eyIgsg;RkaPic)an ³ 353

o

o

9

2> rkCeRmATwk MA tamENnaMeyIgKUsrUbbEnßm)an ³ N A

smÁal; ebIGñkmineFVItamkarENnaMRsYlCagKW ³ edayépÞTwkEkgnwgpáaQUkQr naM[ ABM EkgRtg; A ehIytamBItaK½r ³

H B

>

MB2  AB2  AM 2

Et MB  MN  AM  AN ¬edImQUkEtmYy¦ eyIg)an  AM  AN   AB  AM eday AN  10cm , AB  30cm  AM  10   30  AM enaH 2

M

eyIgeRbóbeFob ABN nig HMN eday ABN nig HMN man ³ -mMu BAˆ N  MHˆ N  90 eRBaH épÞTwkEkgnwg páaQUkQr nig MH Cakmm AN BN vi)ak ABN   HMN HN MN

2

dUcenH CeRmATwkKW

BN 2  AN 2  AB2 ,  AB  30 cm  102  302  100  900  1000 BN  1000  10 10 cm

-km
 50cm 10cm  40cm

2

2

20 AM  800 800 AM   40 cm 20

Taj)an MN  BNAN HN 1 eday AN  10 cm -tamRTwsþIbTBItaK½rcMeBaH ABN EkgRtg; A

10

2

AM 2  20 AM  100  900  AM 2

o

tam 1 eyIg)an MN  10 1010 5 naM[ CeRmATwk AM  MN  AN

2

>

dUcenH TwkmanCeRmA AM  40cm . 354

AM  40cm

.

9

355

9

sm½yRbLg ³ 29 mifuna 1982 viBaØasa ³ KNitviTüa ry³eBl ³ 60 naTI BinÞú ³ 10  I. BICKNit

1> dak;CaplKuNktþa abx  y   xya  b  . 2> RkumsamKÁIbgábegáInplmYy lk;RsUvCUnrdæTaMgGs;cMnYn 0.825 t . RsUvenaHmanbIRbePTKW páaxJI nagkuk nigRsUvBeRgaH. témø 1 kg RsUvnagkukesµIBak;kNþaltémøsrubén 1 kg RsUvpáaxJI nig 1 kg RsUvBeRgaH ehIyéføelIstémø 1 kg énRsUvBeRgaHcMnYn 0.50 erol . k> témø 1 kg RsUvpáaxJI 1 kg RsUvnagkuk nig 1 kg RsUvBeRgaHrYmKñaéfø 3.00 erol . KNnatémø 1 kg énRbePTRsUvnImYy² . x> eKdwgfaRkumsamKÁIlk;RsUvnagkuk 250 kg nig RsUvpáaxJI RBmTaMgRsUvBeRgaHTaMgGs;)anR)ak; 837.50 erol. KNnaTm¶n;RsUvpáaxJI nigRsUvBeRgaH . II. FrNImaRt eK[RtIekaN ABC carwkkñúgrgVg;. knøHbnÞat;BuH BAC kat;RCug BC  Rtg; I nigFñÚ BC Rtg; J . 1> RsaybBa¢ak;fa AIB nig AJC dUcKña . 2> KNnaplKuN AI  AJ . 3> bgðajfa BAJ nig CBJ b:unKña . 4> RsaybBa¢ak;fa JB  JA  IJ . 2

2

2

2

2

8

356

9

cemøIy I. BICKNit

1> dak;CaplKuNktþa ³ 





ab x 2  y 2  xy a 2  b 2



 abx  aby  a xy  b xy 2

2



2

2

 

 abx 2  a 2 xy   b 2 xy  aby 2  axbx  ay   bybx  ay   bx  ay ax  by 



dUcenH dak;CaplKuNktþa)an 

dUcenH témøRsUvkñúg 1kg Edlrk)anKW ³ RtUvpáaxJI mantémø 1.50 erol RtUvnagkuk mantémø 1.00 erol RtUvBeRgaH mantémø 0.50 erol x> KNnaTm¶n;RsUvpáaxJI nigRsUvBeRgaH tag x CaTm¶n;RsUvpáaxJI ¬KitCa kg ¦ y CaTm¶n;RsUvBeRgaH ¬KitCa kg ¦ tambRmab;RbFaneyIg)an ³





ab x 2  y 2  xy a 2  b 2

 bx  ay ax  by 



 x  250  z  825  1.5x  1 250  0.5z  837.5

2> k> KNnatémø 1 kg énRbePTRsUvnImYy² ³ tag a CatémøRsUvpáaxJI 1kg ¬KitCaerol¦ b CatémøRsUvnagkuk 1kg ¬KitCaerol¦ c CatémøRsUvBeRgaH 1kg ¬KitCaerol¦ - témø 1 kg RsUvnagkukesµIBak;kNþaltémøsrub én 1 kg RsUvpáaxJI nig 1 kg RsUvBeRgaH naM[ b  12 a  c b¤ a  c  2b 1 - ehIytémø 1 kg RsUvnagkuk éføelIstémø 1 kg énRsUvBeRgaHcMnYn 0.50 erol naM[ b  c  0.5 2 - témø 1 kg RsUvpáaxJI 1 kg RsUvnagkuk nig 1 kg RsUvBeRgaHrYmKñaéfø 3.00 erol naM[ a  b  c  3 3 tam 1 , 2 nig 3 eK)anRbB½n§smIkar ³ a  c  2b  b  c  0.5  a  b  c  3  a  c  2b   b  c  0.5 3b  3 

a  c  2b  b  c  0.5  a  c   b  3 

a  c  2  1   1  c  0.5 b  1 

¬eRBaHTm¶n;RsUv 0.825 t  825kg ¦

 x  z  825  250  1.5 x  0.5 z  837.5  250  x  z  575  1.5 x  0.5 z  587.5

1  x  z  575  3 x  z  1175 2 

eyIgdkGgÁngi GgÁénsmIkar 2  1 ³ 3x  z  1175   x  z  575 2 x  600

naM[ x  300 cMeBaH x  300 CMnYskñúg 1 ³ 1 : x  z  575

z  575  x  575  300  275

epÞógpÞat;

a  c  2b  b  c  0.5 2b  b  3 

300  250  275  825 825  825

Bit

dUcenH RsUvpáaxJI manTm¶n; 300 kg RsUvBeRgaH manTm¶n; 275 kg .

a  0.5  2   c  0.5 b  1 

357

9

II. FrNImaRt B

JB JA vi)ak ABJ   BIJ JI JB Taj)anBIpleFob JB  JB  JA JI dUcenH RsaybBa¢ak;)anfa JB  JA  IJ .

J

I

2

C

A

1> RsaybBa¢ak;fa AIB nig AJC dUcKña eday AIB nig AJC man ³ -mMu ABˆ I  AJˆC ¬mMucarwkmanFñÚsáat;rYm AC ¦ -mMu BAI  JAC ¬ AJ knøHbnÞat;BuH BAC ¦ dUcenH AIB AJC tamlkçxNÐ m>m . 2> KNnaplKuN AI  AJ eday AIB AJC ¬sRmayxagelI¦ AI AB eK)an AIB   ACJ AC AJ Taj)an AI  AJ  AB AC dUcenH KNna)anplKuN AI  AJ  AB AC . 3> bgðajfa BAJ nig CBJ b:unKña eday BAˆ J  CAˆ J ¬ AJ knøHbnÞat;BuH BAC ¦ Et CAˆ J  CBˆ J ¬mMucarwkmanFñÚsáat;rYm CJ ¦ naM[ BAˆ J  CAˆ J  CBˆ J 1 dUcenH bgðaj)anfa BAJ  CBJ . 4> RsaybBa¢ak;fa JB  JA  IJ eyIgeRbóbeFob ABJ nig BIJ eday ABJ nig BIJ man ³ -mMu BAˆ J  IBˆ J eRBaH tam 1 : BAˆ J  CAˆ J  CBˆ J  IBˆ J -mMu AJˆB  BJˆI ¬mMurYm¦ dUcenH ABJ BIJ tamlkçxNÐ m>m 2

358

9

359

9

RksYgGb;rM yuvCn nigkILa RbLgsBaØabRtmFümsikSabzmPUmi cMeNHTUeTA nigbMeBjviC¢a eQµaH nightßelxaGnurkS sm½yRbLg ³ >>>>>>>> >>>>>>>>> 1993

elxbnÞb; ³ >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> elxtu ³ >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> mNÐlRbLg ³ >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

1> >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> namRtkUl nignamxøÜn ³ >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 2> >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> éf¶ExqñaMkMeNIt ³ >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> GkSrsm¶at; htßelxa ³ >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>  ebkçCnminRtUveFVIsBaØasmÁal;Gm VI YyelIsnøwkRbLgeLIy. snøwkRbLgNaEdlmansBaØasmÁal;RtUv)anBinÞúsUnü . --------------------------------------------------------------------------------------------------------------------------

viBaØasa ³ KNitviTüa ry³eBl ³ 120 naTI BinÞú ³ 100 esckþIENnaM ³ GkSrsm¶at; 1> ebkçCnRtUvbt;RkdasenHCaBIr rYcKUsExVgEpñkxagelIénTMB½rTI2 [b:unRbGb;EpñkxagelI énTMB½rTI1 EdlRtUvkat;ecal. hamsresrcemøIyelIkEnøgKUsExVgenaH . 2> ebkçCnRtUvKUsbnÞat;bBaÄr[cMBak;kNþalTMB½rTI2 nigTMB½rTI3 sRmab;sresrcemøIybnþ. I. ¬10 BinÞú¦

360

9

cemøIy

361

9

sm½yRbLg ³ 03 kkáda 1984 viBaØasa ³ KNitviTüa ry³eBl ³ 60 naTI BinÞú ³ 10  I. BICKNit

1> KNna a  b  ca  b  c  ab  ac  bc . 2> edaHRsaysmIkar 2x  3x  3x  2  4xx  1  x  11  x . 3> sRmÜlkenSam aabb cc . rYcKNnatémøelxénkenSamenH kñúgkrNIEdl ³ a  35.4 , b  48.6 nig c  29.6 . II. FrNImaRt 1> eK[BIcMNuc O nig O . eKKUsrgVg;p©it O nig O EdlmankaM OO ehIykat;KñaRtg; A nig B . bnÞat;mYykat;tam A kat;rgVg; O  Rtg; I nigkat;rgVg; O  Rtg; J . k> bgðajfaRtIekaN AOO nig BOO CaRtIekaNsm½gS . x> R)ab;RbePTRtIekaN BIJ . 2> eK[RbelLÚRkam ABCD BC  //AD . eKKUsrgVg;mYykat;tam A nig B rgVg;enHkat; RCug AD Rtg; P nig BC  Rtg; Q . RsaybMPøWfa ctuekaN CDPQ carwkkñúgrgVg;EtmYy . 3> eK[rgVg;p©it O nigGgát;FñÚ AB. C CacMNucmYyelIFñÚtUc AB . eKbnøay AC  [)anGgát; CM  Edl CM   CB . rkcMNuc M kalNa C rt;elIFñÚtUc AB . smÁal; ³ sMNYrenH minTak;TgKñaeT . 2

2

2

2

2

8

362

9

cemøIy I.

BICKNit 1> KNna

II.

I

a  b  c a

2

 b  c  ab  ac  bc 2

2



2

2

2

A J

O

 a  ab  ac  a b  a c  abc  3

FrNImaRt

2

O





a b  b  bc  ab  abc  b c  2

3

2

2

2

a 2 c  b 2 c  c 3  abc  ac 2  bc 2

B

 a 3  b 3  c 3  3abc

2> edaHRsaysmIkar ³

2 x  3 x  3x  2   4 xx  1  x  11  x 

2 x  3x 2  6 x  3x  6  4 x 2  4 x  1  x 2  x2  7x  6  1 x2  x2  x2  7x  1 6 7 x  5 x

5 7

dUcenH smIkarman x   75 Cab£s . a  b 2  c 2

3> sRmÜlkenSam

abc a  b  c  a  b  c a  b  c  abc abc  abc 2

2

Edl kenSam

1>k> bgðajfa AOO nig BOO Ca  sm½gS rgVg;TaMgBIrmankaM OO EtmYy enaHrgVg;TaMgBIr CargVg;b:unKña eday AOO man OA  OO  OA ¬CakaMrgVg;BIrb:unKña¦ dUcenH AOO CaRtIekaNsm½gS . ehIy BOO man OB  OO  OB ¬CakaMrgVg;BIrb:unKña¦ dUcenH BOO CaRtIekaNsm½gS . x> R)ab;RbePTRtIekaN BIJ eday AOO nig BOO CaRtIekaNsm½gS naM[ AOˆ B  AOˆ O  BOˆ O  60  60  120 o

a bc  0

dUcenH sRmYl)an

a  b 2  c 2 abc

 abc

RtIekaN BIJ man ³ ˆ -mMu IJB  AJB  AO2B  1202

.

o

o

 42.8 2

 42 .8

 60 o

o

 35.4   48.6  29.6

dUcenH témøKNna)an aabb cc

o

- mMu JIB  AIB  AO2ˆ B  1202  60 ¬mMucarwkelIrgVg;esµkI nøHmMup©ti EdlmanFñÚsáat;rYm¦ eXIjfa BIJ manmMuBIr IJB  JIB  60 naM[ BIJ CaRtIekaNsm)at EdlmMu)atesµI 60

2

2

o

AOˆ B  AOˆ O  BOˆ O  60 o  60 o  120 o

-KNnatémøelxénkenSamenH cMeBaH a  35.4 , b  48.6 nig c  29.6 eday aabb cc  a  b  c 2

o

.

dUcenH RtIekaN BIJ CaRtIekaNsm½gS . 363

o

9

2> RsaybMPøWfa ctuekaN CDPQ carwkkñúg rgVg;EtmYy P

A

naM[ CMB CaRtIekaNsm)at vi)ak CBˆ M  CMˆ B ¬mMu)atRtIekaNsm)at¦ ehIy CBˆ M  CMˆ B  ACˆB ¬mMueRkA CMB ¦ b¤ 2CMˆ B  ACˆB naM[ CMˆ B  AC2ˆB

D

B

C

Q

Et

-bRmab; ABCD CaRbelLÚRkam BC //AD naM[ ABˆ Q  PDˆ C 1 ¬mMuQménRbelLÚRkam¦ ehIy BC //AD man PQ Caxñat; enaH APˆ Q  PQˆ C 2 ¬mMukñúgrYmxag¦ -rgVg;mYykat; A nig B ehIyrgVg;enHkat;RCug AD Rtg; P nig BC  Rtg; Q mann½yfa A , B , Q, P enAelIrgVg;EtmYy naM[ ctuekaN ABQP carwkkñgú rgVg;mYy vi)ak plbUkmMuQm ABˆ Q  APˆ Q  180 3 tam 1, 2 , 3 eyIg)an ³

¬mMucarwkFñÚsáat;FM AB ¦ 

eyIg)an

AB  ˆB A C AB 2 ˆ CMB    2 2 4 

b¤Gacsresr eday AB efr enaH FñÚFM AB k¾efrEdr ehIy C rt;elIFñÚtUc AB enaH M k¾rt;elIFñÚén AB CMˆ B  AMˆ B  4



rgVg;mYyRbkbedaymMuefrKW -ebI C RtYtelI A enaH M RtYtelI M  Edl AB  AM  -ebI C RtYtelI B enaH M RtYtelI B Edr mann½yfa M rt;elIFñÚ BM  énrgVg;mYy dUcenH kalNa C rt;elIFñÚtUc AB enaH M CasMNMucMNucrt;elIFñÚ BM  énrgVg;mYy AB AMˆ B  4

o

ABˆ Q  PDˆ C APˆ Q  PQˆ C



AB ACˆ B  2

 PDˆ C  PQˆ C  180 o

ABˆ Q  APˆ Q  180 o

eday ctuekaN CDPQ manplbUkmMuQm PDˆ C  PQˆ C  180 enaHvacarwkkñúgrgVg; dUcenH ctuekaN CDPQ carwkkñgú rgVg;EtmYy . 3> rkcMNuc M kalNa C rt;elIFñÚtUc AB o

RbkbedaymMuefr

M

C

A

//

M B

O

tambRmab;RbFan

CM   CB 364



AB AMˆ B  4

.

9

365

9

sm½yRbLg ³ 25 mifuna 1985 viBaØasa ³ KNitviTüa ry³eBl ³ 60 naTI BinÞú ³ 10  I. BICKNit

1> k> dak;kenSamxageRkamCaplKuNktþadWeRkTI1 én x ³ A  x  3x  2  9x  3 2

B  2 x  4  x  1 2

2

x> KNnatémøelxén C  BA cMeBaHtémø x  3 , x  1 nig x  53 . K> etI D  x 31xx5 5 nig C smmUlKña b¤eT ? 2> k> tagRkaPicénTMnak;TMngxageRkam kñúgtRmúyGrtUNremedayyk 1 cm CaÉkta ³ y  2 x  4 nig y  x  1 . x> edaHRsayRbB½n§smIkar  yy  2x x1 4 . yklT§plxagelIedIm,IedaHRsayRbB½n§smIkar 

2  1  y  1  2 x  5  4  1 1   1  y  1 2 x  5

3> k> KNna

.

A  10 48  6 108  4 12

nig

B

1 1  11  3 11 11  3 11

.

x> edaHRsaysmIkar 2 x3  7  x  1 . II. FrNImaRt manrgVg; O p©it O Ggát;p©it AB. O CacMNuckNþalén  AB nigCap©itrgVg; O Edl kat;tam A nig B . M nig N CacMNucénFñÚFM  AB rbs;rgVg; O . bnÞat; MA , MB  CYbrgVg; O Rtg; C nig D ehIy NA nig NB CYbrgVg; O Rtg; E nig F . 1> RbdUcRtIekaN MAD nig NBE . 2> bgðaj[eXIjfa MAD nig NBE CaRtIekaNEkgsm)at . 3> cMNuc M cl½telIFñÚFM  AB énrgVg; O bgðajfa CD manrgVas;efr ehIyEdlnwgRtUv KNnaCaGnuKmn_én R CargVas;kaMrgVg;Ggát;p©it AB. rksMNMucMNuckNþal I én CD .

8 366

9

cemøIy K> etI D  x 31xx5 5 nig C smmUlKña b¤eT ? eyIgman C  x x33x35xx5 1 eXIjfa ebIsRmYl C nwg x  3 enaH C dUc D dUcenH -ebI x  3 enaH C nig D smmUlKña -ebI x  3 enaH C nig D minsmmUlKña . 2> k> tagRkaPicénTMnak;TMngxageRkam ³ eyIgeRbItaragtémøelxedIm,Isg;bnÞat; y  2x  4 y  x 1 nig

I. BICKNit

1> k> dak;kenSamCaplKuNktþadWeRkTI1 én x A  x  3x  2  9x  3 2



 x  3x  2  9 2



 x  3x  2  3x  2  3  x  3x  5x  1

dUcenH

.

A  x  3x  5x  1

B  2 x  4  x  1  2 x  4  x  12 x  4  x  1  x  33x  5 2

dUcenH

2

B  x  33x  5

.

x

0 1

x

y 4 2

0 1

y 1 2

x> KNnatémøelxén C  BA eK)an C  BA  x x33x35xx5 1 -cMeBaH x  3 C

y  x 1

3  33  53  1  0   2  4  0 3  33  3  5 04 0

dUcenH C mancemøIyeRcInrab;minGs; . -cMeBaH x  1 C

y  2x  4

x> edaHRsayRbB½n§smIkar  yy  2x x1 4  eyIgedaHRsayeday dkGgÁnigGgÁ

 1  3 1  5 1  1   4 60  0  1  3 1  3  5  4 8

dUcenH

C

mancemøIyEtmYyKt;KW 0

 y  2x  4  y  x 1 3x  3

.

eyIg)an cMeBaH x  1 naM[ y  x  1

-cMeBaH

5 x 3  5  5  5    4   10  8    3   5   1     3  3  3   3  3  3   C   5  5  4   3  3   5   0  3  3   3 

C

x 1

y  1 x  11  2

dUcenH RbB½n§smIkarmanKUcemøIy

manPaKyk  0 ÉPaKEbg  0 . dUcenH



naM[

x 1 , y  2

Kµann½y kñúgkarKNnatémøelx .

¬ebIepÞógpÞat;tamRkaPicKWRtUvKña ¦ 367

.

9

K> yklT§plxagelIedIm,IedaHRsayRbB½n§ 2  1  y  1  2 x  5  4  1 1   1  y  1 2 x  5

smIkar ³

2 x 7  x 1 3 2 x 7  3 x 3

4 x

1  1  y  1  2  2 x  5  4  1 1   1  y  1 2 x  5

Gacsresr

tag Y  y 1 1 nig X  2x1 5 Edl y  1 , x  52 eyIg)anRbB½n§fµI YY2XX 14  tamlT§plxagelIKW X  1 , Y  2 naM[ Y  y 1 1  2  y 1 1  y   12 X

x> edaHRsaysmIkar ³

edayRKb;cMnYnBit x enaH x  0 Et  4  0 dUcenH smIkarKµanb£sCacMnYnBiteT . II. FrNImaRt

E C

.

 40 3  36 3  8 3

A  12 3

.

1 1  11  3 11 11  3 11

11  3 11 11  3 11 11  3 1111  3 11

22 11  9 11 22  1 22 

o

2

dUcenH KNna)an

I 

o

 12 3



B

O

1> RbdUcRtIekaN MAD nigRtIekaN NBE edayRtIekaN MAD nigRtIekaN NBE man ³ -mMu AMˆ B  ANˆB ¬mMucarwkmanFñÚsáat;rYm AB énrgVg;p©it O ¦ -mMu ADˆ M  BEˆN  90 eRBaH CamMuCab;bEnßm énmMu ADˆ B , AEˆB EdlCamMucarwkknøHrgVg;p©it O dUcenH MAD NBE tamlkçxNÐ m>m . 2> bgðaj[eXIjfa MAD nig NBE Ca RtIekaNEkgsm)at kñúgRtIekaN MAD nig NBE man ³ -mMu ADˆ M  BEˆN  90 ¬manbBa¢ak;xagelI¦ ˆ -mMu AMˆ B  ANˆ B  AO2B  902  45 eRBaH kñúgrgVg;p©it O man AMˆ B , ANˆ B CamMucarwk ehIy

A  10 48  6 108  4 12

B

F

O 

3> k> KNna

dUcenH KNna)an

I

I

RbB½n§smIkarmanKUcemøIy 1 x3 , y  2

O  D



A

1 1  1  x3 2x  5 2x  5

dUcenH

N

M

o

o

B 1

. 368

9

AOˆ B AMˆ B  ANˆ B  2

2

R 2 R2 R2 2   OI  R    R  2  2  2 

mMu CamMup©it enaH mü:ageTot AOˆ B  90 edaysarvaCamMucarwk knøHrgVg;EdlmanGgát;p©it AB . dUcenH MAD nig NBE CaRtIekaNEkgsm)at 3> bgðajfa CD manrgVas;efr edaymMu AMˆ B  45 ehIyCamMueRkArgVg;p©it O AOˆ B

2

o

OI 

naM[





AB CD AMˆ B  2 

o

2

2

2

o

2

rUbsRmÜlkaremIl N

M

2

CD  2 R 2  R 2

/

dUcenH KNna)an CD  R 2 . - rksMNMucMNuckNþal I én CD eday I CacMNuckNþal CD naM[ OI  CD ¬kaMrgVg;EkgnwgGgát;FñÚRtg; cMNuckNþal ¦ ehIy CD  R 2 efr enaH OI k¾efrEdr  Edl OI  OC   CD  2 

E C

O  D

I

F 

A

B

O I

I 

O 

2

2

o

o

o

o

2

o

o

o

eday CD  90 efr enaHnaM[ CD k¾efrEdr dUcenH bgðaj)anfa CD manrgVas;efr . -KNna CD CaGnuKmn_én R eday CD  90 enaH mMup©it COˆ D  90 Edr naM[ RtIekaN COD CaRtIekaNEkgRtg; O tamRTwsþIbTBItaK½r CD  OC  OD eday OC  OD  R CakaMrgVg;Ggát;p©it AB naM[ CD  R  R  2R 2

o





 180o  2  45o  90o





o



CD  AB 2 AMˆ B 

R2 R R 2   2 2 2

eday O CacMNucnwg enaH sMNuMcMNuc I rt;enA elIrgVg;kaM OI Et M cl½tenAelIFñÚFM AB Edl FñÚFM AB  360  FñÚtUc AB ¬ FñÚtUc AB  mMup©it AOˆ B  90 ¦ naM[ FñÚFM AB  360  90  270 eday M cl½tenAelIFñÚFM 270 enaH I k¾cl½t enAelIFñÚ I II   270 Edr -ebI M RtYtelI A enaH I RtYtelI I  -ebI M RtYtelI B enaH I RtYtelI I  dUcenH sMNcuM MNuc I rt;enAelIFñÚ I II   270 énrgVg; O mankaM OI  R 2 2 .

o



2

2

369

9

sm½yRbLg ³ 07 kkáda 1986 viBaØasa ³ KNitviTüa ry³eBl ³ 60 naTI BinÞú ³ 10  I. BICKNit 1 ab

a b 

1> sRmÜlr:aDIkal;

1

1

Edl

0ba

.

a2  b2

2> eK[kenSam A  5x  4  x  4x  4  6  3xx  3 . k> sresr A CaBhuFabRgÜm nigerobtamsV½yKuNcuHén x . x> sresr A CaplKuNktþadWeRkTI 1 . K> edaHRsaysmIkar A  0 nig A  2 . X> eK[RbPaK F  3x  1A x  4 . rktémø x EdlnaM[RbPaKmann½y rYcsRmÜlRbPaK. 3> kñúgtRmúyGrtUNrem ¬Éktþa sg;TIEm:t¦ k> sg;bnÞat;rbs;GnuKmn_ y  x  2 D  nig y   x  4 D  . x> kMNt;kUGredaenéncMnucRbsBV D  nig D  tamkarKNna rYctamRkaPic . K> bgðajfa D  nig D  EkgKña . II. FrNImaRt eK[rgVg;p©it O Ggát;p©it AB. elIbnÞat;Edlb:HrgVg;Rtg; A eKedAcMNuc C mYy . bnÞat; CB kat;rgVg; O Rtg; D . 1> eRbóbeFobRtIekaN CAD nigRtIekaN CBA rYcbgðajfa CA  CB  CD . 2> H CaeCIgbnÞat;EkgKUsecjBI A eTAbnÞat; OC  . eRbóbeFobRtIekaN CAO nigRtIekaN CHA rYcbgðajfa CH  CO  CB  CD . 3> eRbóbeFobRtIekaN CDH nig COB rYcbBa¢ak;fa O , B , D , H sßitenAelIrgVg;EtmYy. 4> ]bmafa AB  a , AC  a2 KNna BC , CD , BD , AD CaGnuKmn_én a . 5> bnÞat;Edlb:HrgVg; O Rtg; D nig B . RbsBVKñaRtg; M . bgðajfa M sßitenAelIrgVg; C  bBa¢ak;p©itrbs;va rYcKUsrgVg;enH . bgðajfacMNuc A , M , H rt;Rtg;Kña . 2

2

1

2

1

1

2

2

2

8 370

9

cemøIy I. BICKNit

2

1> sRmÜlr:aDIkal; ³

 



1

a b  1

1

a b

ab 

a2  b2 ab





a b 2







ab

ab

1

1

F

a b



a b  a b

.

x  23x  1 A  3x  1 x  4 3x  1 x  4



a2  b2





dUcenH F mann½ykalNa x  13 , x  4 .

2

sRmÜl F ³ F  3xx  123xx14  4x  2x Edl ktþasRmÜl 3x 1  0 b¤ x  13



A  5 x 2  4  x 2  4 x  4  6  3 x x  3  5 x 2  20  x 2  4 x  4  6 x  18  3 x 2  9 x  3x 2  7 x  2

dUcenH sRmÜl)an

dUcenH KNna)an A  3x  7 x  2 . x> sresr A CaplKuNktþadWeRkTI 1

F

2



.

edIm,I[ F luHRtaEtPaKEbgrbs;vaminEmnsUnü naM[ 3xx1400  3xx41  xx  14/ 3

2> eyIgman A  5x  4 x  4x  4  6  3xx  3 k> bRgÜmBhuFa A nigerobtam sV½yKuNcuHén x 2

1 3 7 x0, x 3 x2, x

K> rktémø x EdlnaM[RbPaKmann½y ³

1

a b 

dUcenH sRmÜl)an



x3x  7   0

x  0 x  0     3x  7 x  7 / 3

2

a2  b2 1 a b



dUcenH cMeBaH A  0 enaH cMeBaH A  2 enaH

a2  b2

a  b 1 ab



a  b 1

ab a  b2 1

a  b2 2



2

2

2

b¤ 3x  7 x  0 naM[ 3xx07  0

x2 4 x

.

3> sg;bnÞat;rbs;GnuKmn_ ³ eyIgman y  x  2 D  nig y   x  4 D  eyIgeRbItaragtémøelxedIm,Isg;bnÞat;TaMgBIr



A  5 x 2  4  x 2  4 x  4  6  3x x  3

1

 5x  2x  2  x  2  3x  2x  3  x  25x  2  x  2  3x  3  x  25 x  10  x  2  3x  9  x  23x  1 2

D1  : y  x  2  D2  : y   x  4

dUcenH dak;CaplKuNktþa A  x  23x  1 K> > edaHRsaysmIkar ³ cMeBaH A  0 smmUl x  23x  1  0 naM[ 3xx2100  3xx21  xx  12/ 3    cMeBaH A  2 smmUl 3x  7 x  2  2

x y x y

2

0 2 0 4

2 0 4 0

y  x  2 D1 

3, 1 y   x  4 D2 

2

371

9

x> kMNt;kUGredaenéncMnucRbsBV D  nig D  eyIgman y  x  2 D  nig y   x  4 D  eyIgpÞwmsmIkarGab;sIusénbnÞat;TaMgBIr eyIg)an ³ x  2   x  4 2x  6  x  3 / cMeBaH x  3 : y  x  2  3  2  1 dUcenH kUGredaenéncMNucRbsBVKW 3 , 1 . -tamRkaPiceXIjfa bnÞat;TaMgBIrRbsBVKñaRtg; cMNucmankUGredaen 3 , 1 edaykareFVIcMeNal EkgBIcMNucRbsBVmkelIG½kSTaMgBIr dUcenH kUGredaenéncMNucRbsBVKW 3 , 1 . K> bgðajfa D  nig D  EkgKña bnÞat;BIrEkgKñaluHRtaplKuNemKuNR)ab;TisKW ³ > a  a  1 eday y  x  2 D  nig y   x  4 D  manplKuNemKuNR)ab;Tis a  a  1 1  1 dUcenH bnÞat; D  EkgKñanwgbnÞat; D  . II. FrNImaRt tambRmab;RbFaneyIgsg;rbU )an ³ 1

1

1

-mMu ADˆ C  BAˆ C  90 eRBaH bnÞat;b:H AC  AB nig AD  BC edaysar ADˆ B  90 CamMu carwkknøHrgVg;EdlmanGgát;p©it AB dUcenH CAD CBA tamlkçxNÐ m>m o

2

o

2

CA CD vi)ak CAD   CBA CB CA Taj)an CA  CB  CD dUcenH bgðaj)anfa CA  CB  CD 1 . 2> eRbóbeFobRtIekaN CAO nigRtIekaN CHA eday RtIekaN CAO nigRtIekaN CHA man ³ -mMu OCˆA  ACˆH ¬mMurYm¦ -mMu OAˆ C  AHˆC  90 ¬eRBaH H CaeCIgkmm kñúg CAO EkgRtg; A nigman AH Cakm eRbóbeFobRtIekaN CDH nigRtIekaN COB eday RtIekaN CDH nigRtIekaN COB man ³ -mMu DCˆH  OCˆB ¬mMurYm¦ -tam 3 : CH  CO  CB  CD CD Taj)anpleFobRCug CH  CB CO 2

2

o

2

1

2

1

2

2

M

C

D

C 

H

A



B

O

dUcenH CDH COB tamlkçxNÐ C>m>C vi)ak DHˆC  OBˆC mü:ageTot DHˆ C  DHˆ O  180 ¬mMuCab;bEnßm¦ naM[ OBˆ C  DHˆ O  180

O

1> eRbóbeFobRtIekaN CAD nigRtIekaN CBA eday RtIekaN CAD nigRtIekaN CBA man ³ -mMu ACˆD  BCˆA ¬mMurYm¦

o

o

372

9

eXIjfakñúgctuekaN OBDH manplbUkmMuQm KW OBˆ C  DHˆ O  180 enaHvacarwkkñúgrgVg;mYy dUcenH O , B , D , H sßitenAelIrgVg;EtmYy 4> KNna BC , CD , BD , AD CaGnuKmn_én a eyIgmankar]bma AB  a , AC  a2 -kñúg ABC EkgRtg; A ³ tamRTwsbþI TBItaK½r

A

2

 CB  CD

a   2 CA a2 2 2 CD      CB 4 a 5 a 5 2

-eday



enaH ctuekaN MBOD carwkkñgú rgVg; C  EdlmanGgátp; ©it OM dUcenH bgðaj)anfa M sßitenAelIrgVg; C  ehIyp©itrgVg; C  CacMNuckNþal OM . -bgðajfacMNuc A , M , H rt;Rtg;Kña tamlT§pl O , B , D , H sßitenAelIrgVg;EtmYy nig ctuekaN MBOD carwkkñúgrgVg; C  naM[ BhuekaN MBOHD carwkkñgú rgVg; C  EdlmanGgátp; ©it OM EtmYy enaH MHˆO  90 ¬mMucarwkknøHrgVg;Ggát;p©it OM ¦ ehIy AH  CO naM[ OHˆ A  90 edayplbUkmMu MHˆO  OHˆA  90  90  180 Et MHˆ O  OHˆ A  MHˆ A mann½yfa mMu MHˆ A  180 vaCamMurab dUcenH bgðaj)anfacMNuc A , M , H rt;Rtg;Kña .

a 5 10

2 5 a 5 a 5 BD  BC  CD   2 10 5a 5  a 5 2 a 5   10 5

-kñúg ACD EkgRtg; D ³ tamRTwsbþI TBItaK½r AC 2  AD2  CD 2 AD2  AC 2  CD 2 2

enaH

2 a 2 5a 2  a   a 5        4 100  2   10  a 2 a 2 5a 2  a 2 4a 2 a 2      4 20 20 20 5 2 a a a 5 AD    5 5 5

o

o

o

dUcenH KNnaCaGnuKmn_én a )andUcteTA ³ a 5 a 5 ; CD  2 10 2a 5 a 5 BD  ; AD  5 5

>

MBˆ O  MDˆ O  90 o  90 o  180 o

2

a

B

o

5a 2 a 5  4 2





O

5> bgðajfa M sßitenAelIrgVg; C  bRmab; MB  nig MD  CabnÞat;b:HrgVg; naM[ MBˆ O  MDˆ O  90 ¬eRBaH bnÞat;b:HEkgnwgkaMrgVg;¦ edaykñúgctuekaN MBOD manplbUkmMuQmKW

a 2 5a 2 a  a     a2   4 4 2

naM[

C 

O

2

2

D H

BC 2  AB2  AC 2

enaH BC  -tam 1 ³ CA

M

C

o

o

BC 

. 373

o

o

9

sm½yRbLg ³ 07 kkáda 1987 viBaØasa ³ KNitviTüa ry³eBl ³ 60 naTI BinÞú ³ 10  I. BICKNit

1> k> eK[kenSam ³ F  2x  1x  3x  3 nig G   3x  4x  3x  3 . KNna ³ A  F  G nig B  F  G . x> eK[ C  BA . sRmÜlrYcKNnatémøelxénkenSamenH cMeBaHtémø x dUcteTA ³ 3 x , x5 , x 2 . 5 2> edaHRsayvismIkar 3x2 4  2x3 5  x 4 8 rYcbkRsaytamRkaPic . 3> cUrsg;bnÞat;tamTMnak;TMngTaMgbIxageRkamenAkñúgtRmúyEtmYy ³ 2 y  x  4 , y   x  1 , y  4 x rYcKNnakUGredaenéncMNucRbsBVTaMgbI . 3 II. FrNImaRt

Ggát; AB nig CD CaGgát;p©itEkgKñaénrgVg; O Edlman O Cap©it nigkaMmanrgVas; R . I CacMNuckNþalén OA . CI  CYbrgVg; O Rtg; E . tam E eKKUsbnÞat;Rsbnwg AB Edl CYbnwgrgVg; O Rtg; F . CF  CYb AB Rtg; J . H CacMeNalEkgén E elI CF  . 1> R)ab;RbePTRtIekaN CEF nigctuekaN CIDJ . 2> RbdUcRtIekaN COI nig CED rYcKNna CI , CE nig IE CaGnuKmn_én R . 3> RbdUcRtIekaN CEH nig JDF rYcKNnapleFob CH . CJ

8

374

9

cemøIy I. BICKNit

2> edaHRsayvismIkar ³ 3x  4 2 x  5 x  8   2 3 4 63 x  4   42 x  5  3x  8 18x  24  8 x  20  3 x  24

1> k> KNna ³ A  F  G nig B  F  G eyIgman F  2x  1x  3x  3 nig G   3x  4x  3x  3 A  F G

10 x  3 x  24  4

/

7 x  28

 2 x  1x  3x  3   3x  4x  3x  3  x  3x  32 x  1   3x  4  x  3x  3 x  5

dUcenH KNna)an

x4

dUcenH vismIkarmancemøIy x  4 0 -bkRsaytamRkaPic ³ x EpñkminqUtCacemøIyénvismIkar .

A  x  3x  3 x  5

B  F G

/

 2 x  1x  3x  3   3x  4x  3x  3  x  3x  32 x  1   3x  4  x  3x  35 x  3

Edl

y  x4

A  x  3x  3 x  5  x  5   B x  3 x  35 x  3 5 x  3 x  3  0 x  3 x  3  0  x  3  

2 y   x 1 3



dUcenH sRmÜl)an

C

A  x5  B 5x  3

y  4 x

.

B

 

2 y   x 1 3

-rkkUGredaenéncMNucRbsBVTaMgbI tag A CaRbsBVén y  x  4 , y   32 x  1 pÞwmsmIkarGab;sIusénbnÞat;TaMgBIr ³

 

 2 5  2 5 5 2 3 C  5 2  3 5 2  3 5 2  3 

y  x4

A

³

 

4 0 0 4 3 0 1 1 0 1 0 4

C

Kµann½y

³

x y x y x y

y  4 x

3 22 22  5 C 5  25  25 3 33 0 5  3 5 55 0   0 x5 C  5  5  3 22 x 2

x

eyIgsg;bnÞat;TaMgbI)andUcxageRkam ³

-KNnatémøelxénkenSam C ³ cMeBaH x  53 ³

cMeBaH cMeBaH



3> sg;bnÞat;TaMgbIkñúgtRmúyEtmYy ³ eyIgeRbItaragtémøelxedIm,Isg;bnÞat;TaMgbI ³

dUcenH KNna)an B  x  3x  35x  3 x> sRmÜlcMeBaH C  BA ³ C

4

 10  3 2  25 2  15  25  2  9

5  22 2 41

375

9

2 x  4   x 1 3



naM[ CD CaemdüaT½rén AB EtGgát;FñÚ EF  //AB enaH CD k¾CaemdüaT½r énGgát;FñÚ EF  Edr vi)ak CE  CF dUcnH RtIekaN CEF CaRtIekaNsm)at . -R)ab;RbePTctuekaN CIDJ ³ eyIgman I nig J enAelI AB enaH IJ // EF naM[ CEˆF  CIˆJ nig CFˆE  CJˆI ¬mMuRtUvKña¦ Et CEˆF  CFˆE ¬mMu)atRtIekaNsm)at CEF ¦ eyIg)an CIˆJ  CJˆI enaH CIJ Ca  sm)atEdr¦ ebI CD CaemdüaT½rén EF  enaH CD k¾Ca emdüaT½rén IJ  Edr enaH OI  OJ edayctuekaN CIDJ manGgát;RTUg CD  IJ Rtg;cMNuckNþal O enaHvaCactuekaNesµI dUcenH ctuekaN CIDJ CactuekaNesµI . 2> RbdUcRtIekaN COI nig CED eday RtIekaN COI nig CED man ³ -mMu COˆ I  CEˆD  90 eRBaH CD  IJ Rtg; O nig CEˆ D CamMucarwkknøHrgVg;Ggát;p©it CD -mMu OCˆI  ECˆD ¬mMurYm¦ dUcenH COI CED tamlkçxNÐ m>m CO CI OI vi)ak COI 1    CED CE CD ED -KNna CI , CE nig IE CaGnuKmn_én R eday CO  OA  R ¬eRBaH CakaMrgVg;dUcKña¦ OA R OI   ¬eRBaH I kNþal OA ¦ 2 2 kñúgRtIekaNEkg COI ³ tamRTwsþIbTBItaK½r

3x  12  2 x  3

3x  2 x  3  12 5 x  15 x  3

cMeBaH x  3 : y  x  4  3  4  1 dUcenH kUGredaenéncMNucRbsBV A 3 , 1 . tag B CaRbsBVén y   23 x  1 , y  4x pÞwmsmIkarGab;sIus ³  23 x 1  4x b¤  2x  3  12x  10x  3  x  103 cMeBaH x  103 : y  4x  4  103   65 dUcenH kUGredaenéncMNucRbsBV B 103 ,  65  tag C CaRbsBVén y  x  4 , y  4x pÞwmsmIkarGab;sIus ³ x  4  4x b¤ 5x  4  x   54 cMeBaH x   54 : y  4 x  4    54   165

o

 4 16  C  ,   5 5

dUcenH kUGredaenéncMNucRbsBV II. FrNImaRt

tambRmab;RbFaneyIgsg;rbU )an ³ C

I

A



O H J

E D

O

B F

1> R)ab;RbePTRtIekaN CEF eday AB  CD Rtg;cMNuckNþal O

CI 2  CO 2  OI 2 2

CI 

376

CO 2  OI 2 

R 5 R R2     2 2

9

CE  JF JD 4 5R 3 5R 4 5R 3 5R   10  5 10 CH  5 R 5 R 5 2 2 2 2 12  5  R 6R  5 10  5 R 5 R 5 2 2 2 6R 2 12 R 12 5 R     5 25 R 5 5 5

CI tamvi)ak 1 xagelI CO  CE CD Taj)an CE  COCI CD eday CO  R , CD  2R , CI  R 2 5 naM[ CE  R  2R  4R  4 5R

eyIg)an

2

R 5 2

5

R 5

eday IE  CE  CI 4 5R R 5  5 2 8 5 R  5 R 5 3R 5   10 10 

naM[pleFob CH KW ³ CJ

dUcenH eyIgKNnaCaGnuKmn_én R )an ³ CI 

12 5 R CH 12 5 R 2 24  25    CJ 25 R 5 R 5 25 2 CH 24  CJ 25

R 5 4 5R 3 5R , CE  , IE  2 5 10

3> RbdUcRtIekaN CEH nig JDF eday RtIekaN CEH nig JDF man ³ -mMu CHˆ E  JFˆD  90 eRBaH EH Cakm
dUcenH KNna)anpleFob

sUmKUsrUbEtmYy)anehIy

o

EH  CF  EH // DF DF  CF

.

dUcenH

CEH

tamlkçxNÐ m>m .

vi)ak

CEH

JDF

C

I

A



O H J

E D

CE CH  JDF JD JF CE  JF CH  JD 

Taj)an eday CE  4 55R , JD  CJ  CI  R 2 5 eRBaH JD , CI CaRCugénctuekaNesµI  CF ehIy CE CI  CJ

CH 

 JF  IE 

3 5R 10

377

O

B F

.

9

sm½yRbLg ³ 07 kkáda 1988 viBaØasa ³ KNitviTüa ry³eBl ³ 60 naTI BinÞú ³ 10  I. BICKNit

1> sRmÜlkenSam ³ E  a  b  a aa  b bb . 2> kMNt;témø m nig n edIm,I[smIkar ³ mx  m  4x  3n  2  0 epÞógpÞat;cMeBaH x  2 nig x  5 . 3> k> sg;bnÞat; D  tagsmIkar 3x  32 y  12 nigbnÞat; D tagsmIkar 5x  2 y  6 kñúgtRmúyGrtUNrem xoy  . x> rkkUGredaenéncMNcu RbsBV I rvag D  nig D . K> bMPøWfabnÞat;  tagsmIkar m  1x  2m 1y  12  6m kat;tamcMNuc I ¬ m Ca):ar:aEm:Rt ¦. II. FrNImaRt 1> eKmanrgVg;myY p©it O nigcMNuc M mYyenAeRkArgVg; . tam M KUsbnÞat;b:H MA  nig MB  eTAnwgrgVg;Edl A nig B CacMNucb:H. bnÞat;Ekgnwg OA Rtg; O kat; MB  Rtg; E . RsaybMPøWfa EO  EM . 2> eKmanctuekaNBñay ABCD EdlmanmMu A nigmMu D CamMuEkg ehIyGgát;RTUg AC  Ekgnwg RCugeRTt BC  . k> eRbóbeFobRtIekaN ABC nigRtIekaN CAD nigbBa¢ak;fa AC  AB  CD . x> eKKUsrgVg;EdlmanGgátp; ©it BC  ehIykat; AB Rtg; E . R)ab;eQµaHctuekaN AECD. K> ehA AI  CaemdüanénRtIekaN ABC . P CacMNucmYyén BI  . tam P KUsbnÞat;  Rsbnwg AI  .  kat; AB Rtg; M ehIykat;knøHbnÞat; CA Rtg; N . eRbóbeFob AN pleFob AM ni g . AB AC smÁal; ³ sMNYrFrNImaRt k> x> K> minGaRs½yKñaeT . 2

2

8 378

9

cemøIy I. BICKNit

3> k> sg;bnÞat; D  nig D kñúgtRmúy xoy  eyIgeRbItaragtémøelxedIm,Isg;bnÞat;TaMgenH x 3 4 D  ³ 3x  2 y  12 y 9 0 3

1> sRmÜlkenSam ³ E  a  b  

a  b  

a a b b a b

 

a  b  a a b b a b



D  ³



a a  a b b a b b a a b b a b



a b b a  a b



eyIgsg;bnÞat;TaMgBIr)andUcxageRkam ³



D   : 5 x  2 y  6

a  b ab  ab a b

4.5

EdlktþaEdlsRmÜl a  b  0 dUcenH sRmÜlkenSam)an E  ab . 2> kMNt;témø m nig n eyIgman mx  m  4x  3n  2  0 -cMeBaH x  2 ³ eyIg)an

D  : 3x  2 y  12 3

3

2

x> rkkUGredaenéncMNucRbsBV I 2  eyIgmansmIkarbnÞat;TaMgBIr 3x  3 y  12

/

m  2 2  m  42  3n  2  0

 5 x  2 y  6

4m  2m  8  3n  2  0

9 x  2 y  36  5 x  2 y  6 42  x 3 14 x  42 14

6m  3n  6  0

6m  3n  6 1

-cMeBaH

x  5

5x  2 y  6

2 x 0 2 y 3 2

³ eyIg)an

2

cMeBaH x  3 ³ 5  3  2 y  6

25m  5m  20  3n  2  0 20m  3n  22  0

dUcenH kUGredaenéncMNucRbsBV I  3 , 92  .

m 5  m  4 5  3n  2  0

20m  3n  22

2

20m  3n  22  6m  3n  6  m  2 14m  28

m  1x  2m  1y  12  6m

yk m  2 CMnYskñúg 1 eyIg)an ³

m  1  3  2m  1  9  12  6m

6  2  3n  6

dUcenH kMNt;)antémø

2 3m  3  9m  9  12  6m

 18  6 3

m  2 , n  6

9 2

K> bMPøWfabnÞat;  kat;tam I eyIgman  ³ m  1x  2m  1y  12  6m ebI  kat;tam I  3 , 92  enaHvaepÞógpÞat;smIkar

edayyk 2  1 edIm,IbM)at; n enaHeyIg)an ³

3n  6  12  n 

 y

Bit dUcenH bnÞat;  BitCakat;tam I Emn . 12  6m  12  6m

. 379

9

II. FrNImaRt

vi)ak

M

1> RsaybMPøWfa EO  EM



O

eday MA  nig MB  CabnÞat;b:HKUsecjBI M naM[ MO  CaknøHbnÞat;BuHmMu AMˆ B enaHeyIg)an AMˆ O  BMˆ O 1 mü:ageTot OA  AM ¬kaMrgVg;EkgnwgbnÞat;b:H¦ OA  OE ¬smµtikmµ¦ naM[ AM // OE eyIg)an AMˆ O  MOˆ E 2 ¬mMuqøas;kñúg¦ tam 1 nig 2 enaH BMˆ O  MOˆ E naM[ RtIekaN EMO CaRtIekaNsm)at vi)ak EO  EM dUcenH RsaybMPøW)anfa EO  EM . 2> tambRmab;RbFaneyIgKUsrUb)an ³

A N

ME

I

¬ CA  AC ¦

o

o

o

o

o

AN K> eRbóbeFobpleFob AM ni g AB AC -kñúgRtIekaN ABI man AI // MP IP 1 tamRTwsþIbTtaEls AM  AB IB -kñúgRtIekaN CNP man AI // NP IP AN IP tamRTwsþIbTtaEls AN b¤  2  AC IC AC IB eRBaH AI  CaemdüanénRtIekaN ABC Edl naM[ IB  IC enaHeKGacCMnYs IC eday IB . AN  tamTMnak;TMng 1 nig 2 naM[ AM AB AC

C 

AC AB  CD AC 2

B

D

CAD



dUcenH Taj)an AC  AB  CD . x> R)ab;eQµaHctuekaN AECD edayctuekaN AECD man ³ -mMu EAˆ D  ADˆ C  90 ¬mMuEkgctuekaNBñay¦ -mMu AEˆC  90 eRBaH CE  AB Rtg; E edaysar E enAelIrgVg;Ggát;p©it BC  Edlman mMu CEˆB  90 CamMucarwkknøHrgVg; . eXIjfa ctuekaN AECD manmMuEkgcMnYnbIKW EAˆ D  ADˆ C  90 nig AEˆ C  90 dUcenH ctuekaN AECD CactuekaNEkg .

E

A

ABC

P B

dUcenH eRbóbeFob)an

k> eRbóbeFobRtIekaN ABC nigRtIekaN CAD eday ABC niig CAD man ³ -mMu ACˆB  CDˆ A  90 ¬smµtikmµ CamMuEkg¦ -mMu ACˆD  BAˆ C ¬CamMuqøas;kñúg eRBaH AB// CD )atrbs;ctuekaNBñay ABCD¦ dUcenH ABC CAD tamlkçxNÐ m>m o

380

AM AN  AB AC

.

9

381

9

sm½yRbLg ³ 07 kkáda 1989 viBaØasa ³ KNitviTüa ry³eBl ³ 60 naTI BinÞú ³ 10  I. BICKNit

1> dak;kenSamxageRkamCaplKuNktþa ³ A  x2  x  2 B  x  22 x  1  x  4x  2  x  2

2

2> sRmYlkenSam

.

2 1 2 b   a b a  b a b 1 3x  2 y  0  3x  y  7  0 2

3> k> edaHRsayRbB½n§smIkartamRkaPic . x> rYcepÞógpÞat;tamEbbKNna . II. FrNImaRt 1> eKmanrgVg;BIrkat;KñaRtg; A nig B . tam A eKKUsbnÞat;b:HeTAnwgrgVg;TaMgBIr Edlkat;rgVg; TaMgBIrRtg; C nig D . RsaybMPøWfa CBˆ A  DBˆ A . 2> eKmanbnÞat;nwg D  mYy. enAelIbnÞat;enHeKedAcMNcu nwg A , B , C tamlMdab;enH . tam A nig B eKKUsbnÞat;ERbRbYlBIr  nig  EkgKñaRtg; E rYceKKUs D Ekgnwg D  Rtg; C . bnÞat; D  kat;   nig   erogKñaRtg;cMNuc M nig N . k> bMPøWfabnÞat; BM  nig  AN  EkgKñaRtg; F . rkGrtUsg;énRtIekaN BMN . x> B CacMNucqøHú én B cMeBaH MN  . bMPøWfacMNuc B enAelIrgVg;carwkeRkARtIekaN AMN . rksMNMucMNucp©it O énrgVg;enH . K> bMPøWfa CM  CN  CA CB .

8

382

9

cemøIy I. BICKNit

eyIgsg;RkaPic)an ³

1> dak;kenSamxageRkamCaplKuNktþa ³

3x  2 y  0

A x x2 2

 x 2  x  2x  2  xx  1  2x  1

7 3

 x  1x  2

3x  y  7  0

dUcenH CaplKuNktþa A  x  1x  2 . B  x  22 x  1  x  4x  2  x  2  x  22 x  1  x  4  x  2  x  22 x  1

dUcenH CaplKuNktþa B  x  22x  1 . 2> sRmYlkenSam

1 3x  2 y  0  3x  y  7  0 2 3y  7  0

2 1 2 b   a b a  b a b

manPaKEbgrYmKW  a  b  a  b   a  b eK)an ³ a 2 b  a 1 b  a2 bb 2 a  b   a  b  2 b    a2  b2

cMeBaH

2 y 3 2 7 14 x .  3 3 9

x

2 a 2 b  a  b 2 b a b a b  a b

dUcenH cMNucRbsBVKW   149 , 73  BitEmn . II. FrNImaRt

1> RsaybMPøWfa CBˆ A  DBˆ A ¬sUmemIlkarbkRsayenATMB½rbnþ¦

3> k> edaHRsayRbB½n§smIkartamRkaPic ³ eyIgman 33xx  2y y70 0 12  eyIgeRbItaragtémøelxedIm,Isg;RkaPic ³ x y x 2 : 3x  y  7  0 : y

1 :

3x  2 y  0

:

7 3

CMnYskñúgsmIkar 1 ³

a b

2 1 2 b a b    a b a b a  b a b

 y

7 3 1 : 3x  2 y  0 y



dUcenH

14 9

tamRkaPic cMNucRbsBVrvagbnÞat;KW   149 , 73  x> rYcepÞógpÞat;tamEbbKNna ³ eyIgman 33xx  2y y70 0 12  eyIgdkGgÁngi GgÁedIm,IbM)at; x eyIg)an ³

2

a2  b2



A D

0 2 0 3 3 2 2 1

B C

383

9

RsaybMPøWfa

km bMPøWfacMNcu B enAelIrgVg;carwkeRkA AMN eday M nig N enAelI D Edl D  D  ehIy BC  BC ¬eRBaH B CacMNucqøúHén B ¦ naM[ M nig N sßitenAelIemdüaT½rén BB naM[ MB  MB nig NB  NB enaH BMB nig BNB CaRtIekaNsm)at naM[ emdüaT½r MN k¾mannaTICaknøHbnÞat;BuHmMuEdr eK)an BNˆ C  BNˆ C nig BMˆ C  BMˆ C mü:ageTot BNˆ C  MAˆ C nig BMˆ C  NAˆ C ¬eRBaH BYkvamanRCugRtUvKñaEkgerogKña¦ ˆ ˆ eXIjfa BNˆ C  BNˆ C  BNˆ C  MAˆ C 1

CBˆ A  DBˆ A A 

D

O



O

B

C

tag O nig O Cap©iténrgVg;TaMgBIr edaykñúg ACB nig DAB man ³ -mMu ACˆB  DAˆ B ¬mMucarwk nigmMuBiessmanFñÚ sþat;rmY AB énrgVg;p©it O ¦ -mMu CAˆ B  ADˆ B ¬mMucarwk nigmMuBiessmanFñÚ sþat;rmY AB énrgVg;p©it O ¦ dUcenH ACB DAB tamlkçxNÐ m>m vi)ak mMuTIbIKW CBˆ A  DBˆ A dUcenH RsaybMPøW)anfa CBˆ A  DBˆ A . 2> lMhat;enH eKykeTARbLgqñaM 1991 mþgeTot tambRmab;RbFaneyIgsg;rbU )an ³  

M E 

D   

O

B

B A F

C N

BNC  MAC BMˆ C  B Mˆ C

D 

BMˆ C  NAˆ C

k> bMPøWfabnÞat; BM  nig  AN  EkgKñaRtg; F kñúg AMN man ³ EN  AM ¬eRBaH   nig   EkgKñaRtg; E ¦ AC  MN ¬eRBaH D  nig D  EkgKñaRtg; C ¦ naM[ EN nig AC Cakm
 B Mˆ C  NAˆ C 2 

eyIgbUkGgÁnigGgÁén 1 nig 2 ³  BNˆ C  MAˆ C   BMˆ C  NAˆ C BNˆ C  BMˆ C  MAˆ N

edaykñúg NMB manplbUkmMukñúgKW ³ ˆ  BMˆ C  MBˆ N  180o BN  C   MAˆ N

MAˆ N  MBˆ N  180o

9

eXIjfactuekaN AMBN manplbUkmMuQm ³ MAˆ N  MBˆ N  180 enaH AMBN CactuekaN carwkkñúgrgVg; mann½yfa B enAelIrgVg;carwkeRkA AMN dUcenH B enAelIrgVg;carwkeRkA AMN . - rksMNMucMNucp©it O énrgVge; nH eday A, B , C CacMNucnwg ¬smµtikmµ¦ enaH B CacMNucqøúHén B k¾CacMNucnwgEdr naM[ AB CaGgát;FñÚEdlmanRbEvgefr ehIyrgVg;p©it O kat;tam A nig B naM[ OA  OB ¬CakaMrgVg;EtmYy¦ eK)an O CacMNuccl½t EdleFVI[ OA  OB mann½yfa O RtUvsßitelIemdüaT½rén AB dUcenH sMNMucMNuc O sßitelIemdüaT½rén AB K> bMPøWfa CM  CN  CA CB eyIgeRbóbeFob ACN nig MCB eday ACN nig MCB man ³ -mMu ACˆN  MCB ¬eRBaH D  D Rtg; C ¦ -mMu NAˆ C  BMˆ C ¬mMumanRCugRtUvKñaEkgerogKña¦ dUcenH ACN MCB tamlkçxNÐ m>m CN CA vi)ak ACN   MCB CB CM Taj)an CM  CN  CA CB Et CB  CB ¬eRBaH B CacMNucqøúHén B ¦ eK)an CM  CN  CA CB dUcenH bMPøW)anfa CM  CN  CA CB . o

385

9

sm½yRbLg ³ 06 kkáda 1990 viBaØasa ³ KNitviTüa ry³eBl ³ 60 naTI BinÞú ³ 10  I. BICKNit

1> eK[kenSam ³ A  x  16  3x  1x  4 nig B  x k> dak;knSam A nig B CaplKuNktþadWeRkTImYyén x . x> sRmÜlRbPaKsniTan F  BA . 2

2

 8x  16

.

2> KNnakenSam P  5 5 3  5 3 3 ; Q  a aa  b bb nig R  2  2  3 . 3> kñúgtRmúyGrtUNrem xoy  sg;bnÞat; D  rbs;smIkar y  2x  3 nig D : y  5x  6 . k> rkkUGredaenéncMNucRbsBV I rvagbnÞat;TaMgBIr rYcepÞógpÞat;edayKNna . x> rksmIkarbnÞat;  Edlkat;tamcMNuc A2 ;  3 ehIyRsbnwgbnÞat; D  . II. FrNImaRt

1> eK[ctuekaNBñay ABCD )attUc AB. bnøayRCugeRTt AD nig BC  Edlkat;KñaRtg; E . k> eK[ ED  a ; EA  b ; EB  c . KNna BC . x> Ax  CaknøHbnÞat;BuH DAB nig Dy  CaknøHbnÞat;BuH ADC . knøHbnÞat;TaMgBIrCYbKñaRtg; J . R)ab;eQµaHRtIekaN AJD . 2> rgVg;BIrmanp©it O nig O kat;KñaRtg; A nig B . KUsGgát;p©ti AD nig AE  . k> RsaybMPøWfabIcMNcu D , B , E sßitenAelIbnÞat;EtmYy . x> M CacMNuccl½tenAelIrgVg; O . tam M KUsbnÞat;  AM  kat;rgVg; O Rtg; N . RsaybMPøWfa MBˆ N mantémøefrkalNa M rt;CMuvij A . K> I CacMNuckNþal AM  rksMNMucMNuc I kalNa M rt;CMuvji A elIrgVg; O .

8 386

9

cemøIy I. BICKNit

Q

1> mankenSam A  x  16  3x  1x  4 nig B  x  8x  16 k> dak; A nig B CaplKuNktþadWeRkTImYyén x

a  a 

2



2

A  x 2  16  3 x  1x  4   x  4 x  4   3 x  1x  4  x  4 5  2 x 

A  x  45  2 x 

.

 x 2  2  x  4  42  x  4  x  4x  4 2

B  x  4x  4

x> sRmÜlRbPaKsniTan F

F

.

A 5  2x  B x4

 

  

5 5  3 3 5  3 5 3 5 3



Q  a  b  ab

 42 3 



2

3  2 3  12

2

3> sg;bnÞat; D  nig D x 0 D  ³ y  2 x  3 ³ y 3

.

1 5

³ xy 11 eyIgsg;)andUcxageRkam ³



D  :

2 4

y  2x  3

I 3 , 9 

5 2  32

D : y  5x  6

8 52 3 4 5 3 2 P4 5 3

.

 3  1  3  1 dUcenH KNna)an R  3  1 . 

5 5 5 3 3 5 3 3

dUcenH KNna)an



D   : y  5 x  6

5 3 P  5 3 5 3





R  2 2 3

A F B

2> KNnakenSam ³ 

a b



a2  b2

dUcenH KNna)an

A  x  4 5  2 x   B  x  4  x  4  5  2x  , x4 0  x  4 x4

dUcenH sRmÜl)an

a b





B  x 2  8 x  16

dUcenH kenSam

  b 

a b b a  b a b a b

a 2  b ab  a ab  b 2  a b 2 2 a  b  a ab  b ab  a b a  b a  b   a  b  ab  a b a  b  a  b  ab  a b  a  b  ab , a  b  0  a  b

 x  4 x  4  3x  1

dUcenH kenSam

a a b b a b

. 387

9

 EA Et AD  ED  EA enaH BC  EB  ED EA ehIy ED  a ; EA  b ; EB  c ¬smµtikmµ¦

x> rkkUGredaenéncMNucRbsBV I tamRkaPic ³ ebIeyIgeFVIcMeNalEkgBIrcMNuc RbsBVeTAelIG½kSTaMgBIr enaHeyIg)an I 3, 9 . -epÞógpÞat;tamkarKNna ³ eyIgman D  ³ y  2x  3 nig D : y  5x  6 eyIgpÞwmsmIkarGab;sIusénbnÞat;TaMgBIr ³

BC 

dUcenH KNna)an



x3

cMeBaH x  3 enaH y  2x  3  2  3  3  9 dUcenH KNna)an I 3, 9 . x> rksmIkarbnÞat;  ³ smIkarbnÞat;Edlrkmanrag  : y  ax  b eday  : y  ax  b kat;tam A2 ;  3 eyIg)an  3  a  2  b  b  3  2a ehIy  RsbnwgbnÞat; D  enaH a  a  2 cMeBaH a  2 ³ b  3  2a  3  2  2  7 dUcenH smIkarbnÞat;  : y  2x  7 .

ac  bc b

.

o

o

o

DAˆ J  ADˆ J  90o

eXIjfakñúg AJD man DAˆ J  ADˆ J  90 naM[ AJˆD  90 ¬CamMuEkg¦ dUcenH RtIekaN AJD CaRtIekaNEkgRtg; J . 2> tambRmab;RbFaneyIgsg;rUb)an ³ o

o

N

II. FrNImaRt

A

1> tambRmab;RbFaneyIgsg;rUb)an ³

I

M B

A

k> RsaybMPøfW a D , B , E sßitenAelIbnÞat;EtmYy edayrgVg;Ggát;p©it AD nig AE  RbsBVKñaRtg; cMNuc A , B enaHcMNuc A , B enAelIrgVg;TaMgBIr -rgVg;Ggát;p©it AD man B enAelIrgVg; naM[ ABˆD  90 ¬mMucarwkknøHrgVg;Ggát;p©it AD ¦ -rgVg;Ggát;p©it AE  man B enAelIrgVg; naM[ ABˆE  90 ¬mMucarwkknøHrgVg;Ggát;p©it AE  ¦

C x

k> KNna BC eday)atctuekaNBñay ABCD man AB//CD tamRTwsþIbTtaEls eyIg)anGgát;smamaRtKW ³ 

E

BC 

B D

y

J

D

 O 

O

E

EA EB  AD BC

BC 

x> R)ab;eQµaHRtIekaN AJD eday AB//CD ¬)atTaMgBIrctuekaNBñay¦ naM[ DAˆ B  CDˆ A  180 ¬mMubEnßmKña¦ Et DAˆ B  2DAˆ J ¬eRBaH Ax  BuHmMu DAB¦ CDˆ A  2 ADˆ J ¬ eRBaH Dy  BuHmMu ADC ¦ naM[ 2DAˆ J  2 ADˆ J  180 2DAˆ J  ADˆ J   180

2 x  3  5x  6 3x  9

EB  ED  EA ca  b  ac  bc   EA b b

o

EB  AD EA

o

388

9

eday ABˆD  ABˆE  90  90  180 Et ABˆD  ABˆE  DBˆE eXIjfa ABˆˆ D  ABˆˆ E  180ˆ  DBˆ E  180 o

o

o

N

A

o

o

I

ABD  ABE  DBE

 O 

E

O

mann½yfa DBˆ E CamMurab b¤ bnÞat;Rtg; dUcenH D , B , E sßitenAelIbnÞat;EtmYy . x> RsaybMPøWfa MBˆ N mantémøefrkalNa M rt;CMuvij A kñúg MNB eTaHbI M rt;CMuvij A y:agNak¾eday k¾eyIgenAEtTTYl)an ³ -cMeBaHrgVg;p©ti O ³ AMˆ B  12  AB efr -cMeBaHrgVg;p©ti O ³ ANˆ B  12  AB efr naM[ MBˆ N  180  AMˆ B  ANˆ B  k¾efrEdr dUcenH MBˆ N mantémøefrkalNa M rt;CMuvij A K> rksMNMucN M uc I kalNa M rt;CMuvij A elIrgVg; O eyIgman IM  IA ¬eRBaH I kNþal AM  ¦ enaHeyIg)an OI  AM ¬eRBaHkaMrgVgE; kgnwgGgát;FñÚRtg;cMNuckNþal¦ eday cMNuc O , A minERbRbYl eyIg)an OIˆA  90 mantémøefr edIm,I[ OIˆA  90 efr luHRta I sßitenAelI rgVg;EdlmanGgát;p©it OA -ebI M RtYtelI D enaH I RtYtelI O -ebI M RtYtelI A enaH I RtYtelI A dUcenH sMNcMu MNuc I enAelIrgVg;Ggát;p©it OA .

M

B D

o

o

o

389

9

sm½yRbLg ³ 09 mifuna 1991 viBaØasa ³ KNitviTüa ry³eBl ³ 60 naTI BinÞú ³ 10  I. BICKNit

1> dak;kenSamxageRkamCaplKuNktþa ³ A  3 x  5  16 2

B  x  32 x  1  x  3  x  3 1 3  0 ; A0 ; B0 B A 2

rYcedaHRsaysmIkar . 2> k> BnøatkenSam P  4  5 3  10  . x> KNnakenSam Q  6  4 2 . 3> tamTMnak;TMng x  2  y  2 KNna xy rYcKNna x nig y edaydwgfa x  y  1 . 4> kñúgtRmúyGrtUNrem xoy  manÉktaCasg;TIEm:Rt cm . k> sg;bnÞat;   : y  2x  3 nig   : y  3x  7 . x> bnÞat;TaMgBIrRbsBVKñaRtg;cMNuc A . KNnakUGredaenéncMNuc A . K> sresrsmIkarbnÞat; D  Edl D   ehIykat;tamcMNuc I 4 , 3 . 1

2

1

II. FrNImaRt

eKmanbnÞat;nwg D  mYy. enAelIbnÞat;enHeKedAcMNucnwg A , B , C tamlMdab;enH . tam A nig B eKKUsbnÞat;ERbRbÜlBIr  nig  EkgKñaRtg; E rYceKKUs D Ekgnwg D  Rtg; C . bnÞat; D kat;  nig  erogKñaRtg;cMNuc M nig N . k> bMPøWfabnÞat; BM  nig  AN  EkgKñaRtg; F . rkGrtUsg;énRtIekaN BMN . x> B CacMNucqøHú én B cMeBaH MN  . bMPøWfacMNuc B enAelIrgVg;carwkeRkARtIekaN AMN . rksMNMucMNucp©it O énrgVg;enH . K> bMPøWfa CM  CN  CA CB .

8 390

9

cemøIy I. BICKNit

-edaHRsaysmIkar cMeBaH B  0 eK)an x  3x  5  0 naM[ xx  53  00  xx  53

1> dak;kenSamxageRkamCaplKuNktþa ³ A  3 x  5  16 2

 3 x  5  4 2  3 x  5  43 x  5  4   3 x  13 x  9   33 x  1 x  3



2

dUcenH ebI B  0 enaHb£s x  3 , x  5 . 2> k> BnøatkenSam P ³ P  4  5 3  10 

B  x  32 x  1  x  3  x  3 2

 x  32 x  1  x  3  x  3 2

 12  4 10  3 5  50

 x  32 x  1  x  3  1  x  3x  5

dUcenH

A  33x  1x  3

 12  4 10  3 5  5 2

dUcenH Bnøat)an P  12  4 x> KNnakenSam Q ³

nig B  x  3x  5

-edaHRsaysmIkar ³ cMeBaH B1  A3  0 eK)an x  31 x  5  33x  13x  3  0



dUcenH KNna)an

tRmÚvPaKEbgrYm x  3x  53x  1 rYclubecal

3x  1  x  5  0 2 x  6  0  x  3

/

1 3  0 B A

KµancemøyI .

 2 2

.

Q  2 2

2  y2

x  2 y

x y x y 1 2 2 2 2      2 2 2 2  2 2  2 22  22 x 2 2   x  2 2 2 2

-edaHRsaysmIkar cMeBaH A  0 eK)an 33x  1x  3  0 naM[ 3xx3100  xx  13/ 3 

2

dUcenH KNna)an xy  2 . -KNna x nig y cMeBaH x  y  1 x y x  2  y  2 enaH  ¬tamsmamaRt¦ 2 2

cMeBaH x  3 minyk eRBaHvaCalkçxNÐ dUcenH smIkar

2  2 

3> KNna xy eyIgman TMnak;TMng x  Taj)an xy  22 

x  3  0  x  3   x  5  0  x  5 3x  1  0  x  1 / 3  

eK)an

10  3 5  5 2

Q  6  4 2  4  2  2  2  22

1 1  0 x  3x  5 3x  1x  3

Edl



naM[

y



2

dUcenH ebI A  0 enaHb£s x   13 , x  3



2 2 2 2  22  y  2 1 2 2

dUcenH KNna)an x  2  2 / 391

y  2 1

.

9

4> k> sg;bnÞat;   nigbnÞat;   eyIgeRbItaragtémøelxedIm,Isg;bnÞat;TaMgenH x 0 1   : y  2 x  3 ³ y 3 1 1

2

II. FrNImaRt

tambRmab;RbFaneyIgsg;rbU )an ³  

M

1

E

³ y 4 1 eyIgsg;bnÞat;TaMgBIr)andUcxageRkam ³  2  : y  3x  7

1  : y  2 x  3

x 1 2



D   

 2  : y  3x  7

B

B A F

C N

D 

k> bMPøWfabnÞat; BM  nig  AN  EkgKñaRtg; F kñúg AMN man ³ EN  AM ¬eRBaH   nig   EkgKñaRtg; E ¦ AC  MN ¬eRBaH D  nig D  EkgKñaRtg; C ¦ naM[ EN nig AC Cakm bMPøWfacMNcu B enAelIrgVg;carwkeRkA AMN eday M nig N enAelI D Edl D  D  ehIy BC  BC ¬eRBaH B CacMNucqøúHén B ¦ naM[ M nig N sßitenAelIemdüaT½rén BB naM[ MB  MB nig NB  NB enaH BMB nig BNB CaRtIekaNsm)at

D : y  2 x  11

A

x> KNnakUGredaenéncMNuc A eyIgman   : y  2x  3 nig   : y  3x  7 eyIgpÞwmsmIkarGab;sIusénbnÞat;TaMgBIr ³ eyIg)an  2x  3  3x  7 / 3x  2 x  7  3  x  4 cMeBaH x  4 : y  2x  3  2  4  3  5 dUcenH kUGredaenéncMNucRbsBVKW A4 ,  5 . K> sresrsmIkarbnÞat; D  smIkarbnÞat;EdlRtUvrkmanrag D : y  ax  b eday D   naM[ a  a  2 ehIykat;tamcMNuc I 4 , 3 naM[ 3   2 4  b  b  3  8  11 dUcenH smIkarbnÞat; D : y  2x  11 . 1

O

2

1

392

9

naM[ emdüaT½r MN k¾mannaTICaknøHbnÞat;BuHmMuEdr eK)an BNˆ C  BNˆ C nig BMˆ C  BMˆ C mü:ageTot BNˆ C  MAˆ C nig BMˆ C  NAˆ C ¬eRBaH BYkvamanRCugRtUvKñaEkgerogKña¦ ˆ ˆ eXIjfa BNˆ C  BNˆ C  BNˆ C  MAˆ C 1

K> bMPøWfa CM  CN  CA CB eyIgeRbóbeFob ACN nig MCB eday ACN nig MCB man ³ -mMu ACˆN  MCB ¬eRBaH D  D  Rtg; C ¦ -mMu NAˆ C  BMˆ C ¬mMumanRCugRtUvKñaEkgerogKña¦ dUcenH ACN MCB tamlkçxNÐ m>m CN CA vi)ak ACN   MCB CB CM Taj)an CM  CN  CA CB Et CB  CB ¬eRBaH B CacMNucqøúHén B ¦ eK)an CM  CN  CA CB dUcenH bMPøW)anfa CM  CN  CA CB .

BNC  MAC

BMˆ C  B Mˆ C  B Mˆ C  NAˆ C 2  ˆ ˆ BMC  NAC

eyIgbUkGgÁnigGgÁén 1 nig 2 ³  BNˆ C  MAˆ C   BMˆ C  NAˆ C BNˆ C  BMˆ C  MAˆ N

edaykñúg NMB manplbUkmMukñúgKW ³ ˆ  BMˆ C  MBˆ N  180o BN  C   MAˆ N

rUbdEdl edIm,I[RsYlemIlkñúgkarbkRsay

MAˆ N  MBˆ N  180o

eXIjfactuekaN AMBN manplbUkmMuQm ³ MAˆ N  MBˆ N  180 enaH AMBN CactuekaN carwkkñúgrgVg; mann½yfa B enAelIrgVg;carwkeRkA AMN dUcenH B enAelIrgVg;carwkeRkA AMN . - rksMNMucMNucp©it O énrgVge; nH eday A, B , C CacMNucnwg ¬smµtikmµ¦ enaH B CacMNucqøúHén B k¾CacMNucnwgEdr naM[ AB CaGgát;FñÚEdlmanRbEvgefr ehIyrgVg;p©it O kat;tam A nig B naM[ OA  OB ¬CakaMrgVg;EtmYy¦ eK)an O CacMNuccl½t EdleFVI[ OA  OB mann½yfa O RtUvsßitelIemdüaT½rén AB dUcenH sMNMucMNuc O sßitelIemdüaT½rén AB

 

M

o

E 

D   

O

B

B A F

C N

D 

393

9

sm½yRbLg ³ 14 kkáda 1992 viBaØasa ³ KNitviTüa ry³eBl ³ 60 naTI BinÞú ³ 10  I. BICKNit

1> k> bMEbkkenSam A CaplKuNktþaEdl A  2 x  3x  4  4 x  9  2 x  3 . x> etI x RtUvmantémøesµIb:unµan edIm,I[ A  0 ? K> KNnatémøelxénknSam A cMeBaH x  1 2 . 2> sRmYlkenSam F  2xx32x7x 49 4x6x972xx23 . 3> kñúgtRmúyGrtUNrem xoy  EdlmanÉktþaCa sg;TIEm:Rt ¬ cm ¦ . k> sg;bnÞat; D  : y  2x  4 nigbnÞat; D  : y  x  1 . x> bnÞat; D  nig D  RbsBVKñaRtg;cMNuc I . KNnakUGredaenéncMNuc I . K> sresrsmIkarbnÞat; D  Ekgnwg D  nigkat;tamcMNuc A0 ,1 . 2

2

2

1

1

2

2

2

2

II. FrNImaRt

eK[rgVg; C  p©it O viCÄmaRt AB Edl AB  4R nigrgVg; C  p©it O viCÄmaRt OA . tam B KUsbnÞat;b:H BM  eTAnwgrgVg; C  Rtg; M . BM  kat;rgVg; C  Rtg; E . 1> bgðajfa AE  Rsbnwg OM  . rYcTajbBa¢ak;fa AM  CaknøHbnÞat;BuHén BAE. 2>  AM  kat;rgVg; C  Rtg; N . bgðajfa M CacMNuckNþalén AN  . 3> bnÞat; ON  kat; BM  Rtg; G . etI G CaGVIcMeBaHRtIekaN ANB . KNna OG CaGnuKmn_én R . 4> bnÞat; AE  kat; BN  Rtg; P . bgðajfa MP  AB  .

8

394

9

cemøIy I. BICKNit

3> k> sg;bnÞat; D  nigbnÞat; D  eyIgeRbItaragtémøelxedIm,Isg;bnÞat;TaMgBIr x 0 2 D  : y  2 x  4 ³ y 4 0 1

1> k> bMEbkkenSam A CaplKuNktþa 



A  2 x  3x  4  4 x 2  9  2 x  3

2

 2 x  3x  4  2 x  32 x  3  2 x  3  2 x  3x  4  2 x  3  2 x  3  2 x  3x  4  2 x  3  2 x  3  2 x  3x  2

1

2

³ xy 10 12 eyIgsg;bnÞat;TaMgBIr)andUcxageRkam ³ D2  : y  x  1

dUcenH bMEbk)an A  2x  3x  2 . x> rktémø x edIm,I[ A  0 eyIgman A  2x  3x  2 ebI A  0 enaH 2x  3x  2  0 naM[

D2  : y  x  1

D1  : y  2 x  4

3  x 2 x  3  0 2 x  3  2  x  2  0   x  2     x   2 

x> KNnakUGredaenéncMNcu I eyIgman D  : y  2x  4 b¤ y  2x  4 D  : y  x  1 b¤ y  x  1 eyIgpÞwmsmIkarGab;sIusénbnÞat;TaMgBIr ³ eyIg)an  2x  4  x  1

dUcenH ebI A  0 enaH x  32 , x  2 .

1

K> KNnatémøelxénknSam A cMeBaH x  1 2 eyIgman A  2x  3x  2 cMeBaH x  1 2 eyIg)an A  21  2  31  2  2 



 2 2 1 3  2

2

3x  3



 5 2 1

F

A  5 2 1

.

2x  3x  4  4 x 2  9  2x  32 x  27 x  9  6 x  7 x  2

2

A  x  27 x  9  6 x  7 x  2 2 x  3x  2  x  27 x  9  6 x  7  2x  3  , x  2  0  x  2 x2

dUcenH sRmÜl)an

F

2x  3 x2

 x 1

/

cMeBaH x  1 enaH y  x  1  1  1  2 dUcenH kUGredaenéncMNucRbsBV I 1, 2 . K> sresrsmIkarbnÞat; D  smIkarbnÞat; D  EdlRtUvrkmanrag y  ax  b eday D   D   a  a  1 Et D  : y  x  1 man a  1 naM[ a  1 ehIy D  kat;tamcMNuc A0 ,1 eyIg)an 1  a  0  b  b  1 dUcenH smIkarbnÞat; D  ³ y   x  1 .

 6 2  43 2

dUcenH cMeBaH x  1 2 enaH 2> sRmYlkenSam F ³

2

2

. 395

9

II. FrNImaRt

rgVg;p©it O man AN CaGgát;FñÚ nig AN  MO naM[ MA  MN eRBaH kaMEkgnwgGgát;FñÚRtg;cMNuckNþalCanic© dUcenH M CacMNuckNþalén AN  . 3> etI G CaGVIceM BaHRtIekaN ANB kñúg ANB mancMNuc M kNþal AN nig O kNþal AB naM[ Ggát; BM nig ON Caemdüan TaMgBIrénRtIekaNenH . edayemdüan BM nig ON RbsBVKñaRtg; G enaH emdüanTIbI k¾kat;tamcMNuc G enHEdr . dUcenH G CaTIRbCMuTm¶n;énRtIekaN ANB . -KNna OG CaGnuKmn_én R tamlkçN³emdüan OG  13  ON 4R Et ON  OA  AB   2 R ¬kaMrgVg;dUcKña¦ 2 2 naM[ OG  13  2R  23 R

tambRmab;RbFaneyIgsg;rbU )an ³ P N

E

M

G

A



O



B

O

C

C 

1> bgðajfa AE  Rsbnwg OM  rgVg;viCÄmaRt AB man E enAelIrgVg;enH ¬eRBaH BM  kat;rgVg; C  Rtg; E ¦ naM[ ABE EkgRtg; E Edl AE  EB ehIy BM  CabnÞat;b:HrgVg;p©it O Rtg; M naM[ OM  MB b¤ OM  EB eXIjfa OAEMEBEB  AE//OM  dUcenH bgðaj)anfa AE  Rsbnwg OM  . -TajbBa¢ak;fa AM  CaknøHbnÞat;BuHén BAE eday AE //OM  ¬sRmayxagelI ¦ naM[ OMˆ A  EAˆ M 1 ¬mMuqøas;kñúg¦ ehIy OAM CaRtIekaNsm)at ¬eRBaH OA  OM kaMrgVg;p©it O dUcKña¦ naM[ OMˆ A  OAˆ M 2 ¬mMu)at  sm)at¦ pÞwm 1 nig 2 eyIg)an ³ EAˆ M  OAˆ M b¤ EAˆ M  BAˆ M dUcenH AM  CaknøHbnÞat;BuHén BAE . 2> bgðajfa M CacMNuckNþalén AN  rgVg;viCÄmaRt OA man M enAelIrgVg;enH naM[ mMu OMˆ A  90 enaH AM  MO b¤ AN  MO ¬eRBaH N Cabnøayén AM ¦

dUcenH KNna)an

OG 

2 R 3

.

4> bgðajfa MP  AB  eK)an AP  BE nig BP  AN eRBaH E nig N enAelIrgVg;viCÄmaRt AB vaCamMcu arwkknøHrgVg; kñúg APB man AP  BE nig BP  AN enaH BE nig AN Cakm
o

396

9

397

9

sm½yRbLg ³ 14 kkáda 1993 viBaØasa ³ KNitviTüa ry³eBl ³ 60 naTI BinÞú ³ 10  I. BICKNit

1> eK[kenSam Ax  x  2x  3  2  x5  x  4  x . k> BnøatkenSamxagelIenH rYcsresrtamlMdab;sV½yKuNcuHén x . x> sresr Ax CaragplKuNktþa . K> sRmYlRbPaKsniTan F x  5x  2A xxx  2 . kMNt;témø x edIm,I[ F x   0 . 2> sg;bnÞat; D  nig D  tagGnuKmn_ y  x  4 nig y  5  x . rkkUGredaenéncMNucRbsBVrvagbnÞat;TaMgBIr . 2

1

2

II. FrNImaRt

eK[rgVg;p©it O kaM R . KUsbnÞat; D  b:HnwgrgVg;Rtg; P . A CacMNucmYyén D  . rgVg;Ggát; p©it OA kat;knøHbnÞat;BuH OAP Rtg; H . bnøayén OH  kat;bnÞat; D  Rtg; M . 1> bgðajfargVgG; gát;p©it OA kat;tamcMNuc P . 2> R)ab;RbePTRtIekaN AOM . 3> KUskm
8 cemøIy I. BICKNit

x> sresr Ax CaragplKuNktþa Ax   x  2x  3  2  x 5  x   4  x 2

1> eKman Ax  x  2x  3  2  x5  x  4  x k> BnøatkenSam nigsresrtamlMdab;sV½yKuNcuH 2



Ax   x  2x  3  2  x 5  x   4  x 2  x 2  3x  2 x  6  10  2 x  5 x  x 2  4  x 2  x 2  5 x  6  10  7 x  x 2  4  x 2

dUcenH dak; Ax CaplKuNktþa)anKW ³

 x 2  2x  8

dUcenH BnøatkenSam)an Ax  x

2

 2x  8



 x  2x  3  x  25  x   x 2  4  x  2x  3  x  25  x   x  2x  2  x  2x  3  5  x  x  2  x  2x  4

Ax   x  2x  4

. 398

.

9

K> sRmYlRbPaKsniTan F x ³ eKman F x  5x  2A xxx  2 b¤ F x  xx  225x  4x  5x  4x Edl x  2  0  x  2

II. FrNImaRt

tambRmab;RbFaneyIgsg;rbU )andUcxageRkam ³ K

dUcenH sRmÜl)an F x  5x  4x .

A

dUcenH ebI F x   0 kMNt;)antémø x  4 . 2> sg;bnÞat; D  nig D  eyIgeRbItaragtémøelxedIm,Isg;bnÞat;TaMgBIr x 4 0 D  ³ y  x  4 y 0 4 2

1

D2  ³

y  5 x

x

H

P M

o



1

O

D 

1> bgðajfargVg;Ggát;p©it OA kat;tamcMNuc P bnÞat;b:H D  EkgnwgkaMrgVg; OP Rtg;cMNucb:H P naM[ mMu OPA  90 ¬eRBaH A enAelI D  ¦ ehIy OA Ggát;p©itrgVg; enaHmann½yfa OPA CamMucarwkknøHrgVg; Ggát;p©it OA  dUcenH rgVg;Ggát;p©it OA kat;tamcMNuc P . 2> R)ab;RbePTRtIekaN AOM eday H CacMNucenAelIrgVg;Ggát;p©it OA naM[ AH  OH b¤ AH  OM ¬eRBaH M enAelIbnøay OH ¦ eday AOM man AH CaknøHbnÞat;BuHpg nig Cakm RsaybMPøWfa MK  R eday OPA  90 enaH OP Cakm
- kMNt;témø x edIm,I[ F x   0 ebI F x   0 enaH 5x  4x  0 eK)an 5x  x4  00  xx  54 



0 5

y 5 0

D1  : y  x  4 D2  : y  5  x

-rkkUGredaenéncMNucRbsBVrvagbnÞat;TaMgBIr eyIgpÞwmsmIkarGab;sIusénbnÞat;TaMgBIr eyIg)an x  4  5  x 1 2x  1  x b¤ 2 1 1 9 cMeBaH x  2 : y  5  x  5  2  2

o

dUcenH cMNcu RbsBVénbnÞat;TaMgBIrKW  12 , 92  . 399

9

sm½yRbLg ³ 12 kkáda 1994 viBaØasa ³ KNitviTüa ry³eBl ³ 60 naTI BinÞú ³ 10  I. BICKNit

1> k> eRbóbeFobcMnYn x  3 5 nig y  2 11 . x> sRmYlkenSam E  5 5 3  5 3 3 . 2> eK[kenSam ³ Ax  x  4x  4  x  36  3x  5x  4 . k> BnøatkenSam Ax rYcerobtamlMdab;sV½yKuNcuHén x . x> dak; Ax CaplKuNktþadWeRkTI1 . K> edaHRsaysmIkar Ax  0 / Ax  2 . X> eK[RbPaK F x  3x A1x4  x rktémø x EdleFVI[ F x mann½y rYcsRmYl F x . 3> k> kñúgtRmúyGrtUNrem xoy  sg;bnÞat; D  : y  x  2 nig D  : y  4  x . x> rkkUGredaenéncMNucRbsBV I rvagbnÞat;TaMgBIr . 2

2

1

2

II. FrNImaRt

eK[rgVg;p©it O EdlmanGgátp; ©itBIrKW AB nig CD EkgKña . E CacMNucmYyén OA . 1> R)ab;eQµaHénRtIekaN CED . 2> tamcMNuc C eKKUsbnÞat;Ekgnwg CE  ehIytam D eKKUsbnÞat;Ekgnwg DE  . bnÞat;TaMg BIrenHRbsBVKñaRtg;cMNuc F . k> eRbóbeFobRtIekaN CEF nigRtIekaN DEF . x> bgðajfa F enAelIbnÞat; AB . 3> H CacMNucqøúHéncMNuc E eFobnwgcMNuc O . k> R)ab;eQµaHctuekaN CEDH . x> RsaybBa¢ak;fa H CaGrtUsg;énRtIekaN CDF .

8 400

9

cemøIy Ax   3x 2  7 x  2

I. BICKNit

1> k> eRbóbeFobcMnYn x  3 5 nig y  2 eyIgman x  3 5 nig y  2 11 naM[ x  3 5  3  5  9  5  45

 3x 2  x  6 x  2  x3x  1  23x  1

11

 3x  1x  2

dUcenH plKuNktþa Ax  3x  1x  2 . K> edaHRsaysmIkar ³ eyIgman Ax  3x  1x  2 -cMeBaH Ax  0 enaH 3x  1x  2  0 1  naM[ 3xx2100  3xx21   x  3

2

y  2 11  22 11  4 11  44

eday 45  44  x  y dUcenH eRbóbeFob)an x  y . x> sRmYlkenSam E ³ eKman E  5 5 3  5 3 3 5 3   5 3 5 3



  

5 5  3 3 5  3  5 3 5 3 







2



dUcenH sRmÜl)an 2> eK[kenSam ³





dUcenH ebI





k> Bnøat Ax rYcerobtamlMdab;sV½yKuNcuHén x 

Ax   x 2  4 x  4  x  36  3 x   5 x 2  4

Ax   2

enaH

x  0

x

7 , x0 3

.

X> rktémø x EdleFVI[ F x mann½y eyIgman F x  3x A1x4  x RbPaK F x mann½y luHRtaEtPaKEbgxusBI 0

. 



 x  4 x  4  3 x  3 x  18  5 x  20 2

.

2

Ax   x 2  4 x  4  x  36  3x   5 x 2  4

2

1 , x2 3

2

2

E4 5 3

x

-cMeBaH Ax  2 enaH 3x  7x  2  2 b¤ 3x  7 x  0  3x  7x  0 7  naM[ 3xx07  0  3xx07   x  3

8 52 3  53 24 5 3  4 5 3 2



x  2

dUcenH ebI Ax  0 enaH

5 5 5 3 3 5 3 3 5  3



2

 3x 2  7 x  2

eK)an

1  x 3x  1  0 3x  1  3 4  x  0   x  4     x  4 

dUcenH

F x 

mann½y kalNa x  13 , x  4 .

sRmÜl F x  3x A1x4  x

dUcenH Bnøat)an Ax  3x  7 x  2 . x> dak; Ax CaplKuNktþadWeRkTI1 2



3x  1x  2  x  2 3x  14  x  4  x

dUcenH sRmÜl)an 401

F x  

x2 4 x

.

9

2> k> eRbóbeFob CEF nig DEF RtIekaNTaMgBIrman EC  CF nig ED  DF enaHmMu ECˆF  EDˆ F  90 naM[ CEF nig DEF CaRtIekaNEkgTaMgBIr Edlman ³ - RCug EC  ED ¬bBa¢ak;xagelI¦ -GIub:UetnusrYm EF dUcenH CEF DEF tamkrNI G>C . vi)ak CF  DF x> bgðajfa F enAelIbnÞat; AB tamvi)akxagelI CF  DF mann½yfa F RtUv sßitenAelIemdüaT½r énGgát; CD ehIyemdüaT½rén CD KW AB dUcenH eXIjfa F enAelIbnÞat; AB . 3> k> R)ab;eQµaHctuekaN CEDH . H CacMNucqøúHéncMNuc E eFobnwgcMNuc O naM[ OE  OH Edl E nig H enAelI AB ehIy OC  OD ¬kaMrgVg;p©it O dUcKña¦ nigman EH   CD Rtg;cMNuckNþal O enaH CEDH CactuekaNmanGgát;RTUgEkgKña Rtg;cMNuckNþal ehIyvaKµanmMuEkg dUcenH ctuekaN CEDH CactuekaNesµI . vi)ak ³ CE // DH nig ED// CH x> RsaybBa¢ak;fa H CaGrtUsg;én CDF // DH eday CE  DH  CF CE  CF

3> k> sg;bnÞat; D  nig D  kñúgtRmúy xoy  eyIgeRbItaragtémøelxedIm,Isg;bnÞat;TaMgBIr 1

D1  : y  x  2

 D2  : y  4  x

2

x 0 2 y 2 0 x 0 4

o

y 4 0

D1  : y  x  2

D2  : y  4  x

x> rkkUGredaencMNucRbsBV I énbnÞat;TaMgBIr eyIgman D  : y  x  2 nig D  : y  4  x edaypÞwmsmIkarGab;sIusénbnÞat;TaMgBIr eK)an x  2  4  x  2x  6  x  3 cMeBaH x  3 enaH y  x  2  3  2  1 dUcenH cMNucRbsBVrvagbnÞat;TaMgBIr I 3,1 . 1

2

II. FrNImaRt

tambRmab;RbFaneyIgsg;rbU )an ³ C

H

A

E

O

B

F

D

1> R)ab;eQµaHénRtIekaN CED edayGgát;p©it AB nig CD EkgKña ehIy E CacMNucmYyén OA enaH E sßitenA elIemdüaT½r AB énGgát; CD naM[ EC  ED dUcenH RtIekaN CED CaRtIekaNsm)at .

ED // CH ED  DF

 CH  DF

ehIy FH  CD eRBaH F nig H enAelI AB naM[ CDF man DH , CH , FH Cakm
9

403

9

sm½yRbLg ³ 13 kkáda 1995 viBaØasa ³ KNitviTüa ¬elIkTI1¦ ry³eBl ³ 60 naTI BinÞú ³ 10  I. BICKNit

1> edaHRsaysmIkar ³ 1 x2x  2 xx 3 . 2> edaHRsayvismIkar ³ 2  1  3x  2x  3 rYcbkRsaycemøIyenAelIG½kS . 3> RsaybBa¢ak;fa ³ x 5 3  xx 29  2xx16  x 2x4 x937 . 2

2

4> sRmYlRbPaK ³ A  x

2

2

  2

 2x  6  x 2  2x  2 x2  4 x 2  3x  2 F x2 1

 . 2

5> KNnatémøelxénRbPaK ³ cMeBaH x  1 ; x  3 . 6> enAkñúgtRmúyGrtUNrem xoy  sg;bnÞat; D  : y  1  2x ; D  : y  2x  3 rYcrkkUGredaenéncMNucRbsBVrvagbnÞat;TaMgBIr . 1

1

2

2

II. FrNImaRt

1> tamkMBUlénRtIekaNsm)at DEF eKKUsbnÞat;mYyEdlkat;)at EF  Rtg; G nigkat;rgVg; C  carwkeRkARtIekaN DEF Rtg; H . eRbóbeFobRtIekaN DEG nigRtIekaN DEH rYcbgðajfa DE  DG  DH . 2> eK[RbelLÚRkam MNPQ EdlmMu Nˆ  120 nigknøHbnÞat;BuHmMu Mˆ kat; NP Rtg;cMNuckNþal I . k> kMNt;ragRtIekaN NMI rYceRbóbeFob MN nig NP . x>tag J CacMeNalEkgén I elI MQ  . KNnargVas;mMuénRtIekaN MIJ . K>tag I  CacMNucqøúHén I eFobnwg MQ  . kMNt;ragRtIekaN MII  rYceRbóbeFob IJ nig MI  . 2

o

8 404

9

cemøIy I. BICKNit

1> edaHRsaysmIkar ³ eyIgman 1 x2x  2 xx 3 smIkarmann½yluHRtaEt x  0 eyIg)an 1 x2x  2 xx 3 1  2x  2x  3 ¬lubPaKEbgecal¦

10 x  30  2 x  4  x 2  4 x  3 2 x2  9



x 2  4 x  37 2 x2  9

 











5 x2 x  1 x 2  4 x  37  2   x  3 x  9 2x  6 2 x2  9



x

 



2

2

2

2

dUcenH vismIkarmancemøIy x  4 . -bkRsayelIG½kS x  4 0   cMeBaH kmµviFIcas; EpñkminqUtCacemøIyénvismIkar . 0

x

2

2

2

x

2

2

dUcenH cMeBaH x  1 enaH F  0 . -cMeBaH x  3 eK)an F  3  3  3  2  5  43 3

5 x2 x 1 x 2  4 x  37    x  3 x 2  9 2x  6 2 x2  9



.

Edl x  4  0  x  4  x  2 dUcenH sRmÜl)an A  8x  1 . 5> KNnatémøelxénRbPaK F cMeBaHtémø x ³ eyIgman F  x x 3x1 2 -cMeBaH x  1 eK)an F  1 1 311 2  02  0

x  4

 cMeBaH kmµviFfI µI EpñkKUsDit CacemøIyénvismIkar . 3> RsaybBa¢ak;fa ³



 2x  6  x 2  2x  2 x2  4 x 2  2 x  6  x 2  2 x  2x 2  2 x  6  x 2  2 x  2  x2  4 4 x  42 x 2  8  x2  4 4 x  1  2x 2  4   x2  4  8 x  1 A

4





4> sRmYlRbPaK ³

1  3x  2 x  3



2

BinitüGgÁTI1 ³ ¬erobcM[dUcGgÁTI2¦

2

3 1

5 x2 x 1  2  x  3 x  9 2x  6 x  1x  3 2  5   x  3 2x  2     2 2x  3x  3 2 x  9 2x  3x  3







dUcenH

dUcenH smIkarmanb£s x  1 . 2> edaHRsayvismIkar ³ eyIgman 2  1  3x  2x  3



10 x  30 2x  4 x 2  4x  3   2 x2  9 2 x2  9 2 x2  9

eXIjfalT§plénGgÁTI1 dUcGgÁTI2CaR)akd

1  2x  2x  3  2 x  2 x  3  1  4 x  4 x 1

x



dUcenH cMeBaH x 



405

3

enaH

F

53 3 4

.

9

6> sg;bnÞat; D  nig D  kñúgtRmúy xoy  eyIgeRbItaragtémøelxedIm,Isg;bnÞat; 1

D1  : y1  1  2 x

DE DG -vi)ak DEG   DHE DH DE Taj)anBIsmamaRt DE  DG  DH dUcenH eyIgbgðaj)anfa DE  DG  DH . 2> tambRmab;RbFaneyIgKUsrUb)an ³

2

:

D2  : y 2  2 x  3 :

2

x 0 1 y 1 1 x 1 2

2

y 1 1

D2  : y2  2 x  3

N

I

// o

P

//

120

M

Q

J

D1  : y1  1  2 x

I

k-kMNt;ragRtIekaN NMI -rkkUGredaenéncMNucRbsBVrvagbnÞat;TaMgBIr ³ eday D  : y  1  2x nig D  : y  2x  3 bRmab; Nˆ  120 enaH NMˆ Q  60 ¬eRBaH plbUkmMuCab;RCugEtmYyénRbelLÚRkamesµI 180 ¦ eyIgpÞwmsmIkarGab;sIusénbnÞat;TaMgBIr ³ 1  2x  2x  3 ehIy MI BuHmMu NMˆ Q  60 4x  4  x 1 naM[)an NMˆ I  IMˆ J  30 cMeBaH x  1 enaH y  1  2x  1  2 1  1 edaykñúg NMI man Nˆ  120 nig NMˆ I  30 dUcenH kUGredaenéncMNucRbsBVKW 1 ,  1 . naM[ NIˆM  30 ¬plbUkmMukñúgén  esµI 180 ¦ II. FrNImaRt dUcenH RtIekaN NMI CaRtIekaNsm)at . 1> tambRmab;RbFaneyIgKUsrUb)an ³ vi)ak MN  IN D ehIy I CacMNuckNþalén NP enaH IN  12 NP o

o

1

1

2

2

o

o

o

o

o

o

E

G

o

dUcenH eyIgeRbóbeFob)an MN  12 NP .

F

H

eRbóbeFobRtIekaN DEG nigRtIekaN DEH edayRtIekaN DEG nigRtIekaN DEH man ³ -mMu EDG  EDH ¬mMurYm¦ -mMu DEG  DHE eRBaH mMu DEG  DFE ¬mMu)atén  sm)at¦ Et DFE  DHE ¬mMumanFñÚsáat;rYm DE ¦ dUcenH DEG DEH tamlkçxNÐ m>m .

x- KNnargVas;mMuénRtIekaN MIJ eday J CacMeNalEkgén I elI MQ  naM[ IJˆM  90 ehIy IMˆ J  30 ¬sRmaybBa¢ak;xagelI¦ eK)an MIˆJ  60 ¬plbUkmMukñúgén  esµI 180 ¦ dUcenH rgVas;mMuénRtIekaN MIJ KW ³ IJˆM  90 , IMˆ J  30 , MIˆJ  60 . o

o

o

o

o

406

o

o

9

K- kMNt;ragRtIekaN MII  eday J CacMeNalEkgén I elI MQ  naM[ II   MJ Rtg; J ehIy I  CacMNucqøúHén I eFobnwg MQ  naM[ JI  JI  eK)an M CacMNucenAelIemdüaT½r MJ enaHnaM[ MI  MI   MI  -edaykñúg MII  man MI MIˆI   MIˆJ  60

o

mann½yfa vaCaRtIekaNsm)atmanmMumYyesµI 60 dUcenH RtIekaN MII  CaRtIekaNsm½gS . vi)ak MI   II  ehIy JI  JI  mann½yfa J kNþalGgát; II  enaH IJ  12 II  b¤ IJ  12 MI 

o

dUcenH eRbóbeFob)an IJ  12 MI  .

407

9

sm½yRbLg ³ 22 sIha 1995 viBaØasa ³ KNitviTüa ¬elIkTI2¦ ry³eBl ³ 60 naTI BinÞú ³ 10  I. BICKNit

1> eK[ ³ A  x  1  3x  2  x  1  3x  2  . k> dak;kenSam A CaplKuNktþadWeRkTI 1 én x . x> sRmYlkenSam B  2x A 2 . K> KNnatémø x kalNa B  3 . 2> edaHRsayvismIkar ³ 5x5 4  6x  2  4  x 3 5 . rYcbkRsaytamRkaPic . 3> k> edaHRsayRbB½n§smIkartamRkaPic ³ 33xx  2y y7 0 0 .  x> rYcepÞógpÞat;cemøIytamkarKNna . 2

2

2

2

II. FrNImaRt

eK[RtIekaNEkgsm)at ABC EkgRtg; A ehIy AB  AC  a . DAC k¾CaRtIekaNEkg sm)at EkgRtg; D . RtIekaNTaMgBIrenHsßitenAsgxagRCugrYm AC  . 1> kMNt;RbePTctuekaN ABCD . 2> KNna BC ; AD ; BD CaGnuKmn_én a . 3> Ggát;RTUg AC  nig BD RbsBVKñaRtg; O . KNna OA , OC , OB , OD CaGnuKmn_én a . 4> bgðajfa AOD nig BOC CaRtIekaNdUcKña . rYcKNnapleFobdMNcU .

8

408

9

cemøIy I. BICKNit

2> edaHRsayvismIkar ³ eyIgman 5x5 4  6x  2  4  x 3 5 eyIgtRmÚvPaKEbgrYm 15 rYclubPaKEbgrYmecal

1> man A  x  1  3x  2  x  1  3x  2  k> dak;kenSam A CaplKuNktþadWeRkTI 1 én x 2



2

2

A  x  1  3x  2  x  1  3x  2 2

2

2

 x  1  2x  13x  2  3x  2 2



15x  12  90 x  30  60  5 x  25  75x  42  5 x  85  70 x  43 43 x 70 43 x 70

2

 x  1  3x  2  2x  13x  2 2

2

dUcenH A  2x  13x  2 CaplKuNktþa . x> sRmYlkenSam B  2x A 2 eday A  2x  13x  2 eK)an B   2x2x132x  2

dUcenH vismIkarmancemøyI - bkRsaytamRkaPic ³

2

 2x  13 x  2  2 x2 1  2x  13 x  2   2x  1x  1  3 x  2   , x 1  0  x  1 x  1  3x  2 B x 1





x



43 70



3 x  3  3 x  2 3x  3x  2  3

eyIgsg;RkaPicdUcrUbxageRkam ³



3 3 x  2 3

x x

2  3   3  3

x

43 70

 3 x  2 y  0   3 x  y  7  0 

2 3 x 3 3

0

x 0 cMeBaH kmµviFIfµI  EpñkKUsDitCacemøIyénvismIkar . 3> k> edaHRsayRbB½n§smIkartamRkaPic ³ eyIgman ³ 33xx  2y y7 0 0  eRbItaragtémøelxedIm,Isg;RkaPicénbnÞat;TaMgBIr 

dUcenH smRmÜl)an . K> KNnatémø x kalNa B  3 smIkar B mann½ykalNa x 1 0 b¤ x  1 eK)an 3   3xx1 2 



cMeBaH kmµviFIcas; EpñkminqUtCacemøIyénvismIkar



2



x

.

x 0

2

y 0 3  2 1

x y

1

4

3x  2 y  0 7 3

 

3 3 3 3

3x  y  7  0

2 3 633 3 95 3  39 6

dUcenH KNna)antémø x  9  65

3



14 9

tamRkaPic dUcenH bnÞat;TaMgBIrRbsBVKñaRtg;

. 409

 14 7  ,    9 3

.

9

x> epÞógpÞat;cemøIytamkarKNna ³ eyIgman 33xx  2y y7 0 0 b¤ 33xx  2y y07   edaydkGgÁnigGgÁ énsmIkarTaMgBIr eK)an cMeBaH

2> KNna BC ; AD ; BD CaGnuKmn_én a eday ABC CaRtIekaNEkgsm)at EkgRtg; A man AB  AC  a tamRTwsþIbTBItaK½r eK)an³ BC 2  AB2  AC 2

3 x  2 y  0  7 3 x  y  7 y 3 3y  7 7 3x  y  7 y 3 7 3x   7 3 14 14 3x    x 3 9

BC  AB2  AC 2

naM[

 a 2  a 2  2a 2  a 2

enaH

2

dUcenH  x   149 , y  73  dUcKNnatamRkaPic . II. FrNImaRt tambRmab;RbFaneyIgsg;rbU )andUcxageRkam ³ B

2

2

/

AC 2  2AD2

Taj)an

AD 2 

AC 2 AC  AD  2 2

Et AC  a naM[

a a 2  2 2

AD 

dUcenH KNna)an AD  a 2 2 . kñúgRtIekaNEkg BCD EkgRtg; C ¬eRBaH BCD man DCˆB  90 bBa¢ak;xagelI¦ tamRTwsþIbTBItaK½r eK)an ³

O

C

A

dUcenH KNna)an BC  a 2 . eday DAC CaRtIekaNEkgsm)at EkgRtg; D naM[ AD  CD tamRTwsþIbTBItaK½r AC  AD  CD

o

D

1> kMNt;RbePTctuekaN ABCD eday ABC CaRtIekaNEkgsm)at EkgRtg; A naM[ mMu)at ABˆ C  ACˆB  45 ehIy DAC CaRtIekaNEkgsm)at EkgRtg; D naM[ mMu)at DAˆ C  DCˆA  45 eK)an DCˆB  DCˆA  ACˆB  45  45  90 naM[ BC  CD Rtg; C -kñúgctuekaN ABCD manmMuEkg DCˆB  90 AD  CD nig BC  AD // BC  CD dUcenH ABCD CactuekaNBñayEkg .

BD 2  BC 2  CD 2 BD  BC 2  CD 2

o

BD 

BD  2a 2 

o

o

o

 

 a  a 2    2

o

2

2

a2 5a 2 10a 2 a 10    2 2 4 2

dUcenH KNna)an

BD 

a 10 2

.

3> KNna OA , OC , OB , OD CaGnuKmn_én a eday AC  nig BD RbsBVKñaRtg; O ehIy AD// BC ¬sRmayxagelI¦

o

410

9

tamRTwsþIbTtaEls eyIg)anGgát;smamaRtKña

vi)ak

OA OD AD   OC OB CB

Et

tamlkçN³smamaRt eK)an ³ OA OC OA  OC AC     AD CB AD  CB AD  CB a a a 2     3 a 2 a 2  2a 2 3a 2 a 2 2 2 2 a 2 2 OA 2 2 AD 2 a   OA   AD 3 3 3 3 OC 2 2 BC 2  a 2 2a   OC    CB 3 3 3 3

OAD



OCB a OA a 3 1  3    OC 2a 3 2a 2 3 OA OD AD 1    OC OB CB 2

naM[

dUcenH pleFobdMNUcKNna)anKW 12 .

naM[ ehIy

rUbdEdl RKan;EtRsYsemIlb:ueNÑaH ¡¡¡¡ B

dUcenH KNna)an OA  a3 nig OC  2a3 . -kñúgRtIekaNEkg ABO EkgRtg; A tamRTwsþIbTBItaK½r OB  AB  OA 2

OB  AB  OA 2

2

O

2

D

2

2

a2 10a 2 a 10 a  a     a2    9 9 3 3

- eday OD  BD  OB  a 210  a 310 3a 10  2a 10 6 a 10  6 

OB 

a 10 3

nig OD  a 610 .

4> bgðajfa AOD nig BOC CaRtIekaNdUcKña eday AOD nig BOC man³ -mMu OAˆ D  OCˆB  45 ¬mMu)atRtIekaNsm)at¦ -mMu AOˆ D  COˆ B ¬mMuTl;kMBUl¦ o

dUcenH

AOD

BOC

C

A

2

dUcenH

OA OD AD   OC OB CB

tamlkçxNÐ m>m . 411

9

sm½yRbLg ³ 01 kkáda 1996 viBaØasa ³ KNitviTüa ¬elIkTI1¦ ry³eBl ³ 60 naTI BinÞú ³ 10  I. BICKNit

1> KNnakenSam E   3   2  5 . 2> sresrBhuFaxageRkamCaplKuNktþa ³ k> x 18x  18 x> 4x  25 . 3> eK[smamaRt ba  dc bgðajfa ac  22ca 33db . 4> eK[bnÞat;BIr EdlmansmIkar D : y  x  5 nig D : 2 y  3x . k> sg;bnÞat; D  nig D kñúgtRmúyGrtUNrem xoy  . x> R)ab;emKuNR)ab;TisénbnÞat;nImYy² . K> KNnakUGredaencMNucRbsBV P rvag D  nig D . 5> edaHRsaysmIkar 2 x3  7  x  1 . II. FrNImaRt eK[RtIekaN ABC EkgRtg; A . 1> I CacMNuckNþalén BC  . R)ab;eQµaHRtIekaN IAC . 2> O CacMNuckNþalén AB . R)ab;eQµaHénctuekaN OICA . 3> KNna BC ebI AB  3cm ; AC  4cm . 4> rgVg;Ggát;p©it AB kat;rgVg;Ggát;p©it AC  Rtg;cMNucmYyeTot M . k> bBa¢ak;fa M sßitenAelI BC  . x> bgðajfa AB  BM  BC . 3

4

2

2

2

2

8 412

9

cemøIy I. BICKNit

-eyIgsg; D  nig

1> KNnakenSam E ³ eyIgman E   3   2 3

4

D )andUcrUbxageRkam ³  D  : 2 y  3 x

5

2

 27  16  25  36

D  : y  x  5

dUcenH KNna)an E  36 . 2> sresrBhuFaxageRkamCaplKuNktþa ³ k> x 18x  81  x  2  x  9  9 2

2

x> R)ab;emKuNR)ab;TisénbnÞat;nImYy² bnÞat; D : y  x  5 b¤ D : y   x  5 dUcenH emKuNR)ab;TisénbnÞat; D  KW a  1

2

 x 2  2  x  9  92  x  9  x  9x  9 2

dUcenH x> 4 x

2

2

4 x 2  25  2 x  52 x  5

/ .

3 xx5 2 3    1 x  5 2  5 x5 2

a b 2a 3b 2a  3b     c d 2c 3d 2c  3d a 2a  3b  c 2c  3d

Taj)an

a 2a  3b  c 2c  3d

³

x

D   : y  3 x 2

 x2

cMeBaH x  2 enaH y  x  5  2  5  3 dUcenH kUGredaencMNucRbsBV P2 , 3 .

.

4> k> sg;bnÞat; D  nig D kñúgtRmúy xoy  eyIgeRbItaragtémøelxedIm,Isg;bnÞat;TaMgenH x 1 2 D  : y  x  5 ³ y 4 3 D   : 2 y  3 x



K> KNnakUGredaencMNucRbsBV P eyIgman D : y   x  5 nig D : y  32 x edaypÞwmsmIkarGab;sIusénbnÞat;TaMgBIr ³ eyIg)an  x  5  32 x

3> bgðajfa ac  22ca 33db eyIgmansmamaRt ba  dc enaH ac  db tamlkçN³smamaRt eyIgGacsesr)an ³

dUcenH eyIgbgðaj)anfa

D   : 2 y  3 x

dUcenH emKuNR)ab;TisénbnÞat; D KW a  32 .

 25  2 x   5 2

 2 x  52 x  5

dUcenH

bnÞat;

.

x  18 x  81  x  9 x  9  2

5> edaHRsaysmIkar 2 x3  7  x  1 smIkar enHmanGBaØat x enAeRkamr:aDIkal; smIkarmann½yluHRtaEt x  0 eK)an ³

0 2

y 0 3

413

9

3> KNna BC ebI AB  3cm ; AC  4cm eday RtIekaN ABC CaRtIekaNEkgRtg; A tamRTwsþIbTBItaK½r eK)an ³

2 x 7  x 1 3 2 x 7  3 x 3 3 x  2 x  7  3

BC 2  AB2  AC 2

x  4  0

BC  AB2  AC 2

dUcenH smIkarKµanb£s .

 32  4 2  25  5 cm

II. FrNImaRt

tambRmab;RbFaneyIgsg;rbU )an ³ B // M 3 cmO



I

o

//

A

dUcenH KNna)an BC  5 cm . 4> k> bBa¢ak;fa M sßitenAelI BC  -edayrgVg;Ggát;p©it AB man M enAelIrgVg; naM[ mMu AMB  90 ¬CamMucarwkknøHrgVg;¦ -edayrgVg;Ggát;p©it AC  man M enAelIrgVg; naM[ mMu AMC  90 ¬CamMucarwkknøHrgVg;¦ -edaymMu BMˆ C  AMˆ B  AMˆ C  90  90 naM[ BMˆ C  180 CamMurab mann½yfa M sßitenAelI BC  dUcenH eyIgbBa¢ak;)anfa M sßitenAelI BC  . x> bgðajfa AB  BM  BC eday AMB  90 naM[ BM CacMeNalEkgénGgát; ABelI BC  tamTMnak;TMngkñúgRtIekaNEkg ABC eK)an ³ AB  BM  BC / dUcenH eyIgbgðaj)anfa AB  BM  BC .

4 cm

C

o

o

1> R)ab;eQµaHRtIekaN IAC ³ -eday I CacMNuckNþalén BC  enaH AI Ca emdüan én  Ekg ABC RtUvnwgGIub:Uetnus BC  tamRTwsþI eK)an IA  IB  IC -edayRtIekaN IAC man IA  IC dUcenH RtIekaN IAC CaRtIekaNsm)at . 2> R)ab;eQµaHénctuekaN OICA ³ -eday I CacMNuckNþalén BC  nig O CacMNuckNþalén AB naM[ OI KWCa)atmFüménRtIekaNEkg ABC EkgRtg; A vi)ak AC// OI -eXIjfa ctuekaN OICA man AC// OI nigmMu BAˆ C CamMuEkg dUcenH ctuekaN OICA CactuekaNBñayEkg . 414

o

2

o

2

2

o

9

415

9

sm½yRbLg ³ 19 sIha 1996 viBaØasa ³ KNitviTüa ¬elIkTI2¦ ry³eBl ³ 60 naTI BinÞú ³ 10  I. BICKNit

1> BnøatplKuN ³ 2x  3x  2 . 2> sresrkenSamxageRkamCaplKuNktþa ³ k> 5x  2  42  x x> 2 x  5  4 x  10 x  2  4 x  25 . 3> KNna 20  80  245 . 4> k> edaHRsaysmIkar 1x  x 2 1  x 3 x . x> edaHRsayvismIkar 42  x  3  2x 1  4 . 5> edaHRsayRbB½n§smIkar 2yx 2 yx 6 .  II. FrNImaRt eK[rgVg;p©it O manGgát;p©it AB nigcMNuc P enAeRkArgVg;enH . bnÞat; PA nig PB  kat;rgVg; O erogKñaRtg;cMNuc M nig N enAmçagénbnÞat;  AB  . 1> RsaybMPøWfa AN  nig BM  Cakm H CacMNucRbsBVrvag AN  nig BM . RsaybMPøWfa PH   AB . 3> bgðajfactuekaN HMPN carwkkñúgrgVg;mYy . 4> RsaybBa¢ak;fa AN  BP  BM  AP . 5> cMNuc I cl½tenAelIFñÚtUc AM ehIy E CacMNuckNþalén AI . rksMNMcu MNuc E kalNa I ERbRbYl . 2

2

2

2

2

8

416

9

cemøIy I. BICKNit

eyIg)an

1> BnøatplKuN ³ eyIgman 2 x  3x  2  2 x

2

 4 x  3x  6

 2x 2  x  6

dUcenH Bnøat)an 2x  3x  2  2x  x  6 2> sresrkenSamxageRkamCaplKuNktþa ³ k> 5x  2  42  x 2

2

/ .

dUcenH smIkarmanb£s x  2 . 5> edaHRsayRbB½n§smIkar ³ eyIgman 2yx 2 yx 6 smmUl xx  yy  32

2

 5 x  2   22  x   5 x  2  22  x 5 x  2  22  x   5 x  2  4  2 x 5 x  2  4  2 x   7 x  6 3 x  2  2

2



2

2

dUcenH RbB½n§smIkarKµanKUcemøIy .

2

2

2

II. FrNImaRt

2

 2 x  5  22 x  5x  2  2 x  52 x  5  2 x  52 x  5  2 x  4  2 x  5  2 x  52 x  14  22 x  5x  7  2

dUcenH

2 x  5  4 x  10 x  2  4 x 2

2

3> KNna

tambRmab;RbFaneyIgsg;rbU )an ³ P

I M E

 25

20  80  245

A

H 

O

B

1> bMPøWfa AN  nig BM  Cakm
 4  5  16  5  49  5  2 5 4 5 7 5 5 5

dUcenH KNna)an 20  80  245  5 5 . 4> k> edaHRsaysmIkar 1x  x 2 1  x 3 x

o

2

smIkarmann½yluHRtaEt

N

E

.

 22 x  5x  7

 a b c   a  b c 

RbB½n§smIkarmanpleFobemKuN KW 11   11  32 mann½yfa vaKµanKUcemøIy

dUcenH 5x  2  42  x  7 x  63x  2 x> 2 x  5  4 x  10 x  2  4 x  25  2 x  5  22 x  5x  2  2 x   5  2

1 2 3   2 x x 1 x  x 1 2 3   x x  1 x x  1 x  1  2x  3 x2 x  2

x  0 x  0  x  1  0    x  1 x 2  x  0 

417

o

9

2> RsaybMPøWfa PH   AB bRmab; H CacMNucRbsBVrvag AN  nig BM  mann½yfa H sßitenAelIkm bgðajfactuekaN HMPN carwkkñúgrgVg;mYy tamsRmayxagelI ANˆB  90 nig AMˆ B  90 naM[ ANˆP  90 ¬mMubEnßmCamYymMu ANˆB  90 ¦ PMˆ B  90 ¬mMubEnßmCamYymMu AMˆ B  90 ¦ edayctuekaN HMPN manmMuQm ³ -mMu HNˆP  ANˆP  90 -mMu PMˆ H  PMˆ B  90 naM[plbUkmMQ u m HNˆP  PMˆ H  90  90  180 dUcenH ctuekaN HMPN carwkkñúgrgVg;mYy . 4> RsaybBa¢ak;fa AN  BP  BM  AP kñúgRtIekaN PAB man ³ -km
5> rksMNMucN M uc E kalNa I ERbRbYl eday E CacMNuckNþalén AI  naM[ EA  EI eyIg)an OE  AI ¬eRBaH Ggát;FÚñEkgnwgkaMrgVg;Rtg;cMNuckNþal¦ edaycMNuc A , O CacMNucnwg enaHnaM[mMu AEˆO  90 efr edIm,I[ AEˆO  90 efr luHRtaEtcMNuc E RtUv sßitenAelIknøHrgVg;Ggát;p©it AO -ebI I RtYtelI M enaH E RtYtelI E Edl E CacMNuckNþalén AM  -ebI I RtYtelI A enaH E k¾RtYtelI A Edr dUcenH sMNMucMNuc E Ca  AE énrgVg; Ggát;p©it AO . o

o

o

o

o

o

o

o

o

o

o

o

o

PAB

PAB

1 1 AN  BP  BM  AP 2 2

AN  BP  BM  AP

dUcenH Rsay)anfa

AN  BP  BM  AP

. 418

9

419

9

RksYgGb;rM yuvCn nigkILa RbLgsBaØabRtmFümsikSabzmPUmi cMeNHTUeTA nigbMeBjviC¢a eQµaH nightßelxaGnurkS sm½yRbLg ³ >>>> >>>>>>>>>> 1997

elxbnÞb; ³ >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> elxtu ³ >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> mNÐlRbLg ³ >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

1> >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> namRtkUl nignamxøÜn ³ >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 2> >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> éf¶ExqñaMkMeNIt ³ >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> GkSrsm¶at; htßelxa ³ >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>  ebkçCnminRtUveFVIsBaØasmÁal;Gm VI YyelIsnøwkRbLgeLIy. snøwkRbLgNaEdlmansBaØasmÁal;RtUv)anBinÞúsUnü . --------------------------------------------------------------------------------------------------------------------------

viBaØasa ³ KNitviTüa elIkTI1 ry³eBl ³ 60 naTI BinÞú ³ 100 esckþIENnaM ³ GkSrsm¶at; 1> ebkçCnRtUvbt;RkdasenHCaBIr rYcKUsExVgEpñkxagelIénTMB½rTI2 [b:unRbGb;EpñkxagelI énTMB½rTI1 EdlRtUvkat;ecal. hamsresrcemøIyelIkEnøgKUsExVgenaH . 2> ebkçCnRtUvKUsbnÞat;bBaÄr[cMBak;kNþalTMB½rTI2 nigTMB½rTI3 sRmab;sresrcemøIybnþ.

RbeTsmanPaBvwkvr mankar)aj;KñaenAraCFanIPñMeBj kalBIéf¶TI 05 nig 06 Ex kkáda qñaM 1997 . dUcenH kñúgqñaM 1997 enHBMmu ankarRbLgeLIy .

420

9

cemøIy

421

9

sm½yRbLg ³ 24 sIha 1998 viBaØasa ³ KNitviTüa ¬elIkTI1¦ ry³eBl ³ 60 naTI BinÞú ³ 100 

RsaybMPøWfa E  3 2 1 2 1  2 1 CacMnYnKt; . eK[KUbBIrRbePTcMnYnsrub 11. KUbmYyRbePTmanRTnugesµI 3 cm nigKUbmYyRbePTeTotmanRTnug esµI 5 cm . eKmindak;KUbRtYtKñaeT . eKtMerobKUbTaMg 11 CamYyCYrEdlmanRbEvg 47 cm . rkcMnYnKUbénRbePTnImYy² . eK[tRmúyGrtUNrem xoy  cUrsg;bnÞat;EdlmansmIkar y  2x  1 nig y  2x  2 . rYcKNna cMNucRbsBVrvagkUGredaenéncMNuc EdlCaRbsBVrvagbnÞat;TaMgBIr . eK[knøHrgVg;p©it O Ggát;p©it AB. cMNuc M cl½tenAelIknøHrgVg;enH . 1> R)ab;RbePTRtIekaN AMB . 2> KNna AM ebI OA  2cm , BM  7cm . 3> rksMNMucMNuc P CacMNuckNþalén AM  . 2

I. II.

III.

IV.

8 cemøIy RsaybBa¢ak;fa E CacMnYnKt; ³ eyIgman E  3 2 1 2 1  2 1   2  13 2  1  2  1   2  12 2  2  2 2  1 2  1  22  1  2 dUcenH E  2 CacMnYnKt; . II. rkcMnYnKUbénRbePTnImy Y ²³ tag x CacMnYnKUbEdlmanRbEvgRTnugesµI 3 cm y CacMnYnKUbEdlmanRbEvgRTnugesµI 5 cm tambRmab;RbFaneyIg)anRbB½n§smIkar ³  x  y  11 eyIgedaHRsaytamedETmINg; ³  3x  5 y  47

naM[

I.

D  53  2 Dx 8  4 D 2 D y 14 D y  47  33  14  y   7 D 2

2

Dx  55  47  8  x 

dUcenH KUbmanRbEvgRTnugesµI 3cm mancMnYn 4 KUbmanRbEvgRTnugesµI 5cm mancMnYn 7 . III. sg;bnÞat;kñúgtRmúyGrtUNrem  xoy  eyIgeRbItaragtémøelxedIm,Isg;bnÞat;TaMgenH -cMeBaH y  2x  1 ³ xy 10 22 -cMeBaH y  2x  2 ³



422

x

0 2

y 2 1

9

-eyIgsg;bnÞat;TaMgBIr)andUcxageRkam ³ y

2> KNna AM ebI OA  2cm , BM  eday AMB CaRtIekaNEkg Rtg; M tamRTwsþIbTBItaK½r

x 1 2

7cm

AB2  AM 2  BM 2 AM 2  AB2  BM 2 AM  AB2  BM 2

x y  2 2

-KNnakUGredaenéncMnucRbsBVrvagbnÞat;TaMgBIr eyIgman y  2x  1 nig y  2x  2 edaypÞwmsmIkarGab;sIus enaHeK)an ³

dUcenH cMNcu RbsBVrvagbnÞat;TaMgBIrKW mankUGredaen  x  1 , y  2  .

o

M P

O

B

1> R)ab;RbePTRtIekaN AMB edayRtIekaN AMB man AB CaGgát;p©it nig M CacMNuccl½telIknøHrgVg; enaH AMB Ca RtIekaNcarwkknøHrgVg; Edl AMˆ B  efr  90 dUcenH AMB CaRtIekaNEkg .

2  22 

o

tambRmab;RbFaneyIgsg;rUb)an ³



AM 

7

, AB  2OA

2

dUcenH KNna)an AM  3 cm . 3> rksMNMucN M uc P CacMNuckNþalén AM  eday P CacMNuckNþalén AM  naM[ PA PM eyIg)an OP  AM ¬eRBaH Ggát;FÚñEkgnwgkaMrgVg;Rtg;cMNuckNþal¦ edaycMNuc A , O , B CacMNucnwg enaHnaM[mMu APˆ O  90 efr edIm,I[ APˆ O  90 efr luHRtaEtcMNuc P RtUv sßitenAelIknøHrgVg;Ggát;p©it AO -ebI M RtYtelI B enaH P RtYtelI O -ebI M RtYtelI A enaH P RtYtelI A Edr dUcenH sMNMucMNuc P CaknøHrgVg;Ggát;p©it AO .

cMeBaH x  1 enaH y  2x  1  12  1  2

A

2OA2  BM 2

AM  16  7  9  3 cm

x x 1  2 2 2 x x   2 1 2 2 x 1

IV.

AM 

o

423

9

sm½yRbLg ³ 09 tula 1998 viBaØasa ³ KNitviTüa ¬elIkTI2¦ ry³eBl ³ 60 naTI BinÞú ³ 100  I.

II.

eKEckR)ak;[mnusS 3 nak;. GñkTImYy)an 40% énR)ak;srub ehIyGñkTIBrI TTYl)an 15 énR)ak;srub ÉGñkTIbITTYl)anR)ak; 12 000 erol . rkcMENkR)ak;rbs;GñkTImyY nigcMENkR)ak;rbs;GñkTIBIr . bnÞat;b:HrgVg;p©it O Rtg; M kat;bnøayénGgát;p©it CD Rtg; P . bgðajfaRtIekaN PMC nig RtIekaN PDM dUcKña rYcTajbBa¢ak;fa PM  PC  PD . cUrsresrBakü {xus} b¤ {RtUv} kñúgRbGb;enAxagmuxGMNHGMNagnImYy²xageRkamenH ³ 2

III.

□ □

a 2  b 2  2ab 2 1 

1 2 1

□ bnÞat; y  2x 1 nig

IV.

RbsBVKñaRtg;mYycMNcu . cUrKUssBaØa  kñúgRbGb;enAxagmuxcemøIyEdlRtwmRtUvmanEtmYyKt; ³ 1> etIkenSamNaEdlesµInwg x  2 ³ k> □ x  2x  4 x> □ x  4x  4 K> □ x  4x  2 X> □ x  4x  4 2> etIcMnYnNa Cab£sénsmIkar ³ x x 2 x  0 . k> □ 0 x> □  2 K> □ 2 X> □ 0 nig 2 . ABC CaRtIekaNEkgRtg; A ehIy x  0 . eKdwgfa BC  3x  2 nig AB  2 x  1 . KNna AC CaGnuKmn_én x . eK[cMNuc A1 , 2 nig B3 , 1 . rksmIkarbnÞat; AB . y  2x  2

2

2

2

2

2

2

V.

2

VI.

8 424

9

cemøIy I.

rkcMENkR)ak;rbs;GñkTImYy nigGñkTIBIr ³ tag x CacMnYnR)ak;srubTaMgGs; naM[ R)ak;rbs;GñkTI1 KW 40% x R)ak;rbs;GñkTI2 KW 15 x R)ak;srubCaplbUkR)ak;GñkTaMgbI eyIg)an ³ 1 x  40%  x   x  12000 5 5 x  200% x  x  60000 5 x  2 x  x  60000 2 x  60000

PM PC vi)ak PMC   PDM PD PM Taj)an PM  PM  PC  PD b¤ PM  PC  PD dUcenH TajbBa¢ak;)anfa PM  PC  PD . III. sresrBakü {xus} b¤ {RtUv} kñúgRbGb; ³ RtUv a  b  2ab eRBaH 2

2

2

a 2  b 2  2ab a 2  2ab  b 2  0

x  30000

a  b2  0

naM[ -cMENkR)ak;rbs;GñkTI1 KW 40 40% x   30000  12 000 100

erol

RtUv

-cMENkR)ak;rbs;GñkTI2 KW 1 1 x   30000  6 000 5 5

2

BitcMeBaHRKb;cMnYnBit a nig b . 1 2 1  eRBaH 2 1 2 1 

erol



dUcenH cMENkR)ak;GñkTI1 KW 12 000 erol cMENkR)ak;GñkTI2 KW 6 000 erol . II. tambRmab;RbFaneyIgKUsrUb)andUcxageRkam³



2 1

1 2 1



2 1  1 2

2  11  1

11

Bit

bnÞat; y  2x  1 nig y  2x  2 RbsBVKñaRtg;mYycMNuc . eRBaH M bnÞat;TaMgBIrmanemKuNR)ab;TisesµI 2 dUcKña naM[ bnÞat;TaMgBIrRsbKña KµancMNucRbsBVmYy . C P D O IV. KUssBaØa  kñúgRbGb;muxcemøIyEdlRtwmRtUv ³ bgðajfa PMC nig PDM dUcKña 1> etIkenSamNaEdlesµInwg x  2 ³ eday PMC nig PDM man ³ x> ☑ x  4x  4 -mMu PMC  PDM ¬mMucarwkFñÚsáat;rYm MC ¦ eRBaH x  2  x  2  x  2  2  x  4x  4 -mMu MPC  DPM ¬mMu P rYmKña ¦ 2> etIcMnYnNa Cab£sénsmIkar ³ x x 2 x  0 eXIjfa PMC nig PDM manmMuBIrb:unerogKña K> ☑ 2 eRBaH cMeBaH x  2 2  22 44 dUcenH PMC PDM tamlkçxNÐ m>m . 0   0  0  0 Bit 2 2 xus



2

2

2

2

2

2

2

2

425

9

V.

tambRmab;RbFaneyIgKUsrUb ³

C

3x  2

KNna AC CaGnuKmn_én x A 2x 1 B tamRTwsþIbTBItaK½r cMeBaH ABC EkgRtg; A eK)an BC  AB  AC naM[ AC  BC  AB 2

2

2

2

2

2

2

AC 2  BC 2  AB 2  3 x  2   2 x  1  3 x  2  2 x  13 x  2  2 x  1 2

2

 x  15 x  3  5x 2  8x  3

dUcenH KNna)an V.

.

AC 2  5x 2  8x  3

rksmIkarbnÞat; AB eyIgmancMNuc A1 , 2 nig B3 , 1 smIkarbnÞat;EdlRtUvrkmanrag AB  : y  ax  b -eday AB  : y  ax  b kat;tam A1 , 2 eK)an 2  a 1  b  a  b  2 1 -eday AB  : y  ax  b kat;tam B3 , 1 eK)an 1  a  3  b  3a  b  1 2 -edayyk smIkar 2  1 eK)an ³ 3a  b  1  a  b  2

1 a naM [ 2 2a  1 1 cMeBaH a   2 enaHtam 1 a  b  2 naM[ b  2  a  2    12   2  12  52

dUcenH smIkarbnÞat;

 AB : y   1 x  5 2

2

.

426

9

427

9

sm½yRbLg ³ 07 sIha 1999 viBaØasa ³ KNitviTüa ¬elIkTI1¦ ry³eBl ³ 60 naTI BinÞú ³ 100  I.

II.

C cUrsresrBakü {xus} b£ {RtUv} kñúgRbGb;xagmuxGMNHGMNagnImYy²xageRkam ³ 6 1> □ x  6 Cab£sénsmIkar 2x  6  3x  19 . C 2> □ BC  5 ebIeK[ ³ 2 1.5 B A    . BC B C , AB  1 , AC  2 , CC  6 , BC  1.5 1 B cUrKUssBaØa  kñúgRbGb;enAxagmuxcemøIyEdlRtwmRtUv ³ 1> eK[ A 1 , 1 nig B3 , 4 enaHcm¶ay AB manRbEvg ³ k> □ AB  13 x> □ AB  6 K> □ AB  5 X> □ AB  4 . 2> KNnakenSam E  5 12  4 3  48 KW ³ k> □ E  8 3 x> □ E  9 3 K> □ E  10 3 X> □ E  11 3 . 3> eKRkLúkRKab;LúkLak;BIr rkRbU)abEdlGac[eKRkLúk)anBinÞúsrub 7 BinÞú . k> □ P   365 x> □ P   56 K> □ P   16 X> □ P   13 . sYnbEnømYyragctuekaNEkg manbeNþayelIsTTwg 12 m ehIydIenaHmanépÞRkLa 160 m . rkbrimaRténsYnbEnøenaH . enAkñúgtRmúyGrtUNrem xoy  . k> sg;bnÞat; D  EdlmansmIkar y  2x  3 . x> sresrsmIkarbnÞat; D  Edlkat;tamcMnuc P5 , 1 ehIyRsbnwg D . rYcsg; D  kñúg tRmúyxagelI . kñúgrgVg;p©it O Ggát;p©it BC  Edl BC  5cm . eKKUsGgát;FñÚ BA Edl BA  3cm . k> R)ab;RbePTRtIekaN ABC . x> KNnaRbEvg AC . 7

7

7

III.

IV.

7

2

1

1

2

V.

428

2

9

K> KNna cos ABˆ C nig sin ABˆ C . X> eKKUsemdüan BM  énRtIekaN ABC Edlbnøayrbs;vakat;rgVg; O Rtg; D . bgðajfa MB MD  MA . 2

8 cemøIy I.

sresrBakü {xus} b£ {RtUv} kñúgRbGb; ³ 1> xus x  6 eRBaH cMeBaH x  6 eK)an 26  6  3  6  19 0  1 minBit 2> xus BC  5 eRBaHebIeK[ ³ BC BC tamlkçN³bnÞat;RsbeK)an ³

1, 6 ; 2 , 5 ; 3, 4 ; 4 , 3 ; 5 , 2 ; 6 ,1

7

C

6

AC BC  AC  B C  2 AC   BC A B C   1 AC 2  6 1.5  12  6  2 2

II.

C 1.5

2

x x  12   160

B

B

x

x  12 x  160  0

160 m 2

2

x  12

man   6   160   196 naM[ x   6 1 196  6  14  0 minyk 2

KUssBaØa  kñúgRbGb;enAxagmuxcemøIyRtwmRtUv ³ 1> enaHcm¶ay AB manRbEvg ³ K> ☑ AB  5 eRBaH eyIgman A 1 , 1 nig B3 , 4 naM[ AB  3   1  4  1  4  3  25  5 . 2> KNnakenSam E  5 12  4 3  48 KW ³ K> ☑ E  10 3 eRBaH E  5 12  4 3  48  10 3  4 3  4 3  10 3 . 3> rkRbU)abEdleKRkLúk)anBinÞúsrub 7 BinÞú ³ K> ☑ P   16 eRBaH RKab;LúkLak;nImYy²man mux 6 dUcKña naM[cMnnY krNIGacKW 6  6  36 ehIyplbUkRKab;LúkLak;)anBinÞú 7 BinÞú rYmman ³ 2

mancMnYn 6 krNI enaHcMnYnkrNIRsb  6 Rsb 6 1 naM[ P   krNI .   krNIGac 36 6 III. rkbrimaRténsYnbEnøenaH tag x CaRbEvgTTwg Edl x  0 KitCa m naM[ x 12 CaRbEvgbeNþay sYn tambRmab;RbFan eK)an ³

1

x2 

 6  196  6  14  8 m 1

naM[RbEvgbeNþay x  12  8  12  20 m -ebItag P CabrimaRténsYnbEnøenaH eK)an P  28  20   56 m

2

2

dUcenH brimaRténsYnbEnøenaHKW P  56 m . k> sg;bnÞat; D  EdlmansmIkar y  2x  3 eyIgeRbItaragtémøelxedIm,I sg;bnÞat;enH cMeBaH D  ³ y  2x  3 xy 03 24 eyIgsg;bnÞat; D  kñúgtRmúyGrtUNrem xoy  )andUcrUbxageRkam ³

IV.

1

1

7

1

429

9

x> KNnaRbEvg AC eday ABC CaRtIekaNEkgRtg; A tamRTwsþIbTBItaK½r AC  BC  AB eday BC  5 cm , AB  3 cm naM[ AC  5  3  16  4 cm dUcenH KNna)an AC  4 cm . K> KNna cos ABˆ C nig sin ABˆ C kñúgRtIekaNEkg ABC manRbEvgRCug ³ BC  5 cm , AB  3 cm nig AC  4 cm AB 3 naM[ cos ABˆ C  BC  5 AC 4 ehIy sin ABˆ C  BC  5

D1  : y  x  3 2

2

D2  : y  1 x  3 2

2

2

x> sresrsmIkarbnÞat; D  smIkarbnÞat;EdlRtUvsresrKW D  : y  ax  b -eday D  : y  ax  b kat;tam P5 , 1 eK)an 1  a  5  b  b  1  5a 1 -eday D //D  enaH a  a Et D  ³ y  2x  3 naM[ a  a  12 -edayyk a  12 CMnYskñúg 1 ³ eK)an b  1  5a  1  5  12  2 2 5   32 2

2

2

2

1

1

dUcenH

dUcenH sresr)anbnÞat; D  : y  12 x  32 . 1 3 1 0

A D

//

B



O

2

cos ABˆ C 

3 5

nig sin ABˆ C  54 . 2

2

2

2

X> bgðajfa MB MD  MA eyIgeFVIkareRbóbeFob ABM nig DCM edayRtIekaN ABM nig DCM man ³ -mMu ABˆ M  DCˆM ¬mMucarwkmanFñÚsáat;rYm AD ¦ -mMu AMˆ B  DMˆ C ¬mMuTl;kBM Ul¦ dUcenH ABM DCM tamlkçxNÐ m>m . MB MA vi)ak ABM   DCM MC MD Taj)an MB MD  MA MC eday BM  CaemdüanénRtIekaN ABC naM[ MA  MC eK)an MB MD  MA MA b¤ MB MD  MA dUcenH eyIgbgðaj)an MB MD  MA .

2

-sg; D  kñúgtRmúyxagelI taragtémøelx D  : y  12 x  32 ³ xy V. tambRmab;RbFaneyIgsg;rUb)an ³

2

M //

C

k> R)ab;RbePTRtIekaN ABC eday ABC man BC CaGgát;p©it nig A CacMNucenAelIrgVg; enaH ABC CaRtIekaN carwkknøHrgVg; dUcenH ABC CaRtIekaNEkgRtg; A .

2

2

430

9

431

9

sm½yRbLg ³ 09 sIha 1999 viBaØasa ³ KNitviTüa ¬elIkTI2¦ ry³eBl ³ 60 naTI BinÞú ³ 100  I.

II. III.

cUrKUssBaØa  kñúgRbGb;enAxagmuxcemøIyEdlRtwmRtUvmanEtmYyKt; ³ 1> KNna 18  8 ³ k> □ 10 x> □ 5 2 K> □ 2 X> □ 5 g> □ 3 . 2> kñúgfg;mYymanb‘ícRkhm 2 edIm nigb‘ícexov 4 edIm. eKlUkcab;b‘íc 1 edImBIkñúgfg;edayécdnü. rkRbÚ)abénRBwtþikarN_cab;)anb‘ícexovmYyedIm ³ k> □ 16 x> □ 12 K> □ 13 X> □ 23 g> □ 1 . kMNt;témø x edIm,I[RbPaK F  x  51x  6 Kµann½y . rksmIkarbnÞat;kñúgrUbxageRkam ³ 2

y

2 B

 A x

O

 

1

x

y

IV.

lT§plénkarRbLgKNitviTüa)an[dwgfa ³ sisS 1 nak;)anBinÞú 100 sisS 4 nak;)anBinÞú 80 sisS 10nak;)anBinÞú 70 sisS 30 nak;)anBinÞú 50 nigsisS 13 nak;)anBinÞú 40 . cUrbMeBjtaragenH . BinÞú eRbkg; eRbkg;ekIn 100 80 70 50 40

V.

M

b£sSImYyedImQrRtg;EkgnwgépÞdI ehIyRtUvxül;vay)ak;Rtg; cMNuc M dUcrUbxagsþaMenH. rkRbEvgTaMgGs;énedImb£sSI . 432

60 o

A

3m

S

9

VI.

ABC

CaRtIekaNsm½gS . cMNuc D sßitenAelIbnÞat; AB . A Cap©itrgVg; . C

F

E

D



60 o

B

G

A

1> KNna GDˆ E rYcbgðajfa FBD CaRtIekaNEkgRtg; F . 2> eRbóbeFob DEG nig EFC .

8 cemøIy KUssBaØa  kñúgRbGb;xagmuxcemøIyEdlRtwmRtUv³ 1> KNna 18  8 ³ K> ☑ 2 eRBaH 18  8  3 2  2 2  2 . 2> rkRbU)abénRBwtþikarN_cab;)anb‘ícexov 1edIm ³ X> ☑ 23 ³ eRBaH kñúgfg;manb‘ícRkhm 2 edIm nigb‘ícexov 4 edIm enaHkrNIGac 2  4  6 nigkrNIRsb  4 Rsb 4 2 naM[ P(exov)  krNI .   krNIGac 6 3 II. kMNt;témø x edIm,I[RbPaK F Kµann½y ³ eyIgman F  x  51x  6 edIm,I[RbPaK F Kµann½yluHRtaEt PaKEbgesµI 0 x  5x  6  0 eK)an I.

III.

y

2 B

 A

 

x

smIkarbnÞat;EdlRtUvrkmanTRmg; y  ax  b -edaybnÞat;kat;G½kS yy Rtg; B0 , 2 naM[ b  y  2 -ehIypleFobénbERmbRmYl y nig x BIcMNuc A1, 0 eTAcMNuc B 0 , 2  CaemKuNR)ab;Ts i én bnÞat;kat;tam A nig B eK)an a  yx  xy  20  10  21  2 dUcenH rk)ansmIkarbnÞat; y  2x  2 .

x 2  2 x  3x  6  0 xx  2  3x  2  0

B

A

B

A

eKGaceRbIviFImü:ageTot

x  2x  3  0

-edaybnÞat;kat;tam A1, 0 nig B0 , 2 eK)anRbB½n§smIkar 02  aa 10bb  ba  22   dUcenH smIkarbnÞat;rk)anKW y  2x  2 .

x  2  0 x  2 x  3  0  x  3   x2, x3

1

y

2

dUcenH kMNt;témø)an

O

x

2

naM[

rksmIkarbnÞat;kñúgrUbxageRkam ³

. 433

9

IV.

tambRmab;RbFaneyIgGacbMeBjtarag)an ³ BinÞú eRbkg; eRbkg;ekIn 100 80 70 50 40

1 4 10 30 13

1 5 15 45 58

o

o

o

rkRbEvgedImb£sSITaMgGs; ³ RbEvgedImb¤sSITaMgGs;KW AM  MS EdlRtUvrk ³ edaykñúg AMS EkgRtg; A man tan 60  AM AS naM[ AM  AS  tan 60  3  ehIy tamRTwsþIbTBItaK½r ³ eK)an MS  AM  AS

IV.

MS 

BFD  180o  BDF  DBF 



 180o  30o  60o  90 A

3m

S

3 3 3 m

2

AM 2  AS 2

3 3   3 2



o

2

 27  9  36  6 m

enaH AM  MS  3 3  6  5.2  6  11 .2 m dUcenH RbEvgedImb¤sSITaMgGs;KW 11.2 m . V. eyIgmanrUb ³

o

o

o

F

E

D

60 o

B

G

A

o

o

C





o

dUcenH FBD CaRtIekaNEkgRtg; F . 2> eRbóbeFob DEG nig EFC -eday DEG man DG CaGgát;p©it nig E enA elIrgVg; enaH DEG carwkknøHrgVg; naM[ DEG EkgRtg; E vi)ak DEG  90 nig DGE  60 -eday DEG nig EFC man ³ mMu DEG  EFC  90 ¬eRBaH EFC CamMubEnßmCamMu BFD  90 ¦ mMu DGE  ECF  60 ¬eRBaHmMu ECF  60 CamMu  sm½gS ABC ¦ eXIjfa DEG nig EFC manmMuBIrb:unerogKña dUcenH DEG EFC tamlkçxNÐ m>m .

60 o

o

2

BDF  DBF  BFD  180o

M

o

2

-bgðajfa FBD CaRtIekaNEkgRtg; F eday FBD man ³ -mMu BDF  GDE  30 TajBIxagelI -mMu DBF  ABC  60 ¬mMuRtIekaNsm½gS¦ EtplbUkmMukñgú én FBD esµI 180 KW ³

1> KNna GDˆ E tamTMnak;TMngmMup©it nigmMucarwkEdlmanFñÚsáat;rYm ˆ naM[ GDˆ E  EA2G  602  30 eRBaH GDˆ E nig EAˆ G manFñÚsáat;rYm EG dUcenH KNna)anmMu GDˆ E  30 . o

o

o

434

9

435

9

sm½yRbLg ³ 24 kkáda 2000 viBaØasa ³ KNitviTüa ry³eBl ³ 120 naTI BinÞú ³ 100  I.

II.

cUrKUssBaØa  kñúgRbGb;enAxagmuxcemøIyEdlRtwmRtUvmanEtmYyKt; ³ rktémø m EdlnaM[bnÞat; y  m  2x  3 RsbnwgbnÞat; y  3x 1 . k> □ m  5 x> □ m   73 K> □ m  1 X> □ m  53 . D tamrUbxagsþaM cUrbMeBjcenøaHxageRkam[)anRtwmRtUv ³ 1 OA  ............ cm OB  ............ cm OC  ............ cm OD  ............ cm

III.

IV.

V.

VI.

O

C

2 A 1 B

1 1

I

eday AB  1 cm ; BI  1 cm ; IC  1 cm ; CD  1 cm nig OI  2 cm . ¬sresrcemøIyCab£skaer¦ RtIekaN ABC mYymanrgVas;RCug AB  x , AC  x  1 nig BC  x  2 Edl x  0 . rktémø x edIm,I[RtIekaN ABC CaRtIekaNEkgRtg; A . kñúgtRmúyGrtUNrem xoy  eKmancMNuc A1,1 nig B5 ,  1 . k> cUrkMNt;kGU redaenéncMNuckNþal M rbs; AB . x> cUrsresrsmIkarbnÞat; AB . kñúgfg;mYymanXøIelOg 6 nigXøIexov 5 . eKlUkcab;ykXøImþgbI . rkRbU)abénRBwtþikarN_ ³ k> cab;)anXøIexovmYyy:agtic . x> cab;)anXøIelOgBIr nigXøIexovmYy. eK[RtIekaNEkgsm)at ABC Edlman Aˆ  90 , AB  AC  a nig AH Cakm KNna AH CaGnuKmn_én a . x> O Cap©itrgVgc; arwkkñúgRtIekaN ABC . bgðajfa O sßitenAelI AH  . rYcKNna AO CaGnuKmn_én R ¬kaMrgVg; O ¦ . K> KNna R CaGnuKn_én a . o

8 436

9

cemøIy I. KUssBaØa kñúgRbGb;enAmuxcemøIyEdlRtwmRtUv ³ IV. k> kMNt;kUGredaenéncMNuckNþal M én AB  rktémø m ³ K> ☑ m  1 eyIgmancMNuc A1,1 nig B5 ,  1 eRBaH y  m  2x  3 Rsbnwg y  3x 1 naM[ M  x 2 x , y 2 y  kalNa a  a  m  2  3  m  1 .   1  5 1   1  M ,  2   2 II. bMeBjcenøaHedayKNna OC , OB , OA, OD D M 2 , 0 1 tamRTwsþIbTBItaK½r O C  OC  OI  IC dUcenH kUGredaenéncMNuckNþal M 2 , 0 . 2 1 A

2

2

 2  1  5 cm 2

2

 OB  OI  IB 2

A 1 B

1

I

B

x> sresrsmIkarbnÞat; AB ³ smIkarbnÞat;EdlRtUvrkmanrag AB : y  ax  b -eday y  ax  b kat;tam A1,1 eK)an 1  a   1  b   a  b  1 1 -eday y  ax  b kat;tam B5 ,  1 eK)an 1  a  5  b  5a  b  1 2 -edayyk 2  1 eK)an ³

2

OB  OI 2  IB 2  2 2  12  3 cm  OA 2  OB 2  AB 2 OA  OB 2  AB 2 2



A

2

OC  OI 2  IC 2 2

B

3  12  2 cm

 OD 2  OC 2  CD 2 OD  OC 2  CD 2 2



5a  b  1   a  b  1 6a  2 1 a 3

5  12  6 cm

dUcenH eyIgbMeBj)an

OA  2 cm OB  3 cm

-yk

OC  5 cm OD  6 cm

rktémø x edIm,I[ ABC EkgRtg; A ³ eKman AB  x , AC  x  1 nig BC  x  2 B tamRTwsþIbTBItaK½r ³ x  22  x 2  x  12

x

x2  4x  4  x2  x2  2x 1 x2  2x  3  0

A

x 1

krNIBiess ³ a  b  c  1   2   3  0 x  1 minykeRBaH x  0 naM[ 1

c 3 x2     3 a 1

dUcenH kMNt;)antémø

x 3

.

 AB : y   1 x  2 3

3

.

kñúgfg;myY manXøIelOg 6 nigXøIexov 5 naM[ cMnYnXøITaMgGs;KW 6  5  11 k> cab;)anXøIexovmYyy:agtic RBwtþikarN_cab;)anXøIexovmYyy:agtic bMeBjCa mYyRBwtþikarN_ cab;)anXøeI lOgTaMgGs; eK)an ³ P(exovmYyy:agtic) = 1-P(lll) V.

C

2 1  6 3

1 2  b  a 1   1  3 3

dUcenH smIkarbnÞat;

x2

a

CMnYskñúg 1 :

1 :  a  b  1

III.

naM[

437

9

x> bgðajfa O sßitenAelI AH  eday AH  Cakm cab;)anXøIelOgBIr nigXøIexovmYy naM[ p©itrgVg;carwkkñgú ABCRtUvsßitenAelI AH  RBwtþikarN_ cab;)anXøIelOgBIr nigXøIexovmYyKW ¬l2.x1¦ GacCa ³ ¬llx¦ b¤ ¬lxl¦ b¤ ¬xll¦ dUcenH bgðaj)anfa O sßitenAelI AH  . naM[RbU)abcab;)anXøIelOgBIr nigXøIexovmYyKW ³ - rYcKNna AO CaGnuKmn_én R ¬kaMrgVg; O ¦ P¬l2.x1¦ = P¬llx¦ + P ¬lxl¦ + P ¬xll¦ tag P nig Q CacMNucb:Hrvag ABC nigrgVg; 6 5 5 6 5 5 5 6 5 (   )(   )(   ) naM[ APOQ Cakaer BIeRBaHvaman ³ 11 10 9 11 10 9 11 10 9  5  5  5 OP  OQ  R nig PAˆ Q  APˆ O  AQˆ O  90      33   33   33  naM[ OA CaGgát;RTUgkaerEdlmanRCug R 5 5  3    0.45 33 11 tamRTwsþI CaGgát;RTUgkaer OA  R  2 dUcenH P¬l2.x1¦  115  0.45 . dUcenH KNna)an OA  R 2 . K> KNna R CaGnuKn_én a VI. tambRmab;RbFaneyIgsg;rUb)an ³ A eyIgman OA  OH  AH Q P a a 2 R OA  R 2 / OH  R nig AH  eday O 2 naM[ P(exovmYyy:agtic) = 1   116  105  94 

o



B

eK)an

C

H

k> KNna AH CaGnuKmn_én a eday ABC CaRtIekaNEkgsm)atmankm


AH  a  sin 45 o  a 

dUcenH KNna)an

AH 

R R

2 a 2  2 2

a 2 2





o

naM[

a 2 2 a 2 R 2 1  2 a 2 R 2 2 1 R 2R



438



a 2 2 1 2 2 1 2 1







2  2 a  1  22  1

dUcenH KNna)an

.



 

2 a 2 

 2 a R  1   2  

.

9

439

9

sm½yRbLg ³ 13 sIha 2001 viBaØasa ³ KNitviTüa ry³eBl ³ 120 naTI BinÞú ³ 100  I.

cUrKUssBaØa  kñúgRbGb;enAxagmuxcemøIyEdlRtwmRtUvmanEtmYyKt; ³ 1> cUrkMNt;témø m EdlnaM[bnÞat; y  2  mx RsbnwgbnÞat; y  3x  1 . k> □ m  3 x> □ m  1 K> □ m  1 X> □ m  73 . 2> tamrUbenH eKman BH  2 , HC  8 , AH  x . cUrkMNt;témø x ³ A x k> □ x  10 x> □ x  4 B 2 H K> □ x  4 X> □ x  16

II.

KNna A   2 2 5 5  88 2020  .

III.

edaHRsayRbB½n§smIkartamedETmINg; ³ 2x x2 yy  89

2

IV.

V.

VI.

8

C

2



1 2

.

kñúgfg;mYymanXøIcMnYn 12 RKab; EdlkñúgenaHmanEtXøIBN’s nigXøIBN’exµA . rkcMnYnXøIBN’exµA edIm,I[)anRbU)abénXøIBN’s esµInwg 32 . b£sSI 9 edImmanRbEvg ¬KitCa m ¦ 4 , 12 , 10 , 8 , 2 , 4 , x , 8 , 4 . k> cUrkMNt;témø x edIm,I[ x CamFüménRbEvgb£sSITaMgenaH . x> Tajrkemdüan énRbEvgb£sSITaMgenaH . eK[bIcMNuc A 1 , 1 ; B3 , 2 nig C0 , 4 . k> edAcMNuc A ; B nig C enAkñúgtRmúyGrtUNremEtmYy . x> sresrsmIkarbnÞat; AB . K> KUsemdüan CM  énRtIekaN ABC . rkkUGredaenéncMNuc M . X> KUskm
440

9

rgVg;mYymanp©it O kaMRbEvg 4 cm nigmanGgátp; ©it AB . H CacMNuckNþalén OB  . bnÞat; mYyEkgnwg AB Rtg; H ehIyCYbrgVg; O Rtg;cMNuc M nig N . bnÞat;  AM  nig NB CYbKñaRtg;cMNuc I . k> cUrKNnargVas; MA nig MB . x> cUreRbóbeFob ABI nig NMI .

VII.

8 cemøIy I.

KUssBaØa  kñúgRbGb;enAmuxcemøIyEdlRtwmRtUv³ 1> kMNt;témø m ³ K> ☑ m  1 . eRBaH bnÞat; y  2  mx Rsbnwg y  3x  1 kalNa a  a  2  m  3  m  1 .

III.

eyIgman 2x x2 yy  89

 D  1  4  5

Dx  9  16  25

2> kMNt;témø x ³ x> ☑ x  4 . eRBaH x  2  8  x  16  4 EtRbEvgRCugminGacGviC¢man KW x  0 dUcenH x  4

D y  8  18  10

2

x

II.

KNna A ³  2  5    8  20  A  2  5  8  20  2

2

H

2  2 10  5  8  2 160  20 2  5 2 2 2 5



35  2 10  2 16 10 2 2 5 2 5



35  2 10  8 10 2 2 5 2 5







8

C









36  3 x  24 3 x  36  24 3 x  12 x4

35  6 10  22  5 

35  6 10 35  10  6 6

dUcenH KNna)an

A  10 

Dx  25  5 D 5 D y  10  y  2 D 5  x

rkcMnYnXøIBN’exµA ³ tag x CacMnnY XøIBN’exµA naM[ cMnYnXøIBN’sKW 12  x eRBaHXøITaMgGs;12 RKab; ebItag P(XøIBN’s) CaRbU)abcab;)anXøIBN’s eK)an P(XøBI N’s) = 1212 x tammRmab;RbFaneK)an ³ P(XøIBN’s)  32 naM[ 1212 x  32





tamedETmINg; ³

IV.

2



1 2

dUcenH RbB½n§smIkarmanKUcemøIy x  5, y  2 .

A

B

edaHRsayRbB½n§smIkartamedETmINg; ³

35 6

dUcenH cMnYnXøIexµAKW 4 RKab; .

. 441

9

V.

k> cUrkMNt;témø x edIm,I[ x CamFüm eyIgmanTinñn½y 4 , 12 , 10 , 8 , 2 , 4 , x , 8 , 4 eK)an x  4  12  10  8 92  4  x  8  4 enaH x  529 x eRBaH x  x ¬ x CamFüm¦ 9 x  52  x

eK)an 1  a   1  b   a  b  1 1 -eday  AB  : y  ax  b kat;tam B3 , 2 eK)an 2  a  3  b  3a  b  2 2 yk 2  1 enaHeK)an ³ 3a  b  2   a  b  1 4a  1

 8x  52  x  6.5

dUcenH témøkMNt;)anKW

.

x  6.5 m

VI.

Me  6.5

dUcenH smIkarbnÞat;

1 4

 AB : y  1 x  5 4

4

.

K> KUsemdüan CM  énRtIekaN ABC ¬ emIlrUb cMeBaHkarKUs emdüan CM ¦ -rkkUGredaenéncMNuc M eday M CacMNuckNþalénRCug AB eK)an ³  x  xB y A  yB  M A ,  2   2  1 3 1 2  M ,  2   2

.

 3 M 1 ,   2

k> edAcMNuc A ; B nig C enAkñúgtRmúyEtmYy eyIgman A 1 , 1 ; B3 , 2 nig C0 , 4

dUcenH kUGredaenrk)anKW

 3 M 1 ,   2

.

X> KUskm
C 0 , 4

B3 , 2 A 1 , 1

a

tam 1 :  a  b  1  b  1  a  1  14  54

x> Tajrkemdüan énRbEvgb£sSITaMgenaH cMeBaH x  6.5 m nigeyIgerobTinñn½ytamlMdab; eyIg)an 2 , 4 , 4 , 4 , 6.5 , 8 , 8 , 10 , 12 mancMnYntYénTinñn½yKW n  9 ¬CacMnYness¦ naM[ Me CatYTI 9 2 1  5 tamTinñn½yeRkayBIerobtamlMdab; tYTI 5 RtUvnwg cMnYn 6.5 enaHnaM[ Me  6.5 dUcenH Taj)anemdüan

naM[

HM

x> sresrsmIkarbnÞat; AB bnÞat; AB manrag y  ax  b -eday  AB  : y  ax  b kat;tam A 1 , 1 442

9

VII.

k> KNnargVas; MA nig MB I M

A

 H 4 cm O //

//

B

N

-RtIekaN AMB man M enAelIrgVg; nig AB CaGgát;p©it enaHvaCaRtIekaNcarwkkñúgrgVg; dUcenH RtIekaN AMB CaRtIekaNEkgRtg; M . -eday AB  MN  Rtg; H naM[ MH Ca km
dUcenH RbEvg

MA  4 3 cm , MB  4 cm

.

x> eRbóbeFob ABI nig NMI edayRtIekaN ABI nig NMI man ³ -mMu ABI  NMI ¬mMucarwkmanFñÚsáat;rYm MB ¦ -mMu AIB  NIM ¬CamMurYmEtmYy¦ dUcenH

ABI

NMI

lkçxNÐdMNUc m>m .

443

9

sm½yRbLg ³ 19 sIha 2002 viBaØasa ³ KNitviTüa ry³eBl ³ 120 naTI BinÞú ³ 100  I.

cUrKUssBaØa  kñúgRbGb;enAxagmuxcemøIyEdlRtwmRtUvmanEtmYyKt; ³ 1> etI 2 Cab£srbs;smIkarNamYy ? k> □ 2x  x  2  0 x> □ x  3x  3 2  2  0 K> □ x  2x  3  0 X> □  x  x  2  1  0 . 2> cMNuc A1 , 1 sßitenAkñúgtMbn;cemøIyénvismIkarNamYy ? k> □ y  x 1 x> □ x  y  5 K> □ x  y  2 X> □ y  x  3 . cUrpÁÚpÁgrvagpleFobRtIekaNmaRténmMu  nigtémørbs;va ³ pleFobRtIekaNmaRténmMu  témøpleFobRtIekaNmaRt cemøIy 1> cot g k> 0.8 1>  g C 2> cos x> 1.25 2>  10 6 3> tan K> 0.6 3>   B A 8 4> sin X> 0.75 4>  g> 34 2

2

2

II.

III. IV.

V. VI.

cUrsRmYlkenSam ³

2

F

3 18  2 27  45 3 8  2 12  20

.

hwbmYydak;Gavburs nigGav®sþI. GavbursmancMnYn 8 BN’Rkhm nig 2 eTotBN’s. Gav®sþIman cMnYn 6 BN’Rkhm nig 4 eTotmanBN’s . eKhUtykGavmYyBIkñúghwb . k> kMNt;RbU)abEdleKhUt)anGav®sþI . x> kMNt;RbU)abEdleKhUt)anGavBN’Rkhm . rkBIcMnYn x nig y Edl x  y  9 nig xy  14 . eK[bnÞat; D : y  x  1 enAkñúgtRmúyGrtUNrem xoy  . 444

9

VII.

1> sg;bnÞat; D  . 2> rksmIkarbnÞat; L Edlkat;tamcMNuc A0 , 3 ehIyEkgnwgbnÞat; D  . sg;bnÞat; L enAkñúgtRmúyCamYy D  . 3> KNnakUGredaenéncMNucRbsBV M rvagbnÞat; L nig D  ehIyepÞógpÞat;lT§pltamRkaPic . M CacMNucmYyenAelIrgVg; C  Edlmanp©it O nigkaM R . rgVg; C  Edlmanp©it M nigkaM r Edl R  r  CYbrgVg; C  Rtg; A nig B . . bnÞat; OM  CYbrgVg; C  Rtg; D ehIyCYbrgVg; C  Rtg; E nig F Edl E  DM  . bnÞat;   Ekgnwg DM  Rtg; F ehIyCYb DA nig DB  erogKñaRtg; I nig J . 1>KNnargVas;mMu DAˆ M nig DBˆM . TajbBa¢ak;fa DI  nig DJ  b:HnwgrgVg; C  Rtg; A nig B . 2>bgðajfactuekaN AMFI carwkkñúgrgVg;mYy . 3>eRbobeFob ADM nig FDI . AD DM AM 4>TajbBa¢ak;fa FD ehIy AD  DI  2R2R  r  .   DI FI

8 cemøIy

KUssBaØa  kñúgRbGb;enAmuxcemøIyEdlRtwmRtUv³ 1> etI 2 Cab£srbs;smIkarNamYy ? x> ☑ x  3x  3 2  2  0 eRBaH 2  3 2  3 2  2  0  0  0 Bit 2> cMNuc A1 , 1 enAkñúgtMbn;cemøIyénvismIkar ³ K> ☑ x  y  2 eRBaH A1 , 1 enaH 1 1  2  0  2 Bit . II. pÁÚpÁgrvagpleFobRtIekaNmaRténmMu  nigtémø³ I.

III.

sRmYlkenSam ³ F

2



2

6  0.6 10 8 cos   0.8 10

sin  

dUcenH 2>  k 3>  X 4>  K



9 2 6 3 3 5 6 2 4 32 5

 23

 3 5 2

33 2 2 3 5 2 2 3

F

3 2

.

Gavbursman 8 BN’Rkhm nig 2 BN’s Gav®sþIman 6 BN’Rkhm nig 4 BN’s naM[cMnYnGavTaMgGs; 8  2  6  4  20 k> kMNt;RbU)abEdleKhUt)anGav®sþI 6  4 10   0.5 P(hUt)anGavRsþI)  20 20

C 10

 8

3 8  2 12  20

IV.

sin  0.6   0.75 cos 0.8 cos 0.8 cot    1.33 sin  0.6

A

3 18  2 27  45

dUcenH sRmÜlkenSam)an

tan  

6

F

dUcenH

B

445

P(

hUt)anGavRsþI)  0.5 .

9

x> kMNt;RbU)abEdleKhUt)anGavBN’Rkhm 8  6 14 7 P(hUt)anGavRkhm)     0.7 20 20 10

2> rksmIkarbnÞat; L smIkarbnÞat;EdlRtUvrkmanrag L : y  ax  b -eday L : y  ax  b kat;tamcMNuc A0 , 3 eK)an 3  a  0  b  b  3 -ehIy L : y  ax  b EkgnwgbnÞat; D  eK)an a  a  1  a  a1 Et D : y  x  1 manemKuNR)ab;Tis a  1 naM[ a  11  1

dUcenH P(hUt)anGavRkhm)  0.7 . V. rkBIrcMnYn x nig y eyIgman x  y  9 1 nig xy  14 2 tam 1 : x  y  9  x  y  9 3 yk 3 CMnYskñúg 2 eK)an ³ 2 :

 y  9y  14

y 2  9 y  14 y 2  9 y  14  0

man   9  4 114  81 56  25 naM[ y    921 25  9 2 5  42  2 2

1

y2 

  9  25 9  5 14   7 2 1 2 2

cMeBaH y  2 ³ 3 : x  y  9  2  9  7 cMeBaH y  7 ³ 3 : x  y  9  7  9  2 dUcenH rk)ancemøIyBIrKU x  7 , y  2 1

2

x  2 , y  7

1> sg;bnÞat; D  eyIgman D : y  x  1 eyIgsg;RkaPic)an ³

.

VI.

x 1 2 y 0 1

D  : y  x  1

L  : y   x  3

446

dUcenH smIkarbnÞat; L : y   x  3 . - sg;bnÞat; L enAkñúgtRmúyCamYy D  edayeRbItaragtémøelx edIm,Isg;bnÞat; L x 1 0 L  : y   x  3 ³ y 2 3 enAkñúgtRmúyCamYy D  . 3> KNnakUGredaenéncMNucRbsBV M eyIgman D : y  x  1 nig L : y   x  3 edaypÞwmsmIkarGab;sIusrvagbnÞat; D  nig L eK)an ³ x 1  x  3 2x  4  x  2 / naM[ y  x  1  2  1  1 dUcenH kUGredaenéncMNucRbsBV M 2 , 1 . - epÞógpÞat;lT§pltamRkaPic tamRkaPiceyIgeXIjfa ebIeyIgeFVIcMeNalEkg BIcMNucRbsBV eTAelIG½kSTaMgBIrenaHeyIg)an kUGredaenéncMNucRbsBVKW M x  2 , y  1 dUcCamYykarKNnaxagelIBitEmn . dUcenH karKNnaepÞógpÞat;edayRkaPic .

9

VII.

tambRmab;RbFaneyIgsg;rbU )an ³  

naM[ctuekaN AMFI manplbUkmMuQm ³ / dUcenH ctuekaN AMFI carwkkñúgrgVg;mYy . 3> eRbóbeFob ADM nig FDI eday ADM nig FDI man ³ -mMu ADM  FDI ¬CamMurYm¦ -mMu DAM  DFI  90 ¬mMuEkgdUcKña¦ dUcenH ADM FDI tamlkçxNÐ m>m . MFˆI  MAˆ I  90 o  90 o  180 o

J

F

B

M

I



C 

E O

A



C 

D

o

1> KNnargVas;mMu DAˆ M nig DBˆM man A CacMNucenAelIrgVg; C  ehIy MD Ca Ggát;p©iténrgVg;p©it C  naM[mMu DAˆ M CamMucarwk knøHrgVg; dUcenH mMu DAˆ M  90 . vi)ak RtIekaN DAM CaRtIekaNEkgRtg; A

AD DM AM 4> TajbBa¢ak;fa FD   DI FI tamry³sRmayxagelI

ADM

AD DM AM   FDI FD DI FI AD DM  FD DI

o

eday

A  DI A  C   DI 



cMeBaH enaHTaj)an AD DI  DM  FD eday DM  2R nig FD  2R  r

b:HnwgrgVg; C  Rtg; A

DI  AM

dUcenH

dUcKñaEdr B enAelIrgVg; C  ehIy MD Ca Ggát;p©iténrgVg;p©it C  naM[mMu DBˆM CamMucarwk knøHrgVg; dUcenH mMu DBˆ M  90 . vi)ak RtIekaN DBM CaRtIekaNEkgRtg; B o

eday

B  DJ B  C 

 DJ 

b:HnwgrgVg; C  Rtg; B

DJ  BM

2> bgðajfactuekaN AMFI carwkkñúgrgVg;mYy³ edayctuekaN AMFI man ³ -mMu MFˆI  90 eRBaH  Ekgnwg DM  Rtg; F -mMu MAˆ I  90 eRBaH DI  b:HnwgrgVg; C  Rtg; A o

o

447

AD  DI  2 R  2 R  r 

.

9

sm½yRbLg ³ 09 kBaØa 2003 viBaØasa ³ KNitviTüa ry³eBl ³ 120 naTI BinÞú ³ 100  I.

cUrKUssBaØa  kñúgRbGb;enAxagmuxcemøIyEdlRtwmRtUv ³ 1> etIsmIkarNamYymanb£sBIrepSgKña ? k> □ x  2x  3  0 x> □ x  4x  4  0 K> □ 2x  5x  3  0 X> □ x  12  x   0 . 2> EFG CaRtIekaNEkgRtg; E ehIyman FG  6 cm nig EFˆG  60 . KNnaRbEvg EF KW ³ k> □ EF  6 3 cm x> □ EF  6 33 cm K> □ EF  3 3 cm X> □ EF  3 cm . emGMe)AmYyehIrcuHTMelIpáamYyTgenAkñgú sYnc,armYy EdlmanpáaBN’s 1Tg páaBN’Rkhm 2 Tg páaBN’sVay 3 Tg nigpáaBN’elOg 4 Tg . cUrpÁÚpÁgrvagRBwtþikarN_ nigRbU)abrbs;vaEdlRtUvKña ³ RBwtþikarN_ RbU)abénRBwtþikarN_ cemøIy 1> {emGMe)AcuHTMelIpáaBN’s } k> 0.4 1>  x 2> {emGMe)AcuHTMelIpáaBN’Rkhm } x> 0.1 2>  3> {emGMe)AcuHTMelIpáaBN’sVay } K> 0.5 3>  4> {emGMe)AcuHTMelIpáaBN’elOg } X> 0.2 4>  g> 0.3 kMNt;témø m edIm,I[bnÞat; L  EdlmansmIkar y  m  2m  4x RsbnwgbnÞat; L  Edlman smIkar y  m  2x  1. KNna A  2 98  2 54  200  3 16  32  2  5  1  5    B   . 1  2 5  1  2 5  2

2

2

2

o

II.

III.

IV.

2

1

3



V.

2



3



taragxageRkamenHbgðajBIcMnYnkumar enAkñúgPUmiEdlekItCm¶WxVak;man;tamfñak;Gayu ³ fñak;énGayu ¬qñaM¦ 0-2 2-4 4-6 6-8 4 3 6 7 cMnYnkumar ¬nak;¦ 1> sg;tarageRbkg;ekIn énTinñn½yxagelI . 2> KNnam:Ut nigfñak;énGayuEdlCaemdüan énTinnñ ½yxagelI . 448

9

VI.

ekan K  manmaD V  32cm nigmankm kMNt;smIkarbnÞat; BC  . 2> kMNt;kUGredaenrbs;cMNuckNþal I én AC . kMNt;smIkarbnÞat; BI  . 3

3

1

1

2

1

1

2

2

1

2

1

VII.

3> edaHRsayRbB½n§vismIkartamRkabPic VIII.

 y   y  

2 x2 3 3 x2 2

.

eKman ABC CaRtIekaNEkgRtg;kMBUl A ehIyman AB  3cm , AC  4cm . rgVg; C  man Ggát;p©it AB ehIyCYbRCug BC  Rtg; H . 1>bgðajfa AH  CakmrgVg; C  mYyeTotcarwkeRkARtIekaN AHC . M CacMNucmYyenAelIFñÚtUc CH . bnÞat; CM  CYbbnÞat;  AH  Rtg; N . eRbobeFob MAN nig HCN . TajbBa¢ak;fa AM  HN  MN  CH . 1

2

8 cemøIy I.

KUssBaØa  kñúgRbGb;enAmuxcemøIyEdlRtwmRtUv³ 1> smIkarEdlmanb£sBIrepSgKñaKW ³ K> ☑ 2x  5x  3  0 eRBaH tamkrNIBiess a  b  c  2  5  3  0 eK)anb£s x  1 nig x   ac   52 . 2> KNnaRbEvg EF KW ³ F 60 X> ☑ EF  3 cm eRBaH G tampleFobRtIekaNmaRt E

II.

2

1

2

o

6 cm

EF cos EFˆG   EF  EF  cos EFˆG EF  6  cos60o 1  6   3 cm 2 449

pÁÚpÁgrvagRBwtþikarN_ nigRbU)abrbs;vaEdlRtUvKña³ páaBN’s 1Tg BN’Rkhm 2 Tg BN’sVay 3 Tg nigBN’elOg 4 Tg enaHsrub 1 2  3  4  10 -RbU)abTMelIpáaBN’ s P(s)  101  0.1 -RbU)abTMelIpáaBN’ Rkhm P(Rkhm)  102  0.2 -RbU)abTMelIpáaBN’ sVay P(sVay)  103  0.3 -RbU)abTMelIpáaBN’ elOg P(elOg)  104  0.4 dUcenH eyIgpÁÚpÁg)an 2>  X 3>  g 4>  k .

9

kMNt;témø m edIm,I[bnÞat; L //L  eyIgmanbnÞat;BIrKW L : y  m  2m  4x

III.

1

1> sg;tarageRbkg;ekIn énTinñn½y Gayu ¬qñaM¦ cMnYnkumar f eRbkg;ekIn

V.

2

2

1

0-2 2-4 4-6 6-8

L2  : y  m  2x  1

bnÞat;BIrRsbKñaluHRtaEtemKuNR)ab;TisesµIKña eK)an ³ m  2m  4  m  2 2

m2  m  6  0

man   1  4 1  6  1  24  25 enaH m   1 2125   12 5  26  3 2

1

m2 

 1  25  1  5 4   2 2 1 2 2

dUcenH témøkMNt;)an IV.

m1  3 , m2  2

.

dUcenH m:UtKNna)anKW Mo  7 . fñak;GayuEdlCaemdüan Cafñak;GayuEdlman eRbkg;témøkNþalénTinnñ ½y naM[ Me CatémøéntYTI 202  10 tamtarageRbkg;ekIntYTI 10 enAkñúgfñak;Gayu 4-6 dUcenH fñak;EdlCaemdüanKWfñak;Gayu 4-6 .

A  2 98  23 54  200  33 16  32  2 2  49  23 27  2  2 100  33 8  2  16  2  14 2  63 2  10 2  63  2  4 2  14 2  63 2  10 2  63  2  4 2 0

dUcenH KNna)anKW A  0 .

KNnakm
VI.

 2  5  1  5    B    1  2 5  1  2 5   

1

2

3

1

22 5  5 5  1  20 3 5   19 3 5  19 B

1

1

2  5 1  5  1  2 5 1  2 5 

dUcenH KNna)an

4 7 13 20

20 srub / 2> KNnam:Ut nigfñak;énGayuEdlCaemdüan edaym:UtKWCa p©itfñak;énGayuEdlmaneRbkg;eRcIn CageK ehIyfñak;Gayu 6-8 maneRbkg; 7 eRcInelIs eK mann½yfam:UtKWCa p©itfñak;Gayu 6-8 eK)an Mo  6 2 8  7

KNna



4 3 6 7

f



eday naM[

2

1

1



2

V1  32cm 3

h1  5  3

3

2

/

1

2

V2  4cm 3

nig h

2

 5cm

32 4

 5  3 8  5  2  10 cm

3 5 19

dUcenH RbEvgkm
.

1

450

/ .

9

eyIgmancMNuc A1 , 2 / B0 ,  2 / C3 , 0 1> kMNt;smIkarbnÞat; BC  bnÞat;RtUvrkmanrag BC  : y  ax  b -eday BC  : y  ax  b kat;tam B0 ,  2 naM[  2  a  0  b  b  2 1 -eday BC  : y  ax  b kat;tam C3 , 0 naM[ 0  a  3  b  a   b3 2 -yk 1 CMnYskñúg 2 eK)an ³

3> edaHRsayRbB½n§vismIkartamRkabPic

VII.

2 :

a

b 3

 a

dUcenH smIkarbnÞat;

eyIgmanRbB½n§vismIkar

eyIgsg;bnÞat;RBMEdnénsmIkar

3

2 x2 3 3 x2 2 2  y  3 x  2  3 y  x  2 2 

edayeRbItaragtémøelxedIm,Isg;bnÞat;RBMEdn 2 3 ni g y  x2 y  x2 3 2

  2 2  3 3

BC : y  2 x  2

 y   y  

x 3 3 y 4 0

x 2 2 y 5 1

eyIgsg;RkaPic)an ³

.

y

3 x2 2

2> kMNt;kUGredaencMNuckNþal I én AC  kUGredaenéncMNuckNþalGgát; AC kMNt;eday

y

2 x2 3

 x  xc y A  y c  I A ,  2   2 1 3 2  0  I ,  2   2 I 2 , 1

dUcenH kUGredaencMNuckNþal I 2 , 1 . -kMNt;smIkarbnÞat; BI  bnÞat;RtUvrkmanrag BI  : y  cx  d -eday BI  : y  cx  d kat;tam B0 ,  2 naM[  2  c  0  d  d  2 -eday BI  : y  cx  d kat;tam I 2 , 1 naM[ 1  c  2  d  c  1 2d 2 -yk 1 CMnYskñúg 2 eK)an ³ 2 : c  1  d 2



1   2 3  2 2

dUcenH smIkarbnÞat;

BI  : y  3 x  2 2

.

EpñkminqUtCacemøIyénRbB½n§vismIkar . VIII. tambRmab;RbFaneyIgsg;rb U )an ³ C

M C 2 

N

4cm

A

H

3cm

B

C1 

¬edIm,IkMu[mankarlM)akkñgú kareFVIdMeNaHRsay edaysarrUb nigdMeNaHRsayenATMB½repSg dUcenH ´sUmykrUbeTATMB½rfµIedIm,IgayRsYl ¦ 451

9

2> eRbobeFob MAN nig HCN mMu AMˆ C  AHˆ C  90 ¬mMumanFñsÚ áat;rYm AC ¦ naM[ AMˆ N  90 ¬CamMubEnßmCamYymMu AMˆ C ¦ ehIy CHˆN  90 ¬CamMubEnßmCamYymMu AHˆ C ¦ eday MAN nig HCN man ³ -mMu AMN  CHN  90 ¬mMuEkgdUcKña¦ -mMu MAˆ N  HCˆN ¬mMucarwkmanFñÚsáat;rYm MH ¦ dUcenH MAN HCN tamlkçxNÐ m>m .

C

M C 2 

o

N

4cm

o

H

o

3cm

A

B

C1 

o

1> bgðajfa AH  Cakm
1

vi)ak ³ naM[

2

2

BC  32  4 2 BC  5 cm

-tamTMnak;TMngkñúgRtIekaNEkg ABC eK)an ³ BC AH  AB AC AB  AC naM[ AH  BC Edlman AB  3cm , AC  4cm , BC  5 cm eK)an AH  3 5 4  125  2.4 cm dUcenH eyIgKNna)anRbEvg BC  5 cm , AH  2.4 cm

HCN

. 452



AM MN  CH HN

AM  HN  MN  CH

dUcenH Taj)an

o

2

MAN

AM  HN  MN  CH

.

9

453

9

sm½yRbLg ³ 10 kkáda 2004 viBaØasa ³ KNitviTüa ry³eBl ³ 120 naTI BinÞú ³ 100  I.

cUrKUssBaØa  kñúgRbGb;enAxagmuxcemøIyEdlRtwmRtUvmanEtmYyKt; ³ 1> etIsmPaBNamYyEdlRtwmRtUv ³ k> □ 81  3 x> □ 16  4 K> □ 1.69  1.3 X> □  5  5 . 2> EFGH CactuekaNEkgmYyEdlman EF  1.5 cm nig EG  3 cm . KNna GEˆH ³ k> □ GEˆH  60 x> □ GEˆH  35 K> □ GEˆH  45 X> □ GEˆH  30 . ñ ½y. Mo Cam:UtTinñn½y. Me CaemdüanénTinñn½y. cUrpÁÚpÁgEpñk A nig B EdlRtUvKña ³ x CamFümTinn A ¬Tinñn½y¦ B ¬mFümsßiti¦ cemøIy 1> 2 , 3 , 4 , 1 , 6 k> Me  4 1>  X 2> 2 , 4 , 5 , 6 , 1 x> Mo  1 2>  3> 4 , 6 , 3 , 7 , 5 K> x  3 3>  4> 1 , 2 , 5 , 4 , 1 X> Me  3 4>  g> x  5 enAkñúgfñak;eronmYyeKe)aHeqñateRCIserIssisS 3 nak; kñúgcMeNamsisSQreQµaH 7 nak; EdlkñúgenaH mansisSRbus 5 nak; nigsisSRsI 2 nak;. rkRbU)abEdleKeRCIserIs)ansisSRsI 1 nak;y:agtic. eKykesovePA 200 k,aleTAEck[sisSkñúgfñak;myY . ebIeKEck 4 k,aldUcKña enaHenAsl;esovePA 20 k,al. ebIEck[sisSRbusmñak; 4 k,al nigsisSRsImñak; 5 k,al enaHxVHesovePAcMnYn 5 k,al. rkcMnYnsisSenAkñúgfñak;eronenaH . 1> edaHRsayRbB½n§vismIkartamRkabPic  yy  2x  2 .  2> ABC manRCug AB  x 1 , BC  x  4 nig AC  x  2 Edl x  1 . kMNt;témøén x edIm,I[ ABC EkgRtg;kMBUl A . 1> enAkñúgtRmúyGrtUNrem xoy  sg;bnÞat; D : y   2x  2 . 2> bnÞat; L kat;tamcMNuc A 1 , 0 ehIyEkgnwg D  . 3

4

2

II.

III.

IV.

V.

VI.

o

o

o

o

454

9

VII.

k> rkemKuNR)ab;TisénbnÞat; L . x> sresrsmIkarbnÞat; L . K> sg;bnÞat; L enAkñúgtRmúyCamYy D  . kñúgrgVg;p©it O mYymanGgátF; ñÚBIrminb:unKña AB nig CD EdlEkgKñaRtg;cMNuc I . M CacMNuc kNþalén BD . bnÞat; MI  CYbGgát; AC  Rtg; N . 1> bgðajfa MBI nig MDI CaRtIekaNsm)at . 2> eRbóbeFob IBD nig NCI . TajbBa¢ak;fa MN    AC  . 3> eKyk IA  a nig IC  b . KNna AC nig IN [Cab;Tak;TgeTAnwg a nig b .

8 cemøIy I.

KUssBaØa  kñúgRbGb;muxcemøIyEdlRtwmRtUv ³ 1> etIsmPaBNamYyEdlRtwmRtUv ³ K> ☑ 1.69  1.3 eRBaH 1.69  1.3  1.3 2> KNna GEˆH ³ X> ☑ GEˆH  30 eRBaH sin GEˆH  13.5  0.5  GEˆH  30

Et P(bbb) = P(b)  P(b¼b)  P(b¼bb) 

eK)an P(s1y:agtic) = 1  72  75  0.71

2

o

dUcenH

o

H

E 1.5cm

F

3cm

5 4 3 2    7 6 5 7

s y:agtic) = 75  0.71 .

P( 1

rkcMnYnsisSenAkñúgfñak;eronenaH tag x CacMnYnsisSRbus ¬KitCa nak;¦ y CacMnYnsisSRsI ¬KitCa nak;¦ tambRmab;RbFan eyIg)anRbB½n§smIkar ³

IV.

G

pÁÚpÁgEpñk A nig B EdlRtUvKña ³ 2>  k eRBaH 2 , 4 , 5 , 6 , 1 man Me  4 3>  g eRBaH 4 , 6 , 3 , 7 , 5 man x  5 4>  x eRBaH 1 , 2 , 5 , 4 , 1 man Mo  1 III. rkRbU)abeRCIserIs)ansisSRsI 1 nak;y:agtic sisSQreQµaH 7 nak; manRbus 5 nak; RsI 2 nak; -RBwtþikarN_eRCIserIs)ansisSRsI 1 nak;y:agtic CaRBwtþikarN_bMeBjCamYyRBwtþikarN_eRCIserIsKµan )ansisSRsI mann½yfaerIs)ansisSRbusTaMgGs; naM[ P(s1y:agtic bbb) II.

4 x  4 y  200  20 4 x  4 y  180 1    4 x  5 y  200  5 4 x  5 y  205 2

edaHRsayedayyk 2  1 ³ 4 x  5 y  205  4 x  4 y  180 y  25

cMeBaH y  25 ³ 1 : 4x  4 y  180 b¤ x  y  45 nak; CacMnnY sisSsrubenAkñúgfñak; dUcenH cMnYnsisSsrubenAkñúgfñak;man 45 nak; . 455

9

V.

1> edaHRsayRbB½n§vismIkartamRkabPic

VI.

y  x2  y  2

1> sg; D : y   2x  2 kñúgtRmúyGrtUNrem L  : y  2 x  2

y  x2  y  2

eyIgsg;bnÞat;RBMEdn edayeRbItaragtémøelx ³ y  x2 nig x

1

D  : y   x  2

y2

2

x

y 1 0

2

1 2

y 2 2

2> k> rkemKuNR)ab;TisénbnÞat; L eday L  D naM[ a  a  1 eK)an  12  a  1  a  2

y2

dUcenH emKuNR)ab;Tisén L KW a  2 . y  x2

EpñkminqUtCatMbn;cemøIyénRbB½n§vismIkar . 2> kMNt;témøén x edIm,I[ ABC EkgRtg; A eyIgman AB  x 1 , BC  x  4 / AC  x  2 tamRTwsþIbTBItaK½r ³ ABC EkgRtg;kMBUl A luHRtaEt BC  AB  AC 2

2

2

x  42  x  12  x  22 x 2  8 x  16  x 2  2 x  1  x 2  4 x  4 x 2  8 x  16  2 x 2  2 x  5 x 2  6 x  11  0

x> sresrsmIkarbnÞat; L bnÞat;RtUvrkmanrag L : y  ax  b EdlmanemKuNR)ab;Tis a  2 ¬rk)anxagelI¦ -eday L kat;tam A 1 , 0 eK)an 0  2 1  b  b  2 dUcenH bnÞat;rk)anKW L : y  2 x  2 . K> sg;bnÞat; L enAkñúgtRmúyCamYy D  ¬sUmemIlrUbxagelI Edl)ansg;bnÞat; D  ¦ VI. tamRmab;RbFaneyIgsg;rUb)an ³

man    3  1  11  9  11  20 naM[ x    31 20  3  2 5  0 minyk 2

C

A

1



  3  20 x2   3 2 5 1

dUcenH témøkMNt;)anKW

x  3 2 5

N I

O

.

B

 M  D

¬´sUmykrUbeTAdak;TMB½rfµIedIm,IgayRsYlbkRsay¦ 456

9

mann½yfa INC CaRtIekaNEkgRtg; N ehIyman N enAelI AC dUcenH eyIgTaj)an MN    AC  . 3> KNna AC nig IN [Cab;Tak;Tg a nig b eyIgman IA  a nig IC  b -cMeBaH RtIekaNEkg AIC EkgRtg; I tamBItaK½r AC  IA  IC

C

A

N I 

O

B

  M

D

k> bgðajfa MBI nig MDI Ca  sm)at eyIgman AB nig CD EdlEkgKñaRtg;cMNuc I nigman M CacMNuckNþal BD enaH BDI CaRtIekaNEkgRtg; I Edlman IM  Caemdüan RtUvnwgGIub:Uetnus BD eK)an MI  MB  MD -eday MBI man MI  MB dUcenH MBI CaRtIekaNsm)at . -eday MDI man MI  MD dUcnH MDI CaRtIekaNsm)at . vi)ak ³ mMu)at MDI  MID 2> eRbóbeFob IBD nig NCI eday IBD nig NCI man ³ -mMu NCI  IBD ¬mMucarwkmanFñÚsáat;rYm AD ¦ -mMu NIC  IDB eRBaH NIC  MID ¬CamMuTl;kMBUl¦ IDB  MDI  MID ¬vi)akxagelI¦ dUcenH IBD NCI tamlkçxNÐ m>m . vi)ak ³ INC  DIB Et BDI CaRtIekaNEkgRtg; I enaH DIB  90 naM[ INC  DIB  90

2

2

2

AC  IA2  IC 2  a 2  b 2

tamTMnak;TMngkñúgRtIekaNEkg AIC EkgRtg; I eK)an ³ IN  AC  IA IC  IC naM[ IN  IAAC 

ab a2  b2



ab a 2  b 2 a2  b2

dUcenH eyIgKNna[Cab;Tak;Tg a nig b )an AC  a 2  b 2 IN 

o

o

457

ab a 2  b 2 a2  b2

ÉktaRbEvg ÉktaRbEvg .

9

sm½yRbLg ³ 11 kkáda 2005 viBaØasa ³ KNitviTüa ry³eBl ³ 120 naTI BinÞú ³ 100  I.

II.

III. IV. V.

cUrKUssBaØa  kñúgRbGb;enAxagmuxcemøIyEdlRtwmRtUvmanEtmYyKt; ³ 1> eKmanTinñn½y 1 , 2 , 3 , a , 8 , 7 , 3a  8 . kMNt;témø a edIm,I[mFümTinñn½yKW x  7 . k> □ a  4 x> □ a  5 K> □ a  6 X> □ a  7 . 2> RtIekaN ABC CaRtIekaNsm)atman AB  AC  5cm nig BC  6cm nigkm □ cos ABˆ H  56 x> □ cos ABˆ H  54 K> □ cos ABˆH  53 X> □ cos ABˆ H  12 . fñak;eronmYymansisSGayu 12 qñaM 5 nak; sisSGayu 13 qñaM 8 nak; nigGayu 14 qñaM 7 nak;. RKU)an ehAsisSmñak;edayécdnü . cUrpÁÚpgÁ Epñk A nig B [)ancemøIyRtwmRtUv ³ A B cemøIy 1> RbU)abEdlRKUehAsisSmanGayu 12 qñaM k> 0.65 1>  2> RbU)abEdlRKUehAsisSmanGayu 13 qñaM x> 0.6 2>  3> RbU)abEdlRKUehAsisSmanGayueRkam 14 qñaM K> 0.4 3>  4> RbU)abEdlRKUehAsisSmanGayu 14 qñaM X> 0.35 4>  g> 0.25 edaHRsaysmIkar  28  1x  12  x  2  3 . edaHRsayRbB½n§smIkartamRkabPic xy  2x  2 .  sYnc,armYymanragCactuekaNEkg manbeNþayelIsTTwg 9 m . eKsg;rbgB½T§CMuvijsYnenaH . rkRbEvgrbgebIvamanépÞRkLa 112 m . kñúgtRmúyGrtUNrem xoy  eKmancMNuc A0 , 1 nig B4 ,  3 . 1> kMNt;smIkarbnÞat; AB . 2> kMNt;kUGredaenéncMNuckNþal M én AB. kMNt;smIkarbnÞat; D  Ekgnwg AB nigkat;tamcMNuc M . 3> sg;bnÞat; AB nig D  enAkñúgtRmúyEtmYy . 2

VI.

458

9

VII.

CaRtIekaNcarwkkñgú rgVg;p©it O Edlman AB  AC  BC  2 cm . eKKUsGgát;p©it AD Edlkat; BC  Rtg; H . 1> KNna AD nig BD ebI sin 30  12 , cos 30  23 . 2> eRbóeFob BHD nig AHC . TajrkpleFobdMNUc . 3> yk K CacMNuckNþal BD . bnÞat; KH  kat;RCug  AC  Rtg; I . bgðajfa KI   AC  . ABC

o

o

8 cemøIy I.

KUssBaØa  kñúgRbGb;enAxagmuxcemøIyRtwmRtUv 1> kMNt;témø a ³ x> ☑ a  5 eRBaH X  1  2  3  a 78  7  3a  8

III.

edaHRsaysmIkar ³

 28  1x  12  x  2 7  1x  2 3  x 

3 cos ABˆ H  5

2 7x  2  3

A 5cm

5cm

x

2 3 2 7

x

17  21 14

edaHRsayRbB½n§smIkartamRkaPic ³ eyIgmanRbB½n§vismIkar xy  2x  2  sg;bnÞat;RBMEdnénsmIkar xy  2x  2

IV. B

H

C

6cm

II.

2 3

2 7x  x  x  2  3  2 3

4a  29  7  4a  29  49  a  5 7 3 cos ABˆ H ☑ cos ABˆ H  5

2> KW ³ K> eRBaH   ABH man

2 3

pÁÚpÁgEpñk A nig B [)ancemøIyRtwmRtUv ³ sisSGayu 12 qñaM 5 nak; sisSGayu 13 qñaM 8 nak; nigGayu 14qñaM 7nak; naM[krNIGac  5  8  7  20 naM[ 1> P(12qñaM)  205  0.25 2> P(13qña)M  208  0.4 3> P(eRkam14qñaM)  520 8  0.65 4> P(14qña)M  207  0.35 dUcenH eyIgpÁÚpÁg)an ³ 1>  g 2>  K 3>  k 4>  X .



taragtémøelxRtUvKña

y x2 x2

y  x2

x 0 2 y 2 0 x 2 2 y 2 0

x2

EpñkminqUtCacemøIyénRbB½n§vismIkar . 459

9

V.

rkRbEvgrbgénsYnc,arenaH tag x CaRbEvgTTwg ¬Edl x  0 KitCa m ¦ naM[ RbEvgbeNþayKW x  9 tambRmab;RbFaneK)an ³

-kMNt;smIkarbnÞat; D  smIkarbnÞat;RtUvkMNt;manrag D : y  ax  b eday D : y  ax  b kat;tam M 2 ,  1 eK)an 1  a  2  b  b  2a 1 eday D  AB   a  a  1 naM[ a  a1  11  1 ¬eRBaH a  1¦ eK)an b  2a 1  2 11  3

x x  9   112

x 2  9 x  112  0

man   9  4 1 112   81  448  529 naM[ x   9 2 1529   9 2 23  0 minyk 2

1

x2 

 9  529  9  23  7 2 1 2

dUcenH smIkarbnÞat; D : y  x  3

cMeBaH x  7 enaH x  9  7  9  16 eK)an P  2( TTwg + beNþay )

3> sg;bnÞat; AB nig D  kñúgtRmúyEtmYy taragtémøelxRtUvKña  AB  : y   x  1 nig D  : y  x  3

/

 27  16   46 m

edayRbEvgrbgCaRbEvgbrimaRtrbs;sYn dUcenH RbEvgrbgsYnc,arKW P  46m .

x

0 1

x

VI.

 0  4 1   3  M ,   M 2 ,  1 2   2

dUcenH kUGredaencMNuckNþalKW M 2 ,  1

1

2

y  2 1

y 1 0

eKmancMNuc A0 , 1 nig B4 ,  3 1> kMNt;smIkarbnÞat; AB bnÞat;EdlRtUvrkmanrag  AB  : y  ax  b -eday  AB  : y  ax  b kat;tam A0 , 1 eK)an 1  a  0  b  b  1 -eday  AB  : y  ax  b kat;tam B4 ,  3 eK)an  3  a  4  b  4a  b  3 cMeBaH b  1 enaH 4a  b  3  4a  3  b eK)an 4a  3 1  a  1 dUcenH smIkarbnÞat; AB  : y   x  1 . 2> kMNt;kUGredaenéncMNuc M kNþal AB

.

D  : y  x  3

 AB  : y   x  1

VII.

KNna AD nig BD

A

2 cm 

B

//

K

//

O H

I C

D

¬ebIrUb nigsRmayenATMB½repSgBIKña enaHvaBi)akdl; GñkGan dUcenH´sUmdak;rUb nigsRmayenATMB½rfµI . edIm,IkMu[GñkGanBi)ak ¦ 460

9

-TajrkpleFobdMNcU

A

eday

2 cm 

B

//

//

K

O

I C

H

2 3 BHD BH HD BD 3     3  AHC AH HC AC 2 3

dUcenH pleFobdMNUcEdlTaj)anKW

D

BH HD BD 3 .    -eday ABC man AB  AC  BC  2 cm AH HC AC 3 naM[ ABC CaRtIekaNsm½gS 3> bgðajfa KI   AC  vi)ak ABC  ACB  BAC  60 -eyIgman BAD  30 enaH DAC  30 -eday ABD man B enAelIrgVg; nig AD Ca naM[ AH Cakm eRbóeFob BHD nig AHC o

o

o

o

o

o

o

o

o

o

o

o

o

o

eday BHD nig AHC man ³ -mMu BHD  AHC ¬CamMuTl;kMBUl¦ -mMu ADB  ACB  60 ¬sRmayxagelI¦ dUcenH BHD AHC lkçxNÐdMNUc m>m . o

461

9

sm½yRbLg ³ 10 kkáda 2006 viBaØasa ³ KNitviTüa ry³eBl ³ 120 naTI BinÞú ³ 100  I.

cUrbMeBjcenøaHkñúgtaragxageRkam[)anRtwmRtUv edayKNna 8

x

cMeBaH x  8 .

8

x2 3

x 2 , 3 x , x  17

8

x

x  17

II.

III.

taragxageRkamenH CakarbgðajBIcMnYnsisS énGnuviTüal½ymYy Edl)anTTYl)anC½ylaPI sisSBUEkRbcaMqñaM ³ 10-12 12-14 14-16 16-18 fñak;énGayu ¬qñaM¦ 3 4 6 3 cMnYnsisS ¬nak;¦ 1> sg;tarageRbkg;ekIn énTinñn½yxagelI . 2> KNnam:Ut nigrkfñak;emdüan énTinñn½yxagelI . k> edaHRsaysmIkar x  2  8  x . x> rk m nig p edaydwgfasmIkar x  mx  p manb£s x  2 nig x  5 . KNna A   5 5 2  5 2 2  2

2

1

IV.













B  4 2 4 5  3 3  4 10 1  4 1000  4 2  3 3

V. VI.

VII.

edaHRsayRbB½n§vismIkar

1  y  x 1  2  y  x

2

.

.

kñúgkabUbmYymanRkdasR)ak; 15 snøkw . enAkñúgenaHmanRkdasR)ak;BIrRbePTKW 1000` nig 5000`. TwkR)ak;srubman 39000 ` . cUrrkcMnnY RkdasR)ak;RbePTnImYy ² . fg;mYymanGkSrCaBakü HAPPY . eKlUkykGkSrkñúgfg;mgþ mYyedaymindak;cUlvijeT . rkRbU)abénRBwtþikarN_ ³ 1> lUkyk)anGkSr P . 2> lUkyk)anGkSr AY tamlMdab;enH . 462

9

3> lUkyk)anGkSr HPP tamlMdab;enH . rgVg;p©it O manGgát;p©it AB Edl AB  5 cm . bnÞat; L mYyb:HnwgrgVg; O Rtg;cMNuc C ehIy AC  4 cm . bnÞat;  AD  CYbrgVg;mþgeTotRtg; D ehIyEkgeTAnwg L  Rtg; E . M CacMNuc RbsBVrvag  AC  nig BD . N CacMNuckNþalGgát; AD . 1> kMNt;RbePT ABC nig ABD. KNnabrimaRtén ABC . 2> bgðajfactuekaN CENO CactuekaNEkg . 3> eRbóbeFob MAB nig MDC . Tajfa MA MC  MB MD .

VIII.

8 cemøIy I.

bMeBjcenøaHkñúgtarag[)anRtwmRtUv x

8

8

x2

8

8

x

2

2

x  17

3

5

3

-cMeBaH

x  8

x2 

2> KNnam:Ut nigrkfñak;emdüan tamtaragTinñn½yfñak;Gayu 14-16 maneRbkg;esµI 6 eRcInCageK naM[fñak;Gayu 14-16 Cafñak;m:Ut Etm:UtCatémøénp©itfñak; enaH Mo  14 2 16  15 dUcenH m:UtKNna)anKW Mo  15 . -emdüanCatémøkNþal edayTinñn½ymaneRbkg;srub 16 naM[témøkNþal éneRbkg;KW 162  8 . tamtarageRbkg;ekIn ³ eRbkg; 8 sßitenAkñúgfñak; 14-16 dUcenH fñak;Gayu 14-16 Cafñak;énemdüan .

enaH

 82

 8  8

x  3  8  2

3

x  17   8  17  9  3

-cMeBaH

x  8

x2  3

enaH

 82

 8 8

x 3 82 x  17  8  17  25  5

II.

1> sg;tarageRbkg;ekIn

III.

k> edaHRsaysmIkar x  22  8  x

fñak;énGayu eRbkg; f eRbkg;ekIn f 10-12 12-14 14-16 16-18

3 4 6 3

srub

16

x 2  4x  4  8  x



x 2  3x  4  0

3 7 13 16

tamkrNIBiess a  b  c  1   3  4  0 naM[ x  1 , x   ac   14  4 1

2

dUcenH smIkarmanb£s x

1

463

 1 , x2  4

.

9

x> rk m nig p eyIgmansmIkar x  mx  p manb£s x  2 nig x  5 cMeBaHtémøbs£ TaMgBIr eK)an ³

V.

edaHRsayRbB½n§vismIkar

2

1

eyIgsg;bnÞat;RBMEdn

2

taragtémøelxRtUvKña

2 2  m  2  p  0  2 5  m  5  p  0

y

4  2 m  p  0  25  5m  p  0  p  2m  4   p  5m  25

  

1 x 1 2 x y

2 4

yx x

y

0 1

0 1

-sg;RkaPic

5m  25  2m  4 3m  21

yx

m  7 : p  2m  4  2  7  4  10

dUcenH témøEdlrk)anKW IV.

nig

2 3

m7

cMeBaH

1  y  x 1  2  y  x 1  y  x 1  2  y  x

m  7 , p  10

y

1 x 1 2

.

KNna  5 2   A     5  2 5  2   







5 5 2  2 5 2 5 2 5 2









5  10  10  2 52 7  3 

dUcenH KNna)an 



A

7 3



.

EpñkminqUtCacemøIyénRbB½n§vismIkar . VI. rkcMnYnRkdasR)ak;RbePTnImYy² tag x CacMnYnRkdasR)ak; 1000` y CacMnYnRkdasR)ak; 5000` tambRmab;RbFaneK)an ³  x  y  15  x  y  15    1000x  5000 y  39000  x  5 y  39

tamedETmINg;



B  4 2 4 5  3 3  4 10 1  4 1000  4 2  3 3

Dx 36  9 D 4 D y 24 D y  39  15  24  y   6 D 4

Dx  75  39  36  x 

 4 10  4 2  3 3  4 10  4 10000  4 2  3 3  4 10000  4 10 4  10

dUcenH KNna)an

B  10

D  5 1  4

dUcenH RkdasR)ak; 1000` man 9 snøwk RkdasR)ak; 5000` man 6 snøkw .

. 464

9

fg;manGkSr HAPPY man 5 GkSr naM[ krNIGac  5 rkRbU)abénRBwtþikarN_ ³ 1> lUkyk)anGkSr P edayGkSr P mancMnYn 2 enaHkrNIRsbesµI 2 naM[ P(P) = 52  0.4

-KNnabrimaRtén ABC eday ABC CaRtIekaNmanGuIb:Uetnus AB tamRTwsþIbTBItaK½r AB  AC  BC eday AB  5 cm nig AC  4 cm naM[ BC  AB  AC

VII.

dUcenH RbU)ablUk)anGkSr P KW

2 P(P) = 5

2

2

2

2

2

 52  42  9  3 cm

eK)an

.

PABC  AB  AC  BC

 5  4  3  12 cm

2> lUkyk)anGkSr AY tamlMdab;enH

dUcenH brimaRt ABC KW P  12 cm . P(AY)  P(A)  P(Y/A) 1 1 1 2> bgðajfactuekaN CENO CactuekaNEkg     0.05 5 4 20 edayctuekaN CENO man ³ 1 dUcenH RbU)ablUk)an AY KW P(AY) = 20 . -mMu OCˆE  90 ¬bnÞat;b:HEkgnwgkaMrgVg;¦ -mMu NEˆC  90 ¬eRBaH  AD  L Rtg; E ¦ 3> lUkyk)anGkSr HPP tamlMdab;enH -mMu ONˆE  90 ¬kaMrgVg;EkgGgát;FñÚRtg;cMNuckNþal¦ P(HPP)  P(H)  P(P/H)  P(P/HP) 1 2 1 1 ctuekaNEdlmanmMuTaMgbICamMuEkg enaHvaCa      0.033 5 4 3 30 ctuekaNEkg ¬eRBaHmMuTI4 k¾CamMuEkgEdr¦ 1 dUcenH RbU)ablUk)an HPP KW P(HPP) = 30 . dUcenH ctuekaN CENO CactuekaNEkg . VIII. tambRmab;RbFaneyIgKUsrUb)an ³ 3> eRbóbeFob MAB nig MDC E eday MAB nig MDC man ³ C L  D -mMu MAB  MDC ¬mMucarwkmanFñÚsáat;rYm BC ¦ N M -mMu AMB  DMC ¬mMuTl;kBM Ul¦ B A ABC

o

o

o

O

dUcenH

1> kMNt;RbePT ABC nig ABD ³ eday ABCmankMBUl C enAelIrgVg;manGgát;p©it AB  enaHvaCaRtIekaNcarwkknøHrgVg; dUcenH ABC CaRtIekaNEkgRtg; C .

MAB

MDC

tamlkçxNÐ m>m .

MA MB vi)ak MAB   MDC MD MC Taj)anBIsmamaRt MA MC  MB MD

dUcenH Taj)an 465

MA MC  MB MD

.

9

sm½yRbLg ³ 09 kkáda 2007 viBaØasa ³ KNitviTüa ry³eBl ³ 120 naTI BinÞú ³ 100  I.

II.

cUrKUssBaØa  kñúgRbGb;enAxagmuxcemøIyEdlRtwmRtUvmanEtmYyKt; ³ 1> smIkar 2x 1  2 manb£s ³ k> □ x  1 22 x> □ x  2 

K> □ x  2  2 X> □ x  12 2 . 2> RtIekaN ABC CaRtIekaNEkgRtg;kMBUl A . AH Ekgnwg BC  Rtg; H Edl BH  4.5cm nig HC  2 cm . rkRbEvg AH ³ k> □ AH  9 cm x> □ AH  6.5 cm K> □ AH  3 cm X> □ AH  3 cm . 1> edaHRsayRbB½n§smIkar 2x xy3y3 11 .  2> edaHRsayvismIkar 2 x  1  4 x  x rYcbkRsaycemøyI elIG½kSéncMnYnBit . enAkñúgRKYsarmYy «BukmanGayueRcInCagkUnc,gcMnYn 25 qñaM ehIykUnc,gmanGayueRcInCagkUnb¥Ún cMnYn 5 qñaM . rkGayumñak;² ebIdwgfaplbUkénGayuGñkTaMgbIesµIngw 65 qñaM . sisSRbus 3 nak; nigRsI 3 nak; )anQreQµaHe)aHeqñat edIm,IeRCIserIseFVICaRbFanfñak; nigbnÞab;mk eRCIserIsGnuRbFanfñak;mñak;eTot . rkRbU)abénRBwtþki aN_ ³ 1> eRCIserIs)anRbFanfñak;CasisSRbus . 2> eRCIserIs)anRbFanfñak;CasisSRsI . 3> eRCIserIs)anRbFanfñak;CasisSRsI nigGnuRbFanfñak;CasisSRbus . enAkñúgtRmúyGrtUNrem xoy  eKmanbnÞat; L  : y  x  2 nigmancMNuc A1 , 2 . 1> rksmIkarbnÞat; L  Edlkat;tamcMNuc A1 , 2 ehIyEkgCamYybnÞat; L  . 2> rkkUGredaencMNucRbsBVrvagbnÞat; L  nig L  ehIyepÞógpÞat;lT§pltamRkabPic . rgVg;p©it O manGgát;p©it BC  Edl BC  4 cm . A CacMNucmYyenAelIrgVg; O Edl ABˆC  30 . bnÞat; AE  CYbCamYy BC  Rtg; D ehIyCYbrgVg; O mþgeTotRtg; E . 1> kMNt;RbePTRtIekaN ABC nigRtIekaN AOC . 2

III.

IV.

V.

2

1

2

1

2

1

VI.

2

o

466

9

2> KNna AB , AC , AEˆB . 3> eRbóbeFobRtIekaN ACD nigRtIekaN BED. rYcRsaybBa¢ak;fa DA DE  DB  DC .

8 cemøIy I.

KUssBaØa  kñúgRbGb;enAmuxcemøIyEdlRtwmRtUv 1> smIkar 2x 1  2 manb£s ³ k> ☑ x  1 22 eRBaH 2 x  1  2  2 x  2  1 enaH x  1  2 2  x  12  1  x  1  22 2> rkRbEvg AH ³ X> ☑ AH  3 cm tamTMnak;TMngkñúgRtIekaNEkg ABC km
AH 2  HB  HC

2 cm

H

AH  HB  HC

x

A

Dx  2   2 D 1 Dy 5 y  5 D 1

 x

D y  11  6  5



1 3

0

3 x  20  65 3 x  45 x  15

B

naM[ Gayu«BukKW x  25  15  25  35 qñaM nig GayuknU b¥ÚnKW x  5  15  5  10 qñaM / /

dUcenH

dUcenH RbB½n§manKUcemøIy x  2 , y  5 .

«BukmanGayu 35 qñaM / kUnc,gmanGayu 15 qñaM kUnb¥ÚnmanGayu 10 qñaM

.

sisSRbus 3 nak; nigRsI 3 nak; naM[ cMnYnkrNIGac  3  3  6 . rkRbU)ab ³ 1> eRCIserIs)anRbFanfñak;CasisSRbus RbusCaRbFan GacRbusCaGnu> b¤GacRsICaGnu> P(b>CaRbFan) = P(b>b) + P(b>s) = P(b)  P(b¼b) + P(b)  P(s¼b)

IV.

2> edaHRsayvismIkar ³ 2 x  12  4 x 2  x 4x 2  4x  1  4x 2  x 3x  1 x

x

x  25  x  x  5  65

1> edaHRsayRbB½n§smIkar ³ eyIgmansmIkar 2x xy3y3 11 tamedETmINg;  eK)an D  3  2  1 Dx  9  11  2



EpñkminqUtCacemøIyénvismIkar . III. rkGayurbs;mñak;² tag x CaGayukUnc,g ¬Edl x  0 KitCaqñaM¦ naM[ Gayu«BukKW x  25 nig GayukUnb¥ÚnKW x  5 tambRmab;RbFan eK)ansmIkar ³

4.5 cm

 4.5  2  3 cm

II.

-bkRsaycemøIyvismIkarelIG½kScMnYnBit ³

1 3

dUcenH vismIkarmancemøIy x   13 .

3 2 3 3 15 1       6 5 6 5 30 2

467

9

dUcenH P(b>CaRbFan

naM[

.

1 ) =  0.5 2

y  x2

5 1 2 2 2

dUcenH cMNucRbsBVrvag L  nig L  KW ³

2> eRCIserIs)anRbFanfñak;CasisSRsI sisSRsICaRbFan GacRbusCaGnu> b¤GacRsICaGnu> P(s>CaRbFan) = P(s>b) + P(s>s) = P(s)  P(b¼s) + P(s)  P(s¼s)

2

1

5 1  , y  x  2 2 

.

-epÞógpÞat;tamRkaPic L2  : y   x  3

3 3 3 2 15 1       6 5 6 5 30 2

dUcenH P(b>CaRbFan) = 12  0.5 . 3> eRCIserIs)anRbFanCaRsI nigGnu>CaRbus P(RbFanRsI>GnuRbus) = P(s)  P(b)

L1  : y  x  2

3 3 3     0.3 6 5 10

dUcenH P(RbFanRsI>GnuRbus) = 0.3 . V.

tamRkaPiceXIjfa cMNucRbsBVénbnÞat;TaMgBIr mankUGredaen  x  52 , y  12  nigEkgKñaBitEmn . VI. 1> kMNt;RbePT ABC nigRtIekaN AOC

1> rksmIkarbnÞat; L  eyIgman L  : y  x  2 nigcMNuc A1 , 2 smIkarbnÞat;RtUvrkmanrag L  : y  ax  b -eday L  kat;tam A1 , 2 eK)an 2  a 1  b  b  2  a -eday L   L  eK)an a 1  1  a  1 naM[ b  2  a  2   1  3 2

1

A

2

2

2

B

30 o 

O D

1

C

E

-edayRtIekaN ABC manGgát;p©it BC  nig A enA elIrgVg; ehIy ABˆC  30 enaHvaCaRtIekaNcarwkknøHrgVg; dUcenH smIkarbnÞat;RtUvrkKW L  : y   x  3 . dUcenH ABC CaRtIekaNEkgknøHsm½gS . vi)ak ACB  60 2> rkkUGredaencMNucRbsBVrvag L  nig L  -eday AOC man OA  OC ¬kaMrgVg;EtmYy¦ eyIgman L  : y  x  2 nig L  : y   x  3 pÞwmsmIkarGab;sIus énbnÞat;TaMgBIr L  nig L  enaHvaCaRtIekaNsm)at EdlmanmMu)at ACˆB  60 eK)an x  2   x  3  x  52 dUcenH AOC CaRtIekaNsm½gS . o

2

o

2

1

1

2

o

1

2

468

9

KUsrUbEtmYy)anehIy ´RKan;Etdak;[RsYlemIl A B

30 o 

C

O D

E

2> KNna AB , AC , AEˆB kñúg ABCman ABˆC  30 nig BC  4 cm AB naM[ cos ABˆ C  BC  AB  BC  cos ABˆ C o

eK)an AB  4  cos 30 AC ehIy sin ABˆC  BC eK)an AC  4  sin 30

o

o

dUcenH RbEvg AB  2

3  2 3 cm 2

 4

 AC  BC  sin ABˆ C

 4

1  2 cm 2

3 cm

nig AC  2 cm .

cMeBaH AEˆB  ACˆB  60 eRBaH AEˆB nigmMu ACˆ B CamMucarwkelIrgVg;EtmYy nigmanFñÚsáat;rYm AB dUcenH AEˆB  60 . o

o

3> eRbóbeFob ACD nig BED eday ACD nig BED man ³ -mMu AEˆB  ACˆB  60 ¬manbBa¢ak;xagelI¦ -mMu EDˆ B  CDˆ A ¬mMuTl;kMBUl¦ o

dUcenH vi)ak Taj)an

ACD BED ACD BED



tamlkçxNÐ m>m .

DA DC  DB DE

DA DE  DB  DC

. 469

9

sm½yRbLg ³ 19 kBaØa 2008 viBaØasa ³ KNitviTüa ry³eBl ³ 120 naTI BinÞú ³ 100  I.

cUrKUssBaØa  kñúgRbGb;enAxagmuxcemøIyEdlRtwmRtUvmanEtmYyKt; ³ 1> etIsmIkarmYyNa Edlmanb£sBIrepSgKña ?  k> x  2 x  1  0  x> x  9  0  K> 5 x  7 x  1  0  X>  x  5x  8  0 2> ABC CaRtIekaNEkgRtg;kMBUl A EdlmanGIub:Uetnus BC  a nig ACˆB  60 . RCug ABmanRbEvg ³ a 2 a 3 a 3 a  k> AB   x> AB   K> AB   X> AB  2 3 2 2 eKføwgGgár 7 fg;CabnþbnÞab;ehIy)anlT§pl ³ 3 kg , 5 kg , 4 kg , 9 kg , 10 kg , 4 kg nig 7 kg . cUrpÁÚpÁgEpñk A nig Epñk B rYcsresrcemøIyenAkñúgEpñk C [)anRtwmRtUv ³ Epñk A Epñk B C ¬cemøIy¦ 1> m:UténTinñn½yxagelI k> 5 kg 1>  2> mFüménTinñny½ xagelI x> 7 kg 2>  3> emdüanénTinnñ ½yxagelI K> 6 kg 3>  X> 4 kg 1> KNna A   2  8 nig B  12  3  1 2> KNna C  2 32 12   6  1 . kñúgRbGb;mYymanesovePAlMhat;FrNImaRtcMnYn 5 k,al nigesovePAlMhat;BICKNitcMnYn7 k,al. suPaB cab;ykesovePA 2 k,alecjBIRbGb;enaHedayécdnü . 1> rkRbU)ab EdlsuPaB cab;)anesovePAlMhat;FrNImaRtTaMgBIrk,al . 2> rkRbU)ab EdlsuPaB cab;)anesovePAlMhat;BICKNity:agticmYyk,al. 1> cUrsg;cMNuc A 1 , 2 nig B2 , 0 enAkñúgtRmúyGrtUNrem xOy . 2> rksmIkarbnÞat; AB . 3> sg;bnÞat; D  mansmIkar y  32 x enAkñúgtRmúyxagelI. bgðajfabnÞat; D  nigbnÞat; AB EkgKña . 2

2

2

2

o

II.

III.

IV.

V.

2

470

9

VI.

VII.

bUNa manGayueRcInCag cinþa . plbUkGayuGñkTaMgBIresµI 33 qñaM . ehIypldkGayuGñkTaMgBIresµI 3 qñaM. rkGayurbs; bUNa nigGayurbs; cinþa . eK[RtIekaNsm½gS ABC EdlmanRCugRbEvg 4 cm . eKKUsknøHbnÞat; At  RsbnwgRCug BC  . H CacMeNalEkgén C elI  At  . 1> KNna CH nig AH edaydwgfa cos60  12 nig sin 60  23 . 2> KNna BH . 3> KNnaépÞRkLaénRtIekaN ABH . o

o

8 cemøIy I.

KUssBaØa  kñúgRbGb;xagmuxcemøIyEdlRtwmRtUv³ 1> smIkarEdlmanb£sBIrepSgKñaKW ³ ☑ K> 5x  7 x  1  0 eRBaHvaman   0 Edl   7  4  5 1  49  20  29  0 . 2> RCug ABmanRbEvg ³ ☑ X> AB  a 2 3 AB C eRBaH sin 60  BC enaH AB  BC  sin 60 60 a

III.

1> KNna ³ A 

2

 22  8 22  22  2  2  2

dUcenH KNna)an

2

2

A 22 2

B  12  3  1  2 3  3 1

o

 3 1

o

o

AB  a 

II.

3 2

A

dUcenH KNna)an B  3  1 . 2> KNna 22 2 C   6  1 3 1 21  2  3  1   3  1 3  1   6  1 21  2  3  1    6  1 3 1

B

pÁÚpÁgEpñk A nig Epñk B [)anRtwmRtUv ³ pÁÚpÁg)an ³ 1>  X / 2>  K / 3>  k edaysareyIgmanTinñn½ydUcxageRkam ³ 3 kg , 5 kg , 4 kg , 9 kg , 10 kg , 4 kg nig 7 kg enaHeyIgGacKNna)annUv ³ -m:Ut KW 4kg eRBaH 4kg maneRbkg;eRcInCageK -mFüm  3  5  4  97 10  4  7  427  6 -emdüanCatYTI n 2 1  7 2 1  4 énTinñn½yerob tamlMdab;KW 3 , 4 , 4 , 5 , 7 , 9 , 10 KitCa kg .

 3 1 6  2  6 1  3 2

dUcenH KNna)an

471

A 3 2

9

kñúgRbGb;manesovePAFrNImaRt 5 k,al nig esovePA BICKNit 7 k,al naM[ cMnYnkrNIGac  5  7  12 1>rkRbU)absuPaBcab;)anesovePAFrNImaRtTaMg 2 eK)an P(F>F) = P(F)  P(F¼F)

-eday AB kat;tam A 1 , 2 eyIg)an

IV.



ab  2

-eday AB kat;tam B2 , 0 eyIg)an tam 1 nig 2 eyIg)anRbB½n§smIkar ³  a  b  2 edayeRbIviFIedETmINg; ³  2a  b  0 enaH D  1 2  3

dUcenH RbU)ab P(F>F)  335  0.15 . 2> rkRbU)abEdlsuPaB cab;)anesovePABICKNit y:agticmYyk,al RBwtþikarN_Edlcab;)anesovePABICKNit 1 k,al y:agtic CaRBwtþikarN_bMeBjCamYyRBwtþikarN_cab; Kµan)anesovePABICKNitmYyk,alesaH eK)an P(F>F) + P(B>1y:agtic ) = 1 naM[ P(B>1y:agtic ) = 1  P(F>F) dUcenH P(B>1y:agtic V.

Da 2 2   D 3 3 D 4 4 Db  0  4  4  b  b   D 3 3 Da  2  0  2

dUcenH

a

smIkarbnÞat;EdlRtUvrkKW  AB : y   2 x  4 3

3

3> sg;bnÞat; D : y  32 x enAkñúgtRmúyxagelI eyIgsg;bnÞat; D  edayeRbItaragtémøelx

5 28   0.85 33 33

5 28 )=1    0.85 33 33

2

2a  b  0

5 4 5   12 11 33

=1 

1

D  : y  3 x

.

2

x

0 2

y 0 3

-bgðajfabnÞat; D  nigbnÞat; AB EkgKña edaybnÞat; AB : y   23 x  43 manemKuN R)ab;Tis a   23 nigbnÞat; D : y  32 x manemKuNR)ab;Tis a  32 ehIyplKuNemKuN R)ab;TisKW   23    32   1 enHbBa¢ak;fa bnÞat; D  nig bnÞat; AB EkgKñaBitEmn

sg;cMNuc A 1 , 2 nig B2 , 0 enAkñúgtRmúy GrtUNrem xOy D  : y  2 x 3

A B

dUcenH

2 4 y  x 3 3

2> rksmIkarbnÞat; AB smIkarbnÞat;EdlRtUvrkmanrag  AB  : y  ax  b 472

D    AB  RtUv)anbgðaj

.

9

rkGayurbs; bUNa nigGayurbs; cinþa ³ tag x CaGayurbs; bUNa ¬KitCaqñaM¦ y CaGayurbs; cinþa ¬KitCaqñaM¦ Edl x  y  0 bRmab; ³ plbUkGayuGkñ TaMgBIrKW 33 qñaM nigpl dkGayuGñkTaMgBIrKW 3 qñaM tambRmab;enHeyIgsresr)anRbB½n§smIkar ³  x  y  33 eyIgedaHRsayedaybUkbM)at;  x y 3

-kUsIunus ³ cosCAˆ H  AH AC naM[ AH  AC  cos CAˆ H

VI.

1  2 cm 2 1 cos60 o  2 CH sin CAˆ H  AC CH  AC  sin CAˆ H  4  cos60o  4 

eRBaH

-sIunus ³ naM[

3  4  cos60o  4   2 3 cm 2 3 sin 60 o  2



eRBaH

 x  y  33  x  y  3 2 x  36  x  18

eyIg)an ³ cMeBaH x  y  33 nig x  18 naM[ y  33  x b¤ y  3318 enaH y  15 dUcenH bUNa manGayu 18 qñaM nig cinþa manGayu 15 qñaM . VII.

dUcenH AH  2 cm nig CH  2 3 cm . 2> KNna BH //BC eday At  CH   BC Rtg; C At  CH  enaH BCH CaRtIekaNEkgmanGIub:Uetnus BH tamRTwsþIbTBItaK½r BH  BC  CH 2

H

 

2

>

naM[ BH  28  2  7  2 7 cm dUcenH KNna)an BH  2 7 cm . 3> KNnaépÞRkLaénRtIekaN ABH tamrUb S  S  S Edl ABCH CactuekaNBñayEkg  CH naM[ S  AH  BC 2 2

t

4 cm

C

B

2

 4 2  2 3  28

tambRmab;RbFaneyIgsg;rbU )an ³ A

2

ABH

1> KNna CH nig AH ³ eyIgman ABC CaRtIekaNsm½gS enaH ACˆB  60 knøHbnÞat; At  RsbnwgRCug BC  naM[ CAˆ H  ACˆB  60 ¬mMuqøas;kñúgxñat; AC ¦ RtIekaN AHC CaRtIekaNEkgRtg; H eRBaH H CacMeNalEkgén C elI  At  -tamTMnak;TMngRtIekaNmaRtkñúgRtIekaNEkg AHC man GIub:Uetnus AC  4 cm eyIg)an ³

o

ABCH

BCH

ABCH



o

ehIy naM[ dUcenH 473

BCH

2  4  2 2

3

 6 3 cm 2

CaRtIekaNEkgRtg; C

S BCH 

BC  CH 4  2 3   4 3 cm 2 2 2

S ABH  6 3  4 3 

2 3 cm 2

.

9

sm½yRbLg ³ 06 kkáda 2009 viBaØasa ³ KNitviTüa ry³eBl ³ 120 naTI BinÞú ³ 100  I.

II.

III.

IV.

cUrKUssBaØa  kñúgRbGb;enAxagmuxcemøIyEdlRtwmRtUvmanEtmYyKt; ³ 1> sisSmYyRkummankm □ X  14 dm x> □ X  13dm K> □ X  11dm X> □ X  12 dm . 2> AI  Cakm □ AI  2 2 cm x> □ AI  12 cm K> □ AI  2 3 cm X> □ AI  3 2 cm . kñúgRbGb;mYymanesovePAlMhat;FrNImaRtcMnYn 5 k,al nigesovePAlMhat;BICKNitcMnYn 7 k,al. suPaB cab;ykesovePAmþgmYyk,alcMnnY 2 dg CabnþbnÞab;Kña ecjBIRbGb;enaHedayécdnü nigmin dak;cUlvijeT. 1> rkRbU)ab EdlsuPaB cab;)anesovePAlMhat;FrNImaRtTaMgBIrk,al . 2> rkRbU)ab EdlsuPaB cab;)anesovePAlMhat;BICKNity:agticmYyk,al. BUsuxepJIR)ak; 2 000 000 erol enAFnaKar A TTYl)anGRtakarR)ak; 5% kñúg 1 qñaM nigepJIR)ak;cMnYn 3 000 000 erol enAFnaKar B )anTTYlGRtakarR)ak; 6% kñúg 1 qñaM . etIBUsuxTTYl)ankarR)ak; srubb:unµankñúg 1 qñaM BIFnaKarTaMgBIr A nig B . sYnc,armYymanragCactuekaNEkg EdlmanknøHbrimaRtesµI 14 m . eKdwgfa 3 dgénTTwg esµInwgBak; kNþalénbeNþay. 1> rkRbEvgTTwg nigbeNþayrbs;sYn . 2> rkcMnYnedImpáakñúgsYn ebIeKdwgfaépÞrbs;sYn 1 m manedImpáacMnYn 4 edIm. eK[bnÞat; L  : y  x  1 nig L  : y   x  3 enAkñúgtRmúyGrtUNrem xoy  mYy . 1> sg;bnÞat; L  nig L  enAkñúgtRmúy xoy  . 2

V.

1

2

1

2

474

9

2> rkkUGredaenéncMNucRbsBVrvag L  nig L  tamkarKNna ehIyeFVIkarepÞógpÞat;lT§pltam RkaPic . 3> TajrkcemøIyénvismIkartamRkabPic  yy  x x1 3 .  rgVg;p©it O mYycarwkeRkARtIekaN ABC Edlman BAˆ C  60 , AB  6cm nigmMuBIreTotCamMuRsYc. eKKUs BD Ekgnwg  AC  Rtg; I ehIyCYbrgVg;p©it O Rtg; D . eKedAcMNuc E enAelI BD [)an BAˆ E  CAˆ D . 1> KNna AI nig BI . 2> bgðajfa ACD nig ABE dUcKña . TajbBa¢ak;fa AB CD  AC  BE . 3> eRbóbeFob ABC nig AED . TajbBa¢ak;fa BC  AD  AC  ED ehIy AB  CD  BC  AD  AC  BD . 1

VI.

2

o

8 cemøIy I.

2> rkRbU)abEdlsuPaB cab;)anesovePABICKNit y:agticmYyk,al RBwtþikarN_Edlcab;)anesovePABICKNit 1 k,al y:agtic CaRBwtþikarN_bMeBjCamYyRBwtþikarN_cab; Kµan)anesovePABICKNitmYyk,alesaH mann½yfa cab;)anesovePAFrNImaRtTaMgBIrk,al eK)an P(F>F) + P(B>1y:agtic ) = 1 naM[ P(B>1y:agtic ) = 1  P(F>F) 28 dUcenH P(B>1y:agtic ) = 1  335  33  0.85 .

KUssBaØa  kñúgRbGb;xagmuxcemøIyEdlRtwmRtUv ³ 1> rkmFüménTinñn½y ³ sisSTTYl)anBinÞú ¬eRBaH RbGb;TaMg 4 KµancemøIyRtwmRtUv¦ 2> KNna AI manRbEvg ³ K> ☑ AI  2 3 cm eRBaH tamTMnak;TMngkñúg   ABC km
C

I 4cm

 3 4  2 3 cm

II.

3cm

A

B

kñúgRbGb;manesovePAFrNImaRt 5 k,al nig esovePA BICKNit 7 k,al naM[ cMnYnkrNIGac  5  7  12 1>rkRbU)absuPaBcab;)anesovePAFrNImaRtTaMg 2 eK)an P(F>F) = P(F)  P(F¼F) 

rkkarR)ak;EdlBUsxu TTYl)anBIFnaKarTaMgBIr -karR)ak;EdlKat;TTYl)anBIFnaKar A KW ³ 2 000 000  5%  100 000 erol -karR)ak;EdlKat;TTYl)anBIFnaKar B KW ³ 3 000 000  6%  180 000 erol

III.

5 4 5   12 11 33

dUcenH RbU)ab P(F>F)  335  0.15 . 475

9

-karR)ak;EdlTTY)anBIFnaKarTaMgBIr A nig B KW 100 000  180 000  280 000 erol dUcenH BUsux TTYl)ankarR)ak; 280 000 erol. IV. 1> rkRbEvgTTwg nigbeNþayrbs;sn Y c,ar tag x CaRbEvgTTwgrbs;snY ¬KitCa m ¦ Y ¬KitCa m ¦ y CaRbEvgbeNþayrbs;sn tambRmab; RbFaneyIg)anRbB½n§smIkar ³

L1  : y  x  1

L2  : y   x  3

2> rkkUGredaenéncMNcu RbsBVrvag L  nig L  eyIgman L  : y  x  1 nig L  : y   x  3 eyIgpÞwmsmIkarGab;sIusénbnÞat;TaMgBIr 1

 x  y  14  x  y  14  x  y  14       y 3x  6 x  y 6 x  y  0  2   x  y  14  6 x  y  0 7 x  14  x  2 m

1

2

2

x 1  x  3 2x  2

bUkGgÁnigGgÁ naM[ y  6x  6  2  12 m dUcenH RbEvgTTwg x  2 m nig RbEvgbeNþay y  12 m .

x 1

cMeBaH x  1 enaH y  x  1  1  1  2 dUcenH cMNucRbsBVvvag L  nig L  KW 1 , 2 . tamRkab cMNucRbsBVrvag L  nig L  eday kareFVIcMeNalEkgelIG½kSTaMgBIrKW x  1 nig y  2 2> rkcMnYnedImpáaEdlmanenAkñúgsYn ³ dUcKñaCamYycemøIytamEbbKNnaR)akdEmn . épÞsYnTaMgGs;  TTwg  beNþay 3> TajrkcemøIyénvismIkartamRkabPic S  x  y  2  12  24 m > eyIgmanRbB½n§vismIkar  yy  x x1 3  edayépÞsYn 1 m manedImpáacMnYn 4 edIm enaH tamRkab EpñkminqUtCacemøIyénRbB½n§vismIkar . cMnYnedImpáakñúgsYn  4  S  4  24  96 edIm VI. 1> KNna AI nig BI C D dUcenH cMnYnedImpáamanenAkñúgsYnKW 96 edIm . kñúgRtIekaNEkg ABI E I  V. 1> sg;bnÞat; L  nig L  enAkñúgtRmúy  xoy  EkgRtg; I man A B 6 cm eyIgman L  : y  x  1 nig L  : y   x  3 BAˆ C  60 , AB  6cm AI eyIgeRbItaragtémøelx edIm,Isg;bnÞat; naM[ cosBAˆ C  AB  AI  AB  cos BAˆ C L  : y  x  1 nig L  : y   x  3 1 AI  6   3cm dUcenH AI  3cm . eK)an x y x y 2 BI 0 1 0 3  BI  AB  sin BAˆ C ehIy sin BAˆ C  AB 1 2 1 2 eK)an BI  6  23  3 3 cm enaH BI  3 3 cm -sg;Rkab L  nig L  1

1

2

2

1

2

1

o

2

1

2

1

2

2

476

2

9

2> bgðajfa ACD nig ABE dUcKña Binitü ACD nig ABE man ³ -mMu BAˆ E  CAˆ D ¬smµtki mµ¦ -mMu ACˆ D  ABˆ E ¬mMucarwkmanFñÚsáat;rYm AD ¦ dUcenH ACD ABE lkçxNÐdMNUc m>m . vi)ak

ACD ABE



AB BE  AC CD

dUcenH eyIgTaj)an AB  CD  AC  BE 1 3> eRbóbeFob ABC nig AED BinitüKUén ABC nig AED man ³ -mMu ADˆ E  ACˆB ¬mMucarwkmanFñÚsáat;rYm AB ¦ -mMu DAˆ E  CAˆ B eRBaH CAˆ D  CAˆ E  DAˆ E BAˆ E  CAˆ E  CAˆ B  DAˆ E  CAˆ B BAˆ E  CAˆ D

dUcenH

ABC

vi)ak

ABC AED

AED 

lkçxNÐdMNUc m>m .

BC AC  ED AD

dUcenH eyIgTaj)an BC  AD  AC  ED 2 -edaybUkGgÁnigGgÁén 1 nig 2 eK)an ³  AB  CD  AC  BE   BC  AD  AC  ED AB  CD  BC  AD  AC  BE  AC  ED AB  CD  BC  AD  ACBE  ED

eday BE  ED  BD eRBaH E enAelI BD naM[ AB CD  BC  AD  AC  BD . dUcenH AB CD  BC  AD  AC  BD . 477

9

sm½yRbLg ³ 05 kkáda 2010 viBaØasa ³ KNitviTüa ry³eBl ³ 120 naTI BinÞú ³ 100  I.

cUrKUssBaØa  kñúgRbGb;enAxagmuxcemøIyEdlRtwmRtUvmanEtmYyKt; ³ 1> RtIekaNEkg EFG manGIub:Uetnus FG  5 nig EFˆG  60 . EF  manRbEvg ³ k> □ EF  5 33 x> □ EF  5 23 K> □ EF  52 X> □ EF  5 3 . 2> rfynþ 5 eRKÓg)andwgkgT½B 8 nak; / 11 nak; / 11 nak; / 8 nak; nig 12 nak;erogKña . mFümén Tinñn½yxagelIenHKW ³ k> □ X  11 nak; x> □ X  12 nak; K> □ X  8 nak; X> □ X  10 nak; . o

II.

KNna

A

1 1  7 3 7 3

B3 2

III.



3

V.





x y z    2 3 4 2 x  3 y  4 z  33 3x  2m  2010 x  m  4 2

.

1> edaHRsayRbB½n§smIkar 2> edaHRsaysmIkar

IV.



4  3  3 12  3 2  45 4  5 8

manGBaØat x .

fñak;eronmYymansisSRsIcMnYn 17 nak; nigsisSRbuscMnYn 23 nak;. RKU)anehAsisSBIrnak;Ca bnþbnÞab;edayécdnü edIm,I[eLIgedaHRsaylMhat;RbU)ab RbLgRbNaMgKña . 1> rkRbU)abEdlRKUehA)ansisSRsITaMgBIrnak; . 2> rkRbU)abEdlRKUehA)ansisSRbus 1 nak;y:agtic . 3> rkRbU)abEdlRKUehA)ansisSTaMgBIrePT . kñúgtRmúyGtUNrem xoy  eyIgmancMNuc Ax , 2 ; B9 , 2 nig C3 , y  . 1> rkGab;sIuséncMNuc A edaydwgfa AB  12 nigGredaenéncMNuc C edaydwgfa BC  10 . 2> rksmIkarbnÞat; d  : y  ax  b Edlkat;tamcMNuc B9 , 2 nig D3 , 10  . 478

9

rgVg;mYymanp©it O nigGgát;p©it AB Edl AB  8cm . M CacMNucmYyénrgVg;p©it O ehIyEdl BM  3cm . eKbnøay AB  xag B [)an BE  3cm . bnÞat; L  mYyEkgnwg  AE  Rtg; E ehIy L CYb  AM  Rtg; N . 1>KNna AE nig AM . 2>bgðajfa MAB nig EAN dUcKña . Tajrk AN nig EN . 3>bgðajfactuekaN BENM carwkkñúgrgVg;mYy EdleKnwgbBa¢ak;TItaMgp©it I nigRbEvgkaM r rbs;va.

VI.

8 cemøIy I.

KUssBaØa  kñúgRbGb;enAxagmuxcemøIyRtwmRtUv ³ 1> EF  manRbEvg ³ K> ☑ EF  52 eRBaH ³ 60

5 G

E



EF cos EFˆG  FG EF  FG  cos60 o 1 5  5  2 2

F o

tamlkçN³smamaRteK)an ³

naM[

2> mFüménTinñn½yKW ³ X> ☑ X  10 nak; eRBaH 8  11  11  8  12 50 X   10 nak; 5 5 II. KNna 

dUcenH KUcemøIyénRbB½n§smIkarKW ³

1 1  7 3 7 3

A



x

7 3 7 3 2 7  7  3 7  3 73

 B3 2





3







4  3  3 12  3 2  45 4  5 8

1> edaHRsayRbB½n§smIkar

.

23x  2m  2010  4x  m 

 3 8  3 2  3  36  3 2  3  45 32  2 68  0 III.

22 33 44 , y , z 7 7 7

2> edaHRsaysmIkar eyIgman 3x  2m4 2010  x 2 m eyIgTajecjBIsmamaRtenH)an ³

7 2



2x 3 y 4z 2x  3 y  4z 33     4 9 16 4  9  16  21 x y z 33 11     2 3 4  21  7 22  x 11  2   7 x   7   33  y 11   y     7 3  7  z 11 44   4   7 z   7  

3x  2m  2010  2x  m  3x  2m  2010  2 x  2m

3x  2 x  2m  2m  2010

x y z    2 3 4 2 x  3 y  4 z  33 2x 3 y 4z   4 9 16

x  2010

dUcenH

eKman 2x  3y  4z b¤esµnI wg

479

x  2010

Cab£sénsmIkar .

9

IV.

kñúgfñak;mansisS ³ RsI 17 nak; nigRbus 23 nak; naM[ krNIGac  17  23  40 1> rkRbU)abEdlRKUehA)ansisSRsITaMgBIrnak; eK)an P(s>s) = P(s)  P(s¼s) 

9  x 2  2  22 2 AB  9  x  2 12 2  9  x  AB 

b¤ 9  x   144 enaH 9  x   144  12 naM[ 99  xx  1212   xx  213 2

17 16 34    0.17 40 39 195



dUcenH RbU)abRKUehAsisSRsITaMgBIrnak;KW ³ 34 P(s>s)   0.17 . 195

dUcenH Gab;sIuskMNt;)an x  3 , x  21 . -rkGredaen éncMNuc C ebI BC  10

2> RbU)abEdlRKUehA)ansisSRbusmñak;y:agtic RBwtþikarN_EdlRKUehA)ansisSRbusmñak;y:agtic CaRBwtþikarN_bMeBjCamYyRBwtþikarN_KµanRbusesaH mann½yfa ehA)ansisSRsITaMgBIrnak; eK)an P(s>s) + P(b>1y:agtic ) = 1 naM[ P(b>1y:agtic ) = 1  P(s>s)

3  92   y  22 2 BC  36   y  2  2 10 2  36   y  2  BC 

b¤  y  2  64 enaH y  2  8 naM[  yy  22  88   yy  10 6 2





dUcenH GredaenkMNt;)an y  6 , y  10 .

34 161 dUcenH P(b>1y:agtic ) = 1  195 .  195

2> rksmIkarbnÞat; d  : y  ax  b -eday d  : y  ax  b kat;tam B9 , 2 eK)an 2  a  9  b  9a  b  2 1 -eday d  : y  ax  b kat;tam D3 , 10  eK)an 10  a  3  b  3a  b  10 2 -edayyk 1 - 2

3> rkRbU)abEdlRKUehA)ansisSTaMgBIrePT ³ sisSTaMgBIrePTGac RbusnigRsI b¤ RsInigRbus P(BIrePT) = P(bs) + P(sb) = P(b)  P(s¼b) + P(s)  P(b¼s) 23 17 17 23    40 39 40 39 391 391 391    1560 1560 780 

eK)an

391  0.50 . dUcenH P(BIrePT)  780 V.



tam

eyIgmancMNuc Ax , 2 ; B9 , 2 nig C3 , y 1> -rkGab;sIuséncMNuc A ebI AB  12

9a  b  2  3a  b  10 4  a 6a  8 3

2 ³ 3a  b  10

dUcenH smIkarbnÞat; 480

 4  b  10  3    14  3

d  : y   4 x  14 3

.

9

VI.

KNna AE nig AM

3> bgðajfactuekaN BENM carwkkñúgrgVg;mYy ³ eday AMˆ B  90 enaH NMˆ B  90 ¬mMubEnßm¦ ctuekaN BENM manplbUkmMuQmKña NMˆ B  BEˆ N  90  90  180 /

N

o

M I

A

o

3cm

8cm

O

o

E

B

o

o

dUcenH ctuekaN BENM carwkkñúgrgVg;mYy .

L 

-bBa¢ak;TItaMgp©it I nigRbEvgkaM r rbs;va -KNna AE  AB  BE  8  3  11cm ctuekaN BENM carwkñúgrgVg;man NMˆ B  90 -KNna AM ³ ABM CaRtIekaNcarwkknøH mann½yfa BN  CaGgát;p©iténrgVg;enH rgVg;manGgát;p©it AB enaH ABM CaRtIekaNEkg dUcenH p©it I CacMNuckNþalén BN  . tamBItaK½r AM  AB  BM 2

2

2

AM 2  8 2  32 AM 2  55



-rkRbEvgkaM r rbs;va kñúg   BEN ³ tamRTwsþIbTBItaK½r

AM  55 cm

2> bgðajfa MAB nig EAN dUcKña eday MAB nig EAN man -mMu AMˆ B  AEˆN  90 ¬RtIekaNEkgTaMgBIr¦ -mMu MAˆ B  EAˆ N ¬mMumankMBUlrYm A dUcKña¦

BN 2  BE 2  EN 2 BN  BE 2  EN 2  33   3     55 

o

dUcenH

MAB MAB

vi)ak ³

EAN

EAN 

tamlkçxNÐTI m>m .

AB MA  AN EA

ehIy

AN 

88 55 cm 55

 9

99 5

45  99 5 12 12 5  cm 5 5

eday I kNþal BN  naM[

enaH EN  1155 3  335555 cm EN 

1089 55



MB MA EA  MB   EN  EN EA MA

dUcenH

 9



naM[ AN  EAMA AB enaH AN  1155 8  885555 cm dUcenH

2

2

12 5 BN 6 5 r  5  cm 2 2 5

dUcenH kaMrgVg;manRbEvg r  6 5 5 cm .

33 55 cm 55

481

o

9

sm½yRbLg ³ 04 kkáda 2011 viBaØasa ³ KNitviTüa ry³eBl ³ 120 naTI BinÞú ³ 100  I.

II. III.

IV.

RtIekaN ABC mYymanrgVas;RCug AB  x  3 , AC  x  1 nig BC  x  3 Edl x  3 . rktémø x edIm,I[RtIekaN ABC CaRtIekaNEkgRtg; A . edaHRsayRbB½n§vismIkartamRkabPic  yy  22  x .  kñúges,agmYymanXøIBN’Rkhm 4 RKab; BN’exov 3 RKab; nigBN’exµA 5 RKab;. sisSBIrnak;)anykXøI mñak;mYyRKab; CabnþbnÞab;ecjBIes,agedayécdnü ehIymindak;cUlvijeT . 1> rkRbU)abEdlsisSTI1 yk)anXøIBN’Rkhm ehIysisSTI2 yk)anXøIBN’exµA . 2> rkRbU)abEdl sisSTaMgBIrnak; yk)anXøIBN’exovmYyRKab;mñak; . BinÞúeFVIetsþsisSmYyRkum TTYl)anlT§pldUcxageRkam ³ BinÞú cMnYnsisS

V.

0

1

2

3

4

1

2

5

1

x

1> rktémø x ebIBinÞú 3 KWCaemdüanénTinñn½y . 2> rkcMnYnsisS)aneFVIetsþ . 3> rkcMnYnsisS Edl)anBinÞúticCag b¤esµI 3 . eKmanRtIekaN EFG EkgRtg; E ehIyrgVas;mMu EGˆ F  30 . K CacMNucmYyenAelIRCug EG EdlmanrgVas;mMu EKˆF  45 nigrgVas; EK  4cm . 1> KNnargVas;mMu GFˆK nigRbEvg EF nig FG . 2> KNnaépÞRkLaénRtIekaN EFG . kñúgtRmúyGrtUNrem xoy  mYyeKmancMNuc A1 , 0 nig B3 ,  2 . 1> rksmIkarbnÞat; AB . 2> rksmIkarénbnÞat; D  EdlEkgnwg AB Rtg;cMNuckNþal E rbs;Ggát;enH . o

o

VI.

8 482

9

cemøIy I.

rktémø x edIm,I[ ABC CaRtIekaNEkgRtg; A eyIgmanRtIekaNEkg ABC B x  3 x 3 EdlcMeBaH x  3 mandUcrUb ³ A x 1 C

III.

tamRTwsþIbTBItaK½r ³ edIm,I[ ABC CaRtIekaN EkgRtg; A luHRtaEt ³ AB  AC  BC eK)an x  3  x  1  x  3 2

2

2

2

2



2

x2  6x  9  x2  2x  1  x2  6x  9 x  10 x  1  0

man    5  1  24 naM[ x    51 24  5  2

2> rkRbU)abEdlsisSyk)anXøIBN’exovdUcKña naM[ P¬exov exov¦  P¬exov¦  P¬exov¼exov¦

2

6 3

1

minyk



  5  24 x2   5 2 6 1

IV.

edaHRsayRbB½n§vismIkartamRkabPic eyIgman  yy  22  x eyIgsg;bnÞat;RBMEdn ³ D2  : y  2 x

y

0 2

1> rktémø x ebIBinÞú 3 KWCaemdüanénTinñn½y eyIgmantaragTinñn½y BinÞú 0 1 2 3 4 cMnYnsisS 1 2 5 1 x eyIgGacerobBRgayTinñn½ytamlMdab; 0 ,1,1, 2 , 2 , 2 , 2 , 2 , 3 , 4 , 4 , ...  

1 2

8

2 2

2

tY

x

tY

eday 3 CaemdüanKWCatYEdlenAkNþaleK naM[cMnYntYEdlenAsgxag 3 RtUvEtesµIKña dUcenH x  8 CatémøEdlRtUvrk . 2> rkcMnYnsisSEdl)aneFVIetsþ cMnYnsisS)aneFVIetsþ  1  2  5 1  x , x  8  9  8  17 nak;

4

4

3 2 1   12 11 22

dUcenH P¬exov exov ¦  221  0.045 .

dUcenH témørk)anKW x  5  2 6 ÉktaRbEvg .

 D1  : y  2  x x y 0 2 1 1

4 5 5   12 11 33

dUcenH P¬Rkhm exµA¦  335  0.15 .

2

II.

kñúges,agmanXøI Rkhm 4 exov 3 nigexµA 5 naM[cMnYnkrNIGac  4  3  5  12 1> rkRbU)abEdlsisSTI1yk)anXøIRkhm nig sisSTI2 yk)anXøIBN’exµA naM[ P¬Rkhm exµA¦  P¬Rk¦  P¬xµ¼Rk¦

4

2

4

dUcenH tamRkaPicEpñkEdlminqUtCacemøIy rbs;RbB½n§vismIkar .

dUcenH sisS)aneFVIetsþmancMnYn 17 nak; . 483

9

3> rkcMnYnsisSEdl)anBinÞútci Cag b¤esµI 3 cMnYnsisS)anBinÞúticCag b¤esµIbI  1 2  5 1 dUcenH cM>sisS)anBinÞúticCag b¤esµIbIKW 9 nak; . V. 1> KNnargVas;mMu GFˆK nigRbEvg EF nig FG

naM[

1 S EFG   EF  EG 2 1   4  4 3  8 3 cm 2 2

dUcenH KNna)an S  8 3 cm . VI. 1> rksmIkarbnÞat;  AB  F eKmancMNuc A1 , 0 nig B3 ,  2 -kñúgRtIekaN smIkarbnÞat; EdlRtUvrkmanrag y  ax  b G E K FKG man ³ -ebI y  ax  b kat;tam A1 , 0 KGˆ F  GFˆK  EKˆ F ¬ EKˆ F mMueRkARtIekaN ¦ eK)an 0  a 1  b  a  b 1 Taj)an GFˆK  EKˆF  KGˆ F -ebI y  ax  b kat;tam B3 ,  2 eK)an GFˆK  45  30  15 eK)an  2  a  3  b  3a  b  2 2 dUcenH KNna)anrgVas;mMu GFˆK  15 . -edayyk 1 CMnYskñúg 2 eK)an 3 b  b  2 -RtIekaN FEK CaRtIekaNEkgsm)at  2b  2  b  1 / eRBaH FEK CaRtIekaNEkgRtg; E nigman -cMeBaH b  1 CMnYskñúg 1 mMu)at EKˆF  45 1 : a  b   1  1 vi)ak RCugCab;mMu)at EF  EK  4cm dUcenH smIkarbnÞat;EdlrkKW y   x  1 . dUcenH KNna)an EF  4 cm . 2> rksmIkarénbnÞat; D  -kñúgRtIekaNEkg EFG EF kUGredaenéncMNuc E kNþalGgát; AB KW tamrUbmnþRtIekaNmaRt sin EGˆ F  FG 1 3 0  2  E ,   E 2 ,  1 EF 2 2   Taj)an FG  sin EGˆ F bnÞat;EdlRtUvrkmansmIkar D : y  ax  b eday EF  4 cm nig sin EGˆ F  sin 30  0.5 -eday D : y  ax  b kat;tam E2 , 1 4 eK)an FG  0.5  8 cm eK)an  1  2a  b 3 -ehIy D  AB b¤ D  AB  dUcenH KNna)an FG  8 cm . naM[ a  a  1  a  a1  11  1 2> KNnaépÞRkLaénRtIekaN EFG -enaH 3 : 1  2 1  b  b  3 kñúgRtIekaNEkg EFG tamBItaK½r dUcenH smIkarbnÞat; D : y  x  3 . EG  FG  EF  EG  FG  EF enaH EG  8  4  48  4 3 cm 45 o

EFG

30 o

4 cm

o

o

o

o

o

o

2

2

2

2

2

2

2

484

2

9

485

9

sm½yRbLg ³ 16 kkáda 2012 viBaØasa ³ KNitviTüa ry³eBl ³ 120 naTI BinÞú ³ 100  I.

cUrKUssBaØa  kñúgRbGb;enAxagmuxcemøIyEdlRtwmRtUv manEtmYyKt; ³ RtIekaN ABC mYyman BAˆ C  90 , AB  3 , AC  a nig BC  4 . rktémø a .  k> a  5  x> a  7  K> a  7  X> a  1 cmáarragctuekaNEkgmYymanvimaRt 2x 1 nig 20 KitCaEm:Rt . eKdaMeBatenAelIépÞdI 160 m ehIyeKdaMl¶enAelIEpñkdIenAsl; EdlmanragCactuekaNEkgmanvimaRt x nig 5 KitCaEm:Rt . rktémø x . sBVéf¶enHsuxmanGayu 35 qñaM ehIyesAmanGayu 14 qñaM. eKdwgfa t qñaMeTAmuxeTot suxnwgman GayutUcCag 3 dg EtFMCag 2 dgénGayurbs;esA . rkRKb;témøKt;viC¢manén t EdlGacman . kñúgfg;mYymanXøIs XøIexµA nigXøIRkhm TaMgGs;cMnYn 24 RKab; . 1> eKcab;ykXøI 1RKab;edayécdnü. eKdwgfaRbU)abEdleKcab;)anXøIsesµInwg 13 nigRbU)abEdlcab; )anXøRI khmesµI 14 . rkcMnYnXøIexµA . 2> eKcab;ykXøImþg 3 RKab;edayécdnü. rkRbU)abEdleKcab;yk)an XøITaMgbImanBN’dUcKña . cMNuc M 1 , 1 nig N 3 , 1 enAkñúgtRmúyGrtUNrem xOy mYy. 1> rkRbEvg MN nigkUGredaenéncMNuckNþal P énGgát; MN . 2> rksmIkarbnÞat; d Edlkat;tamcMNuc P nig R2 ,  2 . sg;Ggát; MN nigbnÞat; d kñúgtRmúy xOy EtmYy . rgVg;p©it O mYycarwkeRkARtIekaN ABC mYyEdlmankm bgðajfa ABˆC  ADˆ C nig ACˆB  ADˆ B x> eRbóbeFob HAB nig CAD rYcehIy HAC nig BAD . K> bgðajfa AB AC  AD AH ehIy BAˆ D  HAˆ C . o

II.

III.

IV.

V.

VI.

2

8 486

9

cemøIy I. KUssBaØa  kñúgRbGb;xagmuxcemøIyEdlRtwmRtUv³ eyIgGacsresr)an 0  t  7 eRBaH t  0 rktémø a ³ ☑ K> a  7 eRBaH tamRTwsþIbT edaycMnYnKt;viC¢man enAcenøaH 0 nig 7 man ³ 1,2,3,4,5,6 BItaK½r BC  AB  AC B dUcenH témøcMnYnKt; t EdlGacmanKW ³ naM[ AC  BC  AB 4 3 1 , 2 , 3 , 4 , 5 nig 6 . enaH AC  BC  AB A a? C 2

2

2

2

2

2

2

2

 42  32  7 II.

20 rktémøén x ³ 160 m eyIgGactagcmáarenaH eBat l¶ )andUcrUbxagsþaM 5 eXIjfa épÞdIsrub = épÞddI aMeBat + épÞdIdaMl¶ eyIg)an 202x  1  160  5x 2

x

7 5 1 1  1     1  12 12 3 4 1 1 P( )  P( ) 3 4

40 x  20  160  5 x 40 x  5 x  160  20 35x  140 140 x 4 35

dUcenH témørk)anKW

x4m

kñúgfg;manXøI s exµA Rkhm TaMgGs; 24 RKab; 1> rkcMnnY XøIexµA ¬rebobTI1¦ edayplbUkRbU)abénRBwtþki arN_TaMgGs;kñúg viBaØasaEtmYyesµI 1 eyIg)an P(s) +P(Rkhm) + P(exµA) = 1 Taj)an P(exµA) = 1- [ P(s) +P(Rkhm) ]

IV.

eRBaHsmµtikmµ s nig Rkhm mü:ageTot tag n CacMnYnXøIBN’exµA enaHeyIg)an P(exµA)  24n naM[eyIgpÞwm)an ³ 24n  125 b¤ n  5 1224  10

.

rkRKb;témøKt;viC¢manén t EdlGacman ³ smµtikmµ ³ sBVéf¶suxGayu 35 qñaM nig esAGayu 14 qñaM ehIy t qñaMeTot suxmanGayutc U Cag 2 dg EtFMCagBIrdgénGayuesA enaHeyIgGacsresr)an RbB½n§vismIkar ³ 35  t  314  t  Edl t CacMnYnKt;viC¢manRtUvrk  35  t  214  t 

III.

dUcenH cMnYnXøIBN’exµAmancMnYn 10 RKab; . ÷rkcMnYnXøIexµA ¬rebobTI2¦ -tag x CacMnYnXøIs kñgú cMeNamXøITaMg 24 RKab; eyIg)an P(s)  24x Etsmµtikmµ P(s)  13 enaHeyIg)an 24x  13 enaH x  243  8 RKab; -tag y CacMnYnXIøRkhménXøITaMg 24 RKab; eyIg)an P(Rkhm)  24y Et P(Rkhm)  14 enaHeyIg)an 24y  14 enaH y  244  6 RKab;

 35  t  42  3t  35  t  28  2t 35  42  3t  t  35  28  2t  t  7  2t  7  t

487

9

eday XøITaMgGs;mancMnYn 24 RKab; naM[ cMnYnXøIexµA  24  ¬cMnYnXøIs+cMnYnXøIRkhm¦  24  8  6  10 RKab; dUcenH XøIBN’exµAmancMnYn 10 RKab; .

2> rksmIkarbnÞat; d smIkarbnÞat;EdlRtUvrkmanrag d : y  ax  b -eday d  kat;tamcMNuc P1 , 1 enaHeyIg)an a  b  1 1 -eday d  kat;tam R2 ,  2 enaHeyIg)an 2a  b  2 2 -eyIgyksmIkar 2  1 eyIg)an ³

¬GñkKYreFVItamrebobTI2 eRBaHvaTak;TgsMNYrbnþ¦

2> rkRbU)abcab;)anXøITaMgbImanBN’dcU Kña eKcab;ykXøImþgbI cat;Tku CaviBaØasahUtehIymin dak;vij enaHvaTak;Tgdl;karcab;bnþbnÞab;eTot. eyIgmanXøI s 8RKab; / Rkhm 6RKab; / exµA 10RKab; -XøIbI BN’dUcKña GacCa sTaMgbI b¤ RkhmTaMgbI b¤ exµATaMgbI enaHeyIg)an ³ P(XøIbIBN’dUcKña) = P(sss) +P(RkRkRk)+P(xxx)

 2 a  b  2   a  b 1 a  3

yk a  3 CMnYskñúg 1 1 :  3  b  1 naM[ b  4 dUcenH smIkarEdlRtUvrkKW d : y  3x  4 . - sg;Ggát; MN nigbnÞat; d kñúgtRmúy xOy EtmYy eyIgman M 1 , 1 nig N 3 , 1 ehIy d : y  3x  4 xy 04 11 eyIgsg;bnÞat; d nigGgát; MN dUcxageRkam ³

 8 7 6   6 5 4   10 9 8             24 23 22   24 23 22   24 23 22  4 7 3 3 5 2 5 9 4            12 23 11   12 23 11   12 23 11  84 30 180    3036 3036 3036 294 49    0.097 3036 506

dUcenH V.

294 49 XøIbIBN’dUcKña)  3036   0.097 506

P(

1> rkRbEvg MN eyIgman cMNuc M 1 , 1 nig N 3 , 1 naM[ MN  3  1  1 1  4  4 dUcenH rk)an MN  4 ÉktaRbEvg . 2

2

d : y  3x  4

2

M  1 , 1 

-rkkUGredaencMNuckNþal P énGgát; MN ³ eyIg)an P  12 3 , 1 2 1  b¤ P1 , 1 dUcenH rk)ancMNuckNþal MN KW P1 , 1 . 488



P1 , 1

N 3 , 1 

9

VI.

tambRmab;RbFaneyIgKUsrUb)an ³

K> bgðajfa AB AC  AD AH AB AH eday HAB   CAD AD AC naM[eyIg)an AB AC  AD AH dUcenH AB AC  AD AH )anbgðajrYc .

A

O



H

C

B D

k> bgðajfa ABˆC  ADˆ C nig ACˆB  ADˆ B -eday ABˆ C nig ADˆ C CamMucarwkEdlman FñÚsáat;rYm AC naM[ ABˆC  ADˆ C dUcenH ABˆC  ADˆ C RtUv)anbgðajrYc . -eday ACˆ B nig ADˆ B CamMucarwkEdlman FñÚsáat;rYm AB naM[ ACˆB  ADˆ B dUcenH ACˆB  ADˆ B RtUv)anbgðajrYc . x> ÷ eRbóbeFob HAB nig CAD eday HAB nig CAD man ³ -mMu AHˆ B  ACˆD  90 CamMuEkgdUcKña eRBaH AH Cakmm . ÷ eRbóbeFob HAC nig BAD eday HAC nig BAD man ³ -mMu AHˆ C  ABˆ D  90 CamMuEkgdUcKña eRBaH AH Cakmm .

-bgðajfa ehIy BAˆ D  HAˆ C eday HAC  HAˆ C  BAˆ D BAD b¤GacsresrCa BAˆ D  HAˆ C dUcenH BAˆ D  HAˆ C RtUv)anRsaybBa¢ak; .

o

o

489

sYsþI¡ elakGñkmitþGñkGanCaTIRsLaj;rab;Gan enAkñúgEpñkenHelakGñknwg)aneXIj GMBIviBaØasaFøab; ecjRbLgsisSBUEkfñak;TI 9 RKb;qñaM KWcab;BIqñaM 1986 rhUtdl;qñaM 2012 . ´sUmGP½yeTasdl;elakGñk mitþGñkGan cMeBaHEpñkenHmanEtviBaØasab:ueNÑaHKµancemøIyeT eRBaHlMhat;FrNImaRtxøHenAkñúgsm½yGtItkal ´xVHÉksarBieRKaH nigGñksYreyabl;bEnßm edaysarsisSBUEkCMnan;enaH eRcInCaGñkeFVIkar EdlKat;KµaneBl evlaRKb;RKan; edIm,I[´)anRbwkSaeyabl;CamYyKat; . EteTaHCay:agNak¾eday ´)andkRsg;lMhat;kñúg viBaØasaTaMgenHmYycMnYn eTAbkRsaykñúgEpñk lMhat;l¥² nigcemøyI . eyIgKYrdwgfa viBaØasaénqñaMnImYy²man BIr KWRbLgelIkTI 1 nigRbLgelIkTI 2 . ´nwgBüamerobcMcemøIyrbs;viBaØasaTaMgenH enAeBleRkay . RbsinebIelakGñkmanbBaða b¤cm¶l;Rtg;cMNucNa EdlmanenAkñúgEpñkenH elakGñkGacTak;Tg;eTAkan; RKU b¤mitþPkþirbs;GñkEdlmansmtßPaB b¤GñkeroberogesovePAenHkñúgeBlevlaTMng . …

vi



: ០៤ :

៧(

១៩៨៦ ១



៣០

   7 4  2 x x2 7 

I. II.

III.

IV.

V.

edaHRsaykñúg Q smIkar ³ . sYnc,arrbs;ksikrsux manragctuekaNEkg nigbrimaRtmanrgVas; 296m . edIm,IerobcMpøÚvPUmi[Rtg; KN³kmµkarPUmiseRmckat;beNþaydIKat;Gs; 20m EtedIm,I[RkLaépÞénsYnenAdEdl KN³kmµkarPUmi seRmcbEnßmTTwgdI[Kat; 12m . cUrrkvimaRtrbs;sYnmunerobcMpÚøvPUmi . «BuknarImanGayu 48 qñaM / narImanGayu 13 qñaM nigb¥ÚnRbusnag Gayu 6 qñaM. etIry³eBlb:unµanqñaM eTIb Gayu«BuknarIesµI ³ k> 73 énGayunarI . x> 15 dgénGayukUnRbusKat; . K> esµIplbUkGayuknU Kat;TaMgBIr . X> esµIBak;kNþalénplbUkGayukUnKat;TaMgBIr . ABC CaRtIekaNsm)atkMBUl A . P CacMNucmYyenAelI BC  . I nig J CacMeNalEkgén P elIbnÞat; AB nig  AC  . k>  CabnÞat;EdlRsbeTAnwg AB kat;tam C . J  CacMeNalEkgén P elIbnÞat;  . bgðajfa J  qøúHnwg J eFobnwgbnÞat; BC  . x> bgðajfa plbUk PI  PJ efr kalNa P rt;elI BC  . K> P CacMNucmYyenAelIbnÞat; BC  eRkA BC  . bgðajfa PI  PJ efr viC¢man b¤mYyefr GviC¢man. C  CargVg;Ggát;p©it AB  nig M CacMNucenAelI C  xusBI A nig B . M  CacMNucqøúHén M eFobnwg AB . k> I , J , K , L CacMNuckNþalerogKñaén MB , BM  , M A , AM  . Rsayfa IJKL CactuekaNEkg . x> kMNt;TItaMgén M edIm,I[ctuekaNEkg IJKL Cakaer . K> etImanb¤eTTItaMgén M EdleFVI[ctuekaNEkg IJKL CactuekaNesµI EtminEmnCakaer ?

8 

490





: ០៤ :

៧(

១៩៨៦ ២



៣០

   I.

1> rk x , y , z CaFaturbs; Q sMNMuéncMnnY sniTan Edl x  y  z  3 nig 2x  5y  8z . 2> edaHRsaykñúg Q smIkar 12  xx  0 , 12  xx  1 . 1> RsaybBa¢afa ebI a nig b CacMnYnsniTanBIrxusKña enaHeK)an a 2 b  ab . 2

II.

2

1 999 2  2 001 2

III.

IV.

 3 999 999 . 2> Gnuvtþn_rUbmnþxagelIbgðajfa 2 yuvCnbInak;KW k , x nig K cUlrYmkILart;RbNaMgcm¶ay 100 m . eBlEdl {K} dl;eKaledA eKeXIj {k} enAxVH 10 m eTot . eBlEdl {k} dl;eKaledA eKeXIj {x} enAxVH 10 m eTot . eKsnµt;faGñkTaMgbIrt;kñgú el,Ónefr. 1> rkpleFobénel,Ónrbs; k nigel,Ónrbs; K . 2> eBl K eTAdl;eKaledA etIvaenAXøatBI x b:unµanEm:Rt . eKmanRtIekaN ABC , A CacMNuckNþalGgát; BC  nig D CacMNucqøúHén C eFobnwg A . bnÞat; AB nig DA CYbKñaRtg; E . 1> RsaybBa¢ak;fa AB  3 AE . 2> O CacMNucminenAelIbnÞat; AB nigminenAelI  AC  . kMNt;cN M uc M elI AB nig M elI  AC  Edl O CacMNuckNþalén M M  . 3> P CacMNucmYyelI BC  . eKKUs PP  Rsbnwg  AC  nig PP  Rsbnwg AB Edl P enAelI  AB  nig P enAelI  AC  . rksMNMucMNuckNþalénGgát; P P  kalNa P rt;elI BC  . 4> H CaeCIgkm RsaybBa¢ak;facMNcu B , C , H , B , C rt;Rtg;Kña . x> kMNt;enAelIrUbenH Ggát;BImanemdüaT½rrYmKña . kMNt;smÁal; ³ sMNYrTI1 , TI2 , TI3 nigTI4 énlMhat;FrNImaRtminTak;TgKñaeT . 1

2

1

2

1

2

1 2

2

8 

491



1



: ០២ :

៨(

១៩៨៧ ១



៣០

   I.

eK[ a  b  c  1 , 1a  b1  1c  0 a  0 , b  0 , c  0 . bMPøWfa a  b  c  1 . eKmanbIcMnYnxusKña a , b , c . KNnaplbUk S  a  baa  c  b  cbb  a   c  a c c  b . 2

II.

III.

2

2

edaHRsayRbB½n§smIkar

2 x  y  3   x  y  3

smÁal; ³ témødac;xatén a KW IV.

V.

.

a a   a

ebI a  0 . ebI a  0

eKmanRtIFa A  x  4x  72 . rktémøén x EdlnaM[RtIFa A mantémøGb,brma rYcR)ab;témø Gb,brmaenH . eK[cMNuc B nig C enAelIrgVg; O kaM R ¬ O  BC  ¦ . A CacMNucERbRbÜlelIFñÚFM  BC . cMNuc H CaGrtUsg;énRtIekaN ABC . 1> bMPøWfa k> BAˆ O  HAˆ C . x> cMNuc H , G , O rt;Rtg;Kña ¬ G CaTIRbCMuTm¶n;énRtIekaN ABC ¦ 2> rksMNMuéncMNuc H ¬bBa¢ak;lImIténcMNucenHpg¦ . 2

8



492





: ០២ :

៨(

១៩៨៧ ២



៣០

   I.

II.

edaHRsaysmIkarxageRkamkñúgsMNMucMnYnKt;rWuLaTIb ³ 4  x 3  x 2  x 1 x     4 . 1986 1987 1988 1989 1> sresrBhuFaxageRkamCaplKuNktþa ³ Ax   x 4  x 3  x  1 B x   x 4  x 3  2 x 2  x  1

III. IV.

2> sRmÜlRbPaKsniTan ³ Ax  E x   . Bx  3> bgðajfa Ex mantémøCacMnYnviC¢man b¤sUnü cMeBaHRKb;témøén x . KNnatémøelxénkenSam ³ aa  bb ebIeKdwgfa 2a  2b  5ab b  a  0 . rgVg;p©it O nigrgVg;p©it O kat;KñaRtg; A nig B . xñat;ERbRbYlmYyKUsecjBI B kat;rgVg;p©it O Rtg; E nigkat;rgVg;p©it O Rtg; F . 1> bnÞat;b:HrgVg;p©it O Rtg; E nigbnÞat;b:HrgVg;p©it O Rtg; F RbsBVKñaRtg;cMNuc P . bMPøWfa EPF manrgVas;efr . 2> bnÞat; EO nigbnÞat; FO RbsBVKñaRtg; M . bMPøWfa cMNuc E , M , A , F , P enAelIrgVg;mYy . 3> bMPøWfa emdüaT½rén EF  kat;tamcMNucnwgmYy . 2

2

8



493





: ០២ :

១៩៨៨

៨(





៣០

   I. II.

III.

edaHRsaysmIkar x  3x  3x  4  0 . eKmanRbB½n§smIkar ³ 52xx  3yym1 ¬ m CacMnYnKt;sÁal;¦ . 3

2



kMNt;sMNMutémøKt;ngi GviC¢manén m EdlnaM[KUcemøIy x nig y énRbB½n§epÞógpÞat;lkçxNÐ x  0  y . eKmanbIcMnYn a , b , c Edl a  b  c  0 nig abc  0 . KNna E  b  a5  c  b  a5  c  a  b5  c . Ggát; PQ enAkñúgrgVg;p©it O ehIyEkgnwgkaM OS  Rtg;cMNuc I . bnÞat; SP nig SQ kat;rgVg;erogKñaRtg;cMNcu M nig N . k> bMPøWfa rgVg;carwkeRkARtIekaN PQN kat;tamcMNuc M . x> K CacMNucqøHú éncMNuc S cMeBaHcMNuc O . bMPøWfa SMˆ I  PKˆ Q  SNˆ I . K> knøHbnÞat;BuHkñúgénmMu PIK kat;Ggát; PK  Rtg;cMNuc E . H CacMeNalEkgéncMNuc E elIGgát; IK  . bMPøWfa ³  IP IPIK IK HE  1 . 2

IV.

2

2

2

2

2

2

2

2

2

8



494





: ០២ :

៨(

១៩៨៨ ២



៣០

   I. II.

etIcMnYn A  2  5 ¬ n  IN ¦ bBa©b;edaycMnYnsUnücMnYnb:unµan ? bMPøWfa cMeBaHRKb;témø a nig b eK)an ³ a b  5a  9b  6ab  30 a   45  . rktémøGb,brmaénkenSamRbPaK ³ F   2xx 513 . eKmanmMuRsÜc xOy . cMNuc C cl½tenAelIRCug Ox  nigcMNuc D cl½telIRCug Oy  edaybMeBj lkçxNÐ ³ OC  OD  2a ¬ a CaRbEvgefr¦. rksMNMucMNuckNþal M én CD . eKdwgfakñúgRtIekaNEkg plbUkkaerénrgVas;RCugmMuEkgTaMgBIr esµIngw kaerénrgVas;GIub:Uetnus . cUrGñksg;Ggát;FñÚ AB énrgVg;p©it O kaMRbEvg 5 cm Edl AB  8 cm ehIy AB kat;tam cMNuc P ¬ P enAeRkArgVg;p©it O ¦ . n

2

2

2

2 n10

2



2

2

III. IV.

V.

2

8



495





: ០២ :

៨(

១៩៨៩ ១



៣០

   I. II. III.

IV.

V.

sresrcMnYn N  3a  1  4a  6a  9 CaplKuNktþadWeRkTI1 . KNna ³ E  x xbaa b  x  xabb a   a axbb x ¬ x ; a ; b CabIcMnYnxusKña ¦ . eK[smIkar 2x  3m  1  m  2  5  3  2  3x  3 ¬ m CacMnYnsÁal; ¦ . kMNt;sMNMutémøKt;GviCm¢ anén m edIm,I[smIkar manb¤sCacMnYnviC¢man . AM  CaemdüanénRtIekaN ABC . R)ab;eQµaH BAC tamkrNInImYy²dUcxageRkam ³ k> ebI AM   BC2 . x> ebI AM   BC2 . cMNuc A cl½telIknøHrgVg;Ggát;p©it BC  . enAeRkARtIekaN ABC eKsg;RtIekaNEkgsm)at ABE Bˆ  90  nigRtIekaNEkgsm)at ACF Cˆ  90  . I nig K CacMeNalEkgerogKña éncMNuc E nig F elIbnÞat; BC  . bMPøWfa plbUk EI  FK manrgVas;efr . 2

2

o

o

8



496





: ០២ :

៨(

១៩៨៩ ២



៣០

  

bMPøWfa RbPaK F  2ba 51 mantémøelxCacMnYnGviC¢mancMeBaHRKb;témø a nig b . edaHRsaysmIkar x 1 5  x 2 x  x  21410  2 x  1 . rkBIrcMnYnKt; a nig b a  b edaydwgfaplbUk énBIrcMnYnenaH CaBhuKuNén 15 ehIypldk kaeréncMnYnTaMgBIresµI 45 . eK[rgVg;p©it O nigGgát;FñÚ AB . cMNuc I enAkñúgrgVg; cMNuc M enAelIrgVg; nigcMNuc E enAeRkArgVg; . eRbóbeFob AMB , AIB nig AEB . G CaTIRbCMuTm¶né; nRtIekaN ABC .   CabnÞat;mYykat;tamcMNuc G . H , K , K  CacMeNalEkgerogKñaénkMBUl A , B , C elIbnÞat;  . bMPøWfa AH  BK  CK  . 2

I. II. III.

IV.

V.

2

8



497





: ០២ :

៨(

១៩៩០ ១



៣០

   I.

II. III.

eK[BhuFa ³ E  4a x  20a  9x  45 12ax  60a . 1> sresr E CaplKuNktþa . 2> kMNt;témø a nig x EdlnaM[ E mantémøGb,brma . rkmYycMnYnedaydwgfa bIdgéncMnYnenaH nigkaeréncMnYndEdlenaH CacMnYnpÞúyKña . eK[RtIekaN ABC Edl AB  BC2 ehIy BC2  AC  BC . rgVg;Ggát;p©it BC  nigrgVg;Ggátp; ©it AB kat;KñaRtg;cMNuc B nig E . rgVg;Ggát;p©it BC  nigrgVg;Ggátp; ©it AC  kat;KñaRtg;cMNuc C nig F . rgVg;Ggát;p©it AB nigrgVg;Ggátp; ©it AC  kat;KñaRtg;cMNuc A nig K . 1> bnÞat; BE  nig CF  RbsBVKñaRtg;cN M uc M . etIcMNuc A tagGVIcMeBaHRtIekaN MBC . 2> bnÞat; EF  nig BC  RbsBVKñaRtg;cN M uc P . bMPøWfa EPˆ B  FAˆ C  2 AMˆ F . 3> cMNuc N cl½telIknøHrgVg;Ggát;p©it BC  EdlKµancMNuc E nig F . rksMNMucMNuckNþal I én MN  . 2

2

2

2

2

8



498





: ០២ :

៨(

១៩៩០ ២



៣០

  

I. II. III.

IV.

5x  3 2 x   4 3

3x 4 3 3

x

edaHRsaysmmIkar . eK[ ³ a  b  1 . KNnatémøelxén P  2a  b  3a  b  1 . eK[ctuekaNBñay ABCD )attUc AB. knøHbnÞat;BuHén A nig D RbsBVKñaRtg;cMNuc O . H nig K CacMeNalEkgén O elI AB  nig DC  . bMPøWfa AD  AH  DK . eK[RtIekaN ABC . eKedAcMNuc P enAkñúgRtIekaN ABC Edl CBˆ P  CAˆ P . M nig N CacMeNalEkgén P elIRCug BC  nig AC  . I CacMNuckNþalén AB . bMPøWfa IM  IN . 3

3

8



499



2

2



: ០២ :

៨(

១៩៩១ ១



៣០

   I. II. III. IV.

V.

 2b sRmÜlRbPaKsniTan ³ E  aa  35ab . ab  6b kMNt;sMNMutémøén x x   EdlepÞógpÞat;lkçxNÐ ³ x  12 x  3  3x 1  4  x  5 . edaHRsaysmIkar x  3x  7 x  9x  30  0 . eK[ctuekaNBñay ABCD )attUc AB Edl DC  2 AB . M nig N CacMNuckNþalerogKña én BD nig AC  . RsaybMPøWfa AB  2 MN . eK[cMNuc E enAeRkArgVg;p©ti O . tam E eKKUsbnÞat;BIr kat;rgVg; O ³ bnÞatt;TI1 kat;rgVg;Rtg; cMNuc A nig B ehIybnÞat;TI2 kat;rgVg;Rtg;cMNuc C nig D . BC  AD  I  . RsaybMPøWfa 2AEˆC  AIˆC  BCˆD   3BOˆ D . 4

3

2

2

2

2

2

8



500





: ០២ :

៨(

១៩៩១ ២



៣០

   I.

II. III. IV.

eK[smIkar ³ mx  2x  m  x 1 ¬m CacMnYnKt;sÁal;¦ . kMNt;témø m EdlnaM[smIkarminGacman . R)ab;témøtUcbMputénRtIFa ³ x  43 x  409 . RsaybMPøWfa ³ ebIRtIekaN ABC nig ABC b:unKña enaHrgVg;carwkeRkAénRtIekaNTaMgBIr RtUvb:unKña. eK[RtIekaN ABC . cMNuc M cl½tenAelIRCug AB . eKsg;RbelLÚRkam BMCN Edlman Ggát;RTUg BC  . rksMNMukMBUl N . 2

2

8



501





: ០៤ :

៨(

១៩៩២ ១



៣០

   I.

II.

III.

IV.

pldkrvagRkLaépÞénkaerBIresµInwg 1152 m ehIypldkrvagRbEvgRCugénkaerTaMgBIresµI 16 m . KNnaRbEvgRCugénkaernImYy² . mYycMnYnKt;pSMedaybYnelx elxxÞg;rayKW b elxxÞg;db;KW 5 elxxÞg;ryKW a ehIyelxxÞg;Ban;KW 3 . KNna a nig b edaydwgfa cMnYnenaHEckdac;nwg 5 pg nig 9 pg . RtIekaN ABC nigRtIekaN ABC man BC  BC nigmMu Aˆ  Aˆ  . RsaybMPøWfa rgVg;carwkeRkA énRtIekaNTaMgBIr CargVg;b:unKña . cMNuc B nig C enAelIrgVg;p©it O . cMNuc A cl½telIrgVg;enH . H CaGrtUsg;énRtIekaN ABC . RsaybMPøWfa AH  b:un ehIyRsbnwgGgát;nwgmYy kalNa A ERbRbÜl . 2

smÁal; ³ sisSGaceFVIlMhat;NamYymunk¾)an .

8



502





: ០៤ :

៨(

១៩៩២ ២



៣០

   I.

k> sresrRtIFa A  841a  870ab  225b CakaeréneTVFa . x> sresrBhuFa B  196a  841a b  870ab  225b CaplKuNbYnktþa . eK[bIcMnYnKt; a , b , c xusBIsnU ü Edl a  b  c . bc  ca RsaybMPøWfa 1a  ab 3abc . eKedAcMNuc M enAkñúgRtIekaN ABC . k> bgðajfa BMˆ C  BAˆ C . x> eKKUskm
2

4

II.

III.

IV.

2

2

3

4

smÁal; ³ sisSGaceFVIlMhat;NamYymunk¾)an .

8



503





: ០៣ :

៨(

១៩៩៣ ១



៣០

   I. II. III.

IV.

edaHRsaysmIkarkñúgsMNMucMnYnKt;rWuLaTIb ³ 6x  3x  8x  4  0 . sRmÜlkenSam ³ E   22aa 11  22aa 11   1  1  1a  41a  .      eK[RtIekaNsm)at OAB OA  OB  . eKedAcMNuc C enAelIRCug OA rYcekbnøayRCug OB  [)an BD Edl BD  AC . CD kat; AB  Rtg;cMNuc M . RsaybBa¢ak;fa cMNuc C nig D qøúHKñaeFobnwgcMNuc M . eK[RtIekaN ABC Edl AB  AC . knøHbnÞat;BuHénmMu BAC kat;emdüaT½rén BC  Rtg;cMNuc I . H CacMeNalEkgéncMNuc I elI AB . RsaybBa¢ak;fa AB  AC  2 AH . 3

2

2

smÁal; ³ sisSeFVIlMhat;NamYymunk¾)an .

8



504





: ០៣ :

៨(

១៩៩៣ ២



៣០

   I. II. III. IV.

RsaybBa¢ak;fa RbPaK x 1993 mann½yCanic© .  4x  7 KNna A  5  3  8  60 . RsaybBa¢ak;fa cMnYn N  44a  1  100 Eckdac;ngw 32 . eK[ctuekaNBñay ABCD )attUc AB. Ggát;RTUg AC  nig BD kat;KñaRtg;cMNcu O . bnÞat;Rsbnwg DC  EdlKUsecjBI O kat;RCugeRTt AD nig BC  erogKñaRtg;cMNcu M nig N . 1> RsaybBa¢ak;fa O CacMNuckNþalén MN  . 2> ebI AB  a , CD  b KNna MN CaGnuKmn_én a nig b . 2 1 1   3> RsaybBa¢ak;fa MN . AB DC 2

2

smÁal; ³ sisSGaceFVIlMhat;NamYymunk¾)an .

8



505





: ០៣ :

៨(

១៩៩៤ ១



៣០

   I.

II.

III. IV.

V.

RbGb;katugmYyragRbelBIEb:tEkg EdlmanvimaRt 180 mm , 60 mm , 90 mm . rkcMnYnKUbtic bMputEdlGacerobbMeBjkñúgRbGb;enH . rkBIrcMnYnKt; a nig b a  b edaydwgfa plbUkénBIcMnYnenH CaBhuKuNén 9 ehIypldkkaer éncMnYnTaMgBIresµI 63 . etIcMnYn A  2  5 n  IN  bBa©b;edaysUnücMnYnb:unµan ? G CaTIRbCMuTm¶g;énRtIekaN ABC . eKKUs GD  //  AB  rYcKUs GE  //  AC  eday D nig E CacMNucénGgát; BC  . RsaybBa¢ak;fa BD  DE  EC . ABC CaRtIekaNsm)atkMBUl A . P CacMNucmYyenAelI BC . I nig J CacMeNalEkgerogKña én P elIbnÞat; AB nig  AC  . 1>  CabnÞat;EdlRsbnwg AB kat;tam C . J  CacMeNalEkgén P elIbnÞat;  . bgðajfa J  qøúHnwg J eFobnwgbnÞat; BC  . 2> bgðajfaplbUk PI  PJ efr kalNa P rt;elI BC  . 3> P CacMNucmYyelIbnÞat; BC  eRkA BC  . bgðajfa PI  PJ efr . 2n

3n 5

8



506





: ០៣ :

១៩៩៤

៨(





   I.

KNnatémøén edaydwgfa ³

F

x  y 1 x  y 1

eFobnwgtémø a  0

a  x  bx 1

. edaHRsaysmIkarxageRkam kñúgsMNMucnM YnKt;rWuLaTIb ³ 5  x 4  x 3  x 2  x 1 x      5 . 1989 1990 1991 1992 1993 rkbIcMnYnKt;rLWu aTIb a , b , c edaydwgfacMeBaHRKb;témø x eK)an ³ x  a x  10   1  x  bx  c  . eK[Ggát; AB enAkñúgrgVg;p©it O ehIyEkgnwgkaM OC  Rtg;cMNcu D . bnÞat;  AC  nig BC  kat;rgVg;erogKña Rtg;cMNuc E nig F . k> bMPøWfargVgc; arwkeRkARtIekaN ABE kat;tamcMNuc F . x> G CacMNucqøHú éncMNuc C cMeBaHcMNuc O . bMPøWfa CED  AGˆ E  CFˆD . K> knøHbnÞat;BuHkñúgénmMu ADG kat;Ggát; AG Rtg;cMNuc H . I CacMeNalEkgéncMNuc H  DG  IH elIGgát; DG  . bMPøWfa ³  DADA 1 .  DG b  1y  a  b

II.

III.

IV.

b  1

8



507





: ០២ :

១៩៩៥

៨(





   I. II. III. IV.

KNnakenSam ³ A  x  11x  2  2  x23  x  1  x3x  3 . RsaybBa¢ak;fa cMnYn N  4n  3  25 Eckdac;ngw 8 cMeBaHRKb;témøén n . edaHRsaysmIkarkñúgsMNMucMnYnKt;rWuLaTIb ³ 2x  5x  x  5x  3  0 . eKedAcMNuc B elIGgát; AC  . O Cap©itrgVg;ERbRbYl Edlkat;tamcMNuc B nig C . 1> BM  CaGgát;p©ti énrgVg;p©it O . rksMNMuéncMNuc M . 2> bnÞat;  AM  kat;rgVg;p©it O Rtg;cMNuc P . rksMNMuéncMNuc P . 3> AT  CabnÞat;b:HrgVg;p©it O Rtg;cMNuc T . rksMNMéu ncMNuc T . 2

4

3

smÁal; ³ sisSGaceFVIlMhat;NamYymunk¾)an .

8



508



2



: ០២ :

១៩៩៥

៨(





   I.

dak;kenSam A nig B CaplKuNktþa ³ 3 x  53x  32  3 x  12 5  x  2 2 2 2 2 B  x  2  x  7   x  2  x  7  A

II.

III. IV.

edaHRsayRbB½n§smIkar ³ 2 x  2 y  3xy .  6 x  y  4 xy KNna 7  2 12  4  12 . RtIekaN ABC carwkkñúgrgVg;p©it O kaM R . eKKUskm RsaybBa¢ak;fa ABAH AC  2R . 2> bnÞat;b:HrgVg; O Rtg;cMNuc A kat;bnÞat; BC  Rtg;cMNuc I . AB RsaybBa¢ak;fa ICIB  AC . 2

2

smÁal; ³ sisSGaceFVIlMhat;NamYymunk¾)an .

8



509





: :

៨(



  

8



510







: :

៨(



  

8



511







: ០៧ :

១៩៩៧







   I.

sresrkenSam A nig B CaplKuNktþa ³ 

 



A  a x2 1  x a2 1

70 cm

B  2 x  3  9x  5 2

II.

III.

2

2 .1 m BinitürUb ³ kñúgbnÞb;mYymankm etIrUbenHRtwmRtUvEdrb¤eT ? O 13 x> cUrKUsrUbenHeLIgvij[)anRtwmRtUv . kñúgtRmúyGrtUNrem xOy eK[cMNuc A1 , 8 ; B 2 , 1 nig C  23 , 7  . RsaybBa¢ak;fa ³ cMNcu A , B nig C rt;Rtg;Kña . RtIekaN ABC carwkkñúgrgVg;p©it O . H CaGrtUsg;énRtIekaN ABC ehIy M CacMNuc kNþalén BC  . RsaybBa¢ak;fa AH  2 OM . RsaybBa¢ak;fa RbPaK 2xx 53 mantémøelxCacMnYnviC¢man b¤sUnücMeBaHRKb;témø x . 

IV.

V.

2

VI.

4

8



512



2.2 m



: ០៧ :

១៩៩៧







   I. II.

KNna ³ E  11 6 2  11 6 2 . edaHRsaysmIkar ³ x  3x 10  0 . F KNna ³ S  a  baa  c   b  cbb  a   c  acc  b . 2m xügehonmYyenAcm¶ay 1.50 m BICBa¢aMgEdlman B km RsaybBa¢ak;fa MC  nig ND EkgKñaRtg; I . x> eRbóbeFob AI nig BC . 4

2

III. IV.

V.

VI.

2

2

2

8



513





: ១៥ :

១៩៩៨







   I. II. III. IV. V. VI.

KNnaplbUk ³ S  3   5   7  2 3  . bBa¢ak;dWeRkénsmIkar ³ x  2x  5  x  4 . KNnaplEck ³ D  9x  27  2 4 x  12 ¬eday x  0 ¦ dak;kenSam E  4 x  9  53  2 x CaplKuNktþa . eK[RbPaK F  BA  2xx14 . kMNt;sMNMutémøén x EdlnaM[ A  0 nig B  0 . eK[Ggát; AB nigcMNuc C cl½tkñúgbøg;EdlxNÐedaybnÞat; AB . rgVg;Ggát;p©it AC  p©it O kat;bnÞat; AB Rtg;cMNuc E ehIykat;rgVg;Ggát;p©it AB Rtg;cMNucmYyeTot D . 1> RsaybBa¢ak;fa cMNuc B , C nig D rt;Rtg;Kña . 2> M CacMNucqøúHén E eFobnwgcMNuc O . rksMNMucMNuc M . 2

2

2

2

2

2

smÁal; ³ ebkçCnGaceFVIlMhat;NamYymunk¾)an .

8



514





: ១៥ :

១៩៩៨







   I.

II.

III.

IV.

V.

VI.

eK[ ³

x2  2 y2 x2  2 y2  306 294

edaHRsaysmIkar ³

x2 y2

.

x 2 1 1 x 2  x 2 x 2 2  x 2 x 2

.

. KNna

eKEcknMeTA[ekµgbInak; . GñkTImYyTTYl)anBak;kNþal éncMnYnnMsrub nignMmyY kMNat;eTot. bnÞab;mkGñkTIBIrTTYl)an Bak;kNþaléncMnYnnMEdlenAsl; ¬eRkayeBlGñkTImYyTTYlykehIy¦ nignMmYykMNat;eTot . TIbBa©b;GñkTIbTI TYl)an Bak;kNþaléncMnYnnMEdlenAsl; ¬eRkayeBlGñkTIBIr TTYlykehIy ¦ nignMmYykMNat;Tot ehIynMBuMmanenAsl;eToteT . cUrrkcMnYnnMEdleKman . ABC CaRtIekaNEkgRtg; C ehIy CH  Cakm rksMNMucMNuc I kalNa AB vilCMuvij P . x> bBa¢ak;TItaMgén AB edIm,I[Ggát;FñÚ AB manrgVas;xøIbMput . smÁal; ³ ebkçCneFVIlMhat;NamYymunk¾)an .

8 

515





: ២១ :

១៩៩៩







   I. II.

III. IV.

edaHRsaysmIkar 2  2 2  2   2 . etImancMnYnKt;b:unµanEdlsßitenAcenøaH 99 nig 9999 edaydwgfacMnYnKt;TaMgenaHCakaerR)akdpg ehIyEckdac;nwg 11 pg . edaHRsayRbB½n§smIkar xxyyz 4 6z  13 . 18

17

15

x

2



rkRkLaépÞénRtIekaN ABC tamrUbxageRkam ³ 5

B 5

4

C

2 A

V.

14

KNnaplbUkmMutamrUbxageRkam ³ S  Aˆ  Bˆ  Cˆ  Dˆ  Eˆ  Fˆ F

C

A

B

D

E

8



516





: ២១ :

១៩៩៩







   I. II. III.

IV.

cMeBaHRKb;cMnYn x bgðajfa ³ 0  x  61x  10  1 . plbUkénBIrcMnYnesµInwg 1 . bgðajfa plKuNvatUcCag b¤esµInwg 14 . ebI abc  10 KNnatémøénplKuN P Edl ³ 1 1 1 1    1 1 1   1 P         .  a  b  c  a b c  ab  bc  ac  ab bc ac  eK[ MNPQ CakaermYyEdlmanRkLaépÞesµInwg 9x ehIy ABCD CactuekaNEkgEdl AM BM CP DP 1     . KNnaépÞRkLaén ABCD . AQ BN CN DQ 2 2

2

A

Q

M

B D P

V.

N

C

nig Q zitenAelIrgVg;mYyEdlmanp©it O . bnÞat;mYyb:HrgVg;Rtg; P ehIyeKedAcMNuc R eday ély:agNa[rgVas; PR esµInwgRbEvgFñÚ PQ . bgðajfa EpñkqUtTaMgBIrmanépÞRkLaesµIKña . P

O

Q M

P

R

8 

517





: ១១ :

២០០០







   I. II.

edaHRsaysmIkar x  6 x   2  3 x . a nig b CacMnYnKt;rWuLaTIb . cUrkMNt; a nig b edIm,I[smIkarxageRkamenHepÞógpÞat;Canic© ³ a 2  b  44  24 2 . enAkñúgtRmúyGrtUNrem eK[cMNucEdlmankUGredaen ³ 0, 0 ; 0,1 ; 0, 2 ; 1, 0 ; 1,1 ; 2, 0 . rkrgVas;RCugénRKb;RtIekaN minb:unKñaEdlmankMBUlCa 3 cMNuc kñúgcMeNamcMNucTaMg 6 Edl[ . ABCD nig DEFG CakaerEdlmanRCugerogKña a nig x . AOˆ B   . KNna x CaGnuKmn_én a nig tg . 2000

1998

1999

2

III.

IV.

B a

A

V.

C

F x

E

D

 O

G

knøHbnÞat;BuHkñúgénmMu B énRtIekaN ABC mYykat;knøHbnÞat;BuHkñúg nigeRkA énmMu A Rtg; I nig E nigkat;rgVg;carwkeRkARtIekaN ABC Rtg; D . RsaybMPøWfa ID  DE .

8



518





: ១១ :

២០០០







   I.

eK[kenSam ³ A  100 2  99 2  98 2  97 2  96 2  ...  1 B  100  99  98  97  96  ...  1

k> cUreRbóbeFob A nig B . x> etI 2  2 Eckdac;nwg 5 b¤eT ? cUrbgðaj . 20

18

1

1  27  3 A  3 54     3 4  4 

II.

K> sresr edaHRsayRbB½n§smIkar ³  x  y  35 .  xy  6 3

CasV½yKuNén 2 .

3



III.

RkLaépÞctuekaNEkgmYynAdEdl kalNaeKbEnßm 2.5 dm elIbeNþay nigdk 23 dm BITTwg b¤kalNaeKdk 2.5 dm BIbeNþay nigEfm 43 dm elITTwg . KNnaRkLaépÞctuekaNEkgKitCa dm . eragcRkmYymankmµkrelIsBI 600 nak; nigticCag 700 nak; . ebIkmµkrTaMgGs;eFVIkarCaRkumEdl manKña 5 nak; b¤ 7 nak; b¤ 9 nak; enaHKµansl;kmµkreT . rkcMnYnkmµkrTaMgGs; . rgVg;p©it O kaM R nigrgVg;p©it I kaM r R  r  b:HKñaRtg; A nigb:HbnÞat;EtmYyRtg; B nig C . KNnaRkLaépÞénRtIekaN ABC CaGnuKmn_én R nig r . 2

IV.

V.

8



519





: ០៣ :

២០០១







   I. II.

cUrRsaybMPøWfa x  13  2  1 2  1 CacMnYnKt;viC¢man . eK[ a , b , c CabIcMnYnEdlepÞógpÞat; TMnak;TMngTaMgbIxageRkamenH ³ a  2b  1  0 ; b  2c  1  0 ; c  2a  1  0 . cUrKNna S  a  b  c . 3

2

IV.

3

3

2

2002

III.

3

2

2002

cUredaHRsayRbB½n§smIkar

2002

 x  y  z  xyz   x  y  z  xyz  x  y  z  xyz 

.

tamcMNuc M enAkñúgRtIekaN ABC mYy eKsg;Ggát; EF  , GH  nig IJ  RsberogKñanwg AB , AC  nig BC  edaycMNuc G nig I enAelI AB . E nig J enAelI AC  . F nig H enAelI BC  . RtIekaN MEJ; MFH nig MGI manépÞRkLaerogKña S , S nig S . RsaybMPøWfa RtIekaN ABC manépÞRkLaesµInwg  S  S  S  . eK[RbelLÚRkam ABCD mYy . enAxageRkA ABCD eKsg;kaer ABMN , BCPQ , CDRS nig W a ctuekaN I I I I Cakaer . ADXY Edlmanp©iterogKña I , I , I nig I . cUrRsaybMPøf 1

2

2

1

V.

1

2

3

3

1 2 3 4

4

8



2

520



3



: ០៣ :

២០០១







   I.

1> cUreRbóbeFob 1 2000  nig 2001  2  2000  . 2> edaymineRbI 2000  4 000 000 nig 2001  4 004 001 2000  cUrKNna A  1  2000   2000 .   2001  2001 2

2

2

2

2

2

II.

III.

eK[ a  b  c  1 ; a  b  c  1 nig ax  by  cz  m . cUrKNna P  xy  yz  zx . eKmansmIkardWeRkTI2 ³ ax  2bx  c  0 EdlmanDIsRKImINg;  bx  2cx  a  0 EdlmanDIsRKImINg;  cx  2ax  b  0 EdlmanDIsRKImINg;  cUrKNna       rYcbgðajfa y:agticNas; k¾mansmIkarmYy kñúgcMeNamsmIkarTaMgbIenaH CasmIkarmanb£sEdr . eK[ AA  d  ; BB  d  ; AA  a ; BB  b . A B A nig B sßitenAEtmçagénbnÞat; d  . M CacMNuc a b       A B A B RbsBVrvagbnÞat; nig . d  cUrRsaybMPøWfa cm¶ayBI M eTAbnÞat; d  mantémøefr A B kalNacMNuc A nig B cl½telI d  ¬cMNuc A epSgBI B ¦. rgVg;p©it O kaM r nigrgVg;p©it O kaM r b:HKñaxageRkARtg; M . rgVg;p©it O kaM r mYyeTotb:H xageRkAnwgrgVg;p©it O pg ehIyb:HxageRkAnwgrgVg;p©it O pg . bnÞat;bH: rYmRtg; M énrgVg; O  nig O  CYbrgVg; O  Rtg; A nig B . I CacMNuckNþalénGgát; AB . cUrRsaybMPøWfa AB  4rr rrr . 2

2

2

2

1

2

2

2

3

1

IV.

2

3





V.

1

2

1

3

2

2

1

2

3

3

1 2

1

2

8 

521



3

1



: ២៣ :

២០០២







   I. II. III.

IV. V.

cUrRsaybMPøWfa ³ 2001 2003 2002  12002  12002  12002  1  2002 1 . cUredaHRsaysmIkar ³ x  2x  4x  2 x  3  x  2 x  7 . eK[ a ; b ; c CabIcMnYnEdlepÞógpÞat;TMnak;TMng abc  1 . cUrRsaybMPøWfa ³ 1  a1 ab  1  b1 bc  1  c1 ca  1 . cUrRsaybMPøWfa ³ 49  20 6  49  20 6  2 3 . eK[ctuekaNEkg ABCD mYy . I CacMNucmYyenAxagkñúgctuekaNEkg ABCD ehIyEdl IA  a ; IB  b ; IC  c ; ID  x . cUrRsaybMPøWfa ³ x  a  b  c . ABC CaRtIekaNEkgRtg; A ehIyman ABˆ C  2 . rgVg;p©it M kaM R carwkkñúgRtIekaN ABC . rgVg;p©it N kaM r b:HrgVg;p©it M kaM R ehIyrgVg;p©ti N kaM r enaHb:HnwgRCug AC  nig BC  rbs; RtIekaN ABC eTotpg . 1> cUrRsaybMPøWfa ³ MN  sin R45 r   . 2> cUrKNnapleFob Rr . 2

2

4

4

2

8

32

2

4

2

VI.

16

o

8



522



2

2

2



: ២៣ :

២០០២







   I.

II.

III.

ctuekaNe):ag ABCD carwkkñúgrgVg;p©it O mYy. bnÞat; AB CYb CD Rtg; I ehIybnÞat;  AD  CYb BC  Rtg; J Edl IAˆ J  3 ; AJˆB  2 ; AIˆD   . cUrKNna  KitCadWeRk . eK[ x  y  1 nig bx  ay Edl a  0 , b  0 . cUrRsaybMPøWfa ³ xa  by  a  2b . cUredaHRsayRbB½n§smIkar ³ 2

2

2

2

2002

2002

1001

1001

1001

 x  y  y  z   187  x; y; z  y  z  z  x   154  z  x  x  y   238  1 1 1   2 a  b  c  abc a b c 1 1 1  2  2 2 2 a b c

¬Edl

IV.

V.

VI.

CacMnYnviC¢man¦ .

eK[ nig . cUrRsaybMPøWfa ³ . EFGH CasYnc,arragctuekaNBñay Edlman)atFM EF  a nig)attUc GH  b . eKEcksYnc,ar enaHCaBIrEpñk EdlmanépÞRkLaesµIKña edayeFVIrbgtam MN  Rsb)atTaMgBIrehIy M  EH  / N  FG  . cUrKNnaRbEvg MN [Cab;Tak;Tg a nig b . P CacMNucmYyenAelIrgVg;p©it O kaM R Ggát;p©it AB  . 1> cUrKNnaépÞRkLaGtibrmarbs;RtIekaN PAB . 2> RsaybMPøWfa PA PB  2R ehIy PA  PB  2R 2 . 2

8



523





: ២៨ :

២០០៣







   I. II.

III. IV. V.

VI.

1 KNnaplbUkedaymineRbI]bkrN_Kitelx ³ S  13  151  351  ... 9999 . cMnYnmYymanelxbIxÞg; Edlman 4 CaelxxÞg;ray. ebIeKelIkRtLb;elxxÞg;ray mkdak;xagmux énelxBIrxÞg;eTot enaHeKnwg)ancMnYnTIBIrfµImYyeTot EdlmanelxbIxÞg; ehIyman 4 CaelxxÞg;ry. ebIeKdwgfa {cMnYnTIBIr} elIs {cMnYn 400 dkcMnYnTImYy} 400 . rkcMnYnTImYyenaH . rkRKb;cMnYnKt;sniTan EdlepÞógpÞat;smIkar 2x  2xy  y  25 . 2

bgðajfa

   4  5 3  5 48  10 7  4 3  4  

2

2003

CacMnYnKt;sniTan .

rgVg;BIrmanp©ti O nig O ehIyenAeRkAKña . bnÞat;b:HrYmeRkAmYyb:HrgVg;TaMgBIrerogKñaRtg; M nig N Edl MN  a . bnÞat;b:HrYmkñgú mYyb:HrgVg;TaMgBIrerogKñaRtg; P nig Q Edl PQ  b / a  b  0 . KNnaplKuNrvagkaMénrgVg;TaMgBIrenaH[Cab;Tak;Tg a nig b . M CacMNucmYyenAxagkñúgRtIekaN ABC mYy. bnÞat; BM  CYbRCug AC  Rtg; N . bnÞat; CM  CYbRCug AB  Rtg; L . BLM , CMN nig MBC manépÞRkLaerogKña 5 cm , 8 cm nig 10 cm . KNnaépÞRkLaénctuekaN ALMN . 2

1

2

2

2

8



524





: ២៨ :

២០០៣







   I.

II.

III.

IV.

A

1 2 3 2002    ... 1 2 1 2  3 1 2  3  4 1 2  3  ... 2003 1 A  1 1 2  3  ... 2003

bgðajfa . eKdwgfa a  b  a  3b  4a  b  10a  3b  29  0 . KNnatémøelxén 2a  4b . kñúgkarRkal)atbnÞb;mYy EdlmanragCactuekaNEkg eK)aneRbI\dækRmalBN’Rkhm nigBN’s EdlmanragCakaer ehIymanRCugRbEvg 5dm . eK)aneRbI\dækRmalBN’Rkhm nig\dækRmalBN’s Gs;cMnYnesµIKañ . bnÞab;enaHmanTTwg 5x nigbeNþay 5 y ¬KitCa dm ¦. eK)anRkal\dæBN’Rkhm TaMgGs;enAtamekonCBa¢aMg EtmYyCYrB½TC§ MuvijbnÞb; ehIyeRkABIenaH eK)anRkal\dækRmalBN’s TaMgGs; . kMNt;cMnYnKt; x nig y TaMgGs;EdlGacman . a , b , c CabIcMnYnKt;EdlepÞógpÞat; a  b  c  1 ; a  b  c  1 nig a  b  c  1 . KNnatémøelxén P  a  b  c . M CacMNucmYyenAkñúgkaer EFGH mYy ehIyEdl MEˆ G  MGˆ H   0    45  . KNnargVgs;mMu EFˆM [Cab;Tak;Tgnwg  . rgVg;bImanp©iterogKña I , I nig I ehIymankaM R dUcKña . rgVg; I  CYbrgVg; I  Rtg;cMNuc O nig A . rgVg; I  CYbrgVg; I  Rtg;cMNuc O nig B . rgVg; I  CYbrgVg; I  Rtg;cMNuc O nig C . bgðajfacMNuc A , B nig C sßitenAelIrgVg;EtmYy EdlmankaM R Edr . 2

2

2

2002

V.

VI.

.

2003

2

2

3

3

3

2004

o

1

2

3

2

1

3

3

8



525



o

2

1



: ១១ :

២០០៤







   I. II.

rk x edIm,I[ 3x  6x  9x  12x  1  12  13  14 . KUb 7 b:un²Kña pÁúMCab;KñadUcrUbxagerkamenH ³

maDénsUlItEdlpÁúM)anesµI 189 cm . rképÞRkLaTaMgGs;énsUlItenH . rkRKb;témø m m  0 edIm,I[smIkar mx  m 1 0 manb£sviC¢man . ksikrmñak;mandMLÚg 5 l¥IEdlmanTm¶n;erogKña 7kg , 10kg , 14kg , 18kg nig 19kg . Kat;)anlk;dMLÚg 4 l¥I[mnusS 2 nak;. GñkTI1 Tij)andMLÚgEdlmanTm¶n;esµI 2 dgénTm¶n; dMLÚgrbs;GñkTI2 . rkTm¶n;dMLÚgEdlenAsl; . RtIekaN ABC mYymanrgVas;RCug x , x  a nig x  2a Edl a CacMnYnKt;viCm¢ an . rkRKb;rgVas;RCugénRtIekaN ABC EdltUcCagb¤esµI 10 edIm,I[RtIekaN ABC CaRtIekaNEkg . RtIekaNmYymanrgVas;RCug 3 , 4 nig 5 . RtIekaNenHcarwkkñúgrgVg;mYy. tag A , B nig C CaépÞ RkLaénEpñkbøg; EdlenAkñúgrgVg; nigenAeRkARtIekaN ehIy C CaépÞRkLaEdlFMCageK . KNna A + B [Cab;Tak;Tgnwg C . 3

III. IV.

V.

VI.

8



526





: ១១ :

២០០៤







   I. II. III.

IV.

ebI

etI x 1 3 esµIb:unµan ? a nig b CacMnYnKt;viCm ¢ an . edaydwgfa a  b  13 cUrKNna a  b . eK[kaer ABCD EdlRCugmanrgVas; 1 Ékta . enAelIRCug BC  eKdak;cMNuc E eday BE  2  1 . RsaybMPøWfa AE  CaknøHbnÞat;BuHénmMu BAC . eK[cMnYn t  1 , t  3 , t  6 , t  10 , t  15 , t  21 EdlcMnYnnImYy²CaplbUkén cMnYnKt;tKña . edaysegátKRmUEdl[ cUrsresrkenSam t . KNna t  t rYcTajrkrUbmnþ sRmab;KNna t . KNna t . mnusScas;mñak;eFVIkargarmYycb;kñúgry³eBl 15h . ekµgmñak;eFVkI argardEdlcb;kñúgry³eBl 20h . k> etImnusScas;mñak; minekµgmñak;rYmKñaeFVIkargarenHcb;kñúgry³eBlb:unµanem:ag ? x> etImnusScas;b:unµannak; nigekµgb:unµannak;rYmKñaeFVIkargarenHcb;kñgú ry³eBl 6h ? ABC CaRtIekaNsm½gS . enAelIbnøayénRCug AB  eKdak;cMNuc P ¬ A enAcenøaH P nig B ¦. tag a CargVas;RCugénRtIekaNsm½gS ABC r CakaMrgVg;carwkkñúgRtIekaN PAC r CakaMrgVg;Edl b:HRCugénmMu P ehIyb:HRCug BC  xageRkARtIekaN ABC . rgVg;kaM r b:H PA Rtg; D b:H CA Rtg; E nigb:H PC  Rtg; H . rgVg;kaM r b:H BC  Rtg; F b:H PB  Rtg; G nigb:H PC  Rtg; I . k> bgðajfa DG  HI  3a2 . x> KNna r  r eday[Cab;Tak;TgEtnwg a . 1 5 x2

2

1

2

3

4

2

5

6

n

n

V.

VI.

n

100

2

1

1

2

1

n

2

8



527





: ០៥ :

២០០៥







   I. II. III.

IV.

V.

VI.

ebI A  1  12  14  18  161 nig B  1 12 A . etI B elIs A b:unµan ? sresrcMnYn 93 CaplbUkénsV½yKuNeKal 3 . karRbLgmYyman 25 sMNYr. cemøIyRtUvmYy)anBinÞú 4 ehIycemøIyxusmYy)anBinÞú 1 . sisSmñak; eqøIy)anRKb;sMNYr ehIy)anBinÞúsrub 70 . etIsisSenaHeqøIyRtUv)anb:unµansMNYr ? enAkñúgrUbxageRkammanRtIekaNEdlmanqUt ¬ ¦ kaertUcBN’s ¬ ¦ nigkaerFMenAkNþal BN’exµA ¬ ¦ . tag A CaépÞRkLasrubénRtIekaNqUtTaMgGs; B CaépÞRkLasrubénkaerBN’s TaMgGs; nig C CaépÞRkLaénkaerexµAenAkNþal. bNþacemøIyxageRkamenH etIcemøIyNaxøHCacemøIyRtwmRtUv ? eRBaHGVI ? k> A  B x> B  C K> 2 A  3C X> 3B  2C . RtIekaN ABC mYymanmMu A  90 nig AB  AC  1 . eKbnøay AC  eTAxag C [)an CD  CB . rkRkLaépÞénRtIekaN BCD KitCaÉktaépÞRkLa . kILakrbInak;Bak;Gav Edlmanpøakelxxus²Kña . kILakrTI1 Bak;GavEdlmanpøakelx1 / kILakrTI2 Bak;GavEdlmanpøakelx2 nigkILakrTI3 Bak;GavEdlmanpøakelx3 . muneBlRbkYtkILakrTaMgbI )anTukGavcUlKñaenAkñgú es,agEtmYy . eBlerobRbkYtkILakrTaMgbInak; lUkykGavBIkñúges,ag mkBak; . Ca]TahrN_kILakrTI1 TI2 TI3 lUkyk)anerogKñaGavEdlmanelx 3 / 2 / 1 . ehIy lT§plsresrCa 3 , 2 , 1 . k> cUrsresrlT§plTaMgGs;EdlGacekItman . x> rkRbU)abénRBwtþikarN_ A ³ {kILakrlUkyk)anGav EdlmanpøakelxminEmnCaelxrbs;xøÜn TaMgbInak; } . o

8 

528





: ០៥ :

២០០៥







   I. II.

III.

IV.

V.

rkcMnYnKt;tUcbMput C C  1 Edl C  a  b / a nig b CacMnYnKt; . k> sresr 4  2 3 Carag a  b . x> KNna 2  2 2  2 4  2 3 . mFümPaKén n cMnYnKt;xusBI 0 a , a , a , ... , a  esµI 22 . ebIeKEfm 29 eTAelI n cMnYnKt;TaMg enaH enaHmFümPaKfµIKW 23 . etIeKmancMnYnKt;TaMgGs;b:unµan ? mnusSmñak;rt;edayel,Ón 10 km/h enAelIcm¶aypøÚv 1 km rYcedIrbnþedayel,Ón 5 km/h enAelI cm¶aypøÚv 3 km . rkel,ÓnmFümrbs;mnusSenaH elIcm¶aypøÚvTaMgGs; . enAkñúgkaer ABCD EdlmanrgVas;RCug 4 cm eKKUsRtIekaNsm½gS AEF , E enAelIRCug BC  nig F enAelIRCug CD . k> rkrgVas;RCugRtIekaNsm½gS AEF [Cab;Tak;Tgnwg cos15 . 2a 1 x> edaydwgfa cos a  1  cos ni g cUrKNna cos15 . cos30  2 2 K> TajrkrgVas;RCugénRtIekaNsm½gS AEF edayKittémøCacMnYnTsPaKykRtwm 101 én cm . 2

1

2

3

3

n

o

2

o

o

8



529





: ០៥ :

២០០៦







   I. II. III. IV. V. VI.

smIkar x  bx  1  0 manb£smYyesµI 4 dgénm£smYyeTot . etI b esµIb:unµan ? rktémø x EdlepÞógpÞat;smIkar x  x  2  0 . KNna X  a 1b 1c 1 1 edaydwgfa a  b  4 , ab  3 nig ab  ac  bc  31 . KNna x  y  z edaydwgfa 2x  y  z  7 , x  2 y  z  8 nig x  y  2z  3 . enAkñúgkaer ABCD eKsg;RtIekaNsm½gS AID. KNnargVas;mMu BIˆC KitCadWeRk . rkbIcMnYnKt;vCi ¢manxusKña x , y nig z edaydwgfa xy  yz  106 . 2

2 3

1 3

3



8



530





: ០៥ :

២០០៦







  

KNna S  32 64 96 128 ......200 . 300 KNnaépÞRkLaénrUbxageRkamedaydwgfa ABC nig PQR CaRtIekaNsm½gS EdlmanrgVas;RCug 3 cm ehIyRCugBIrénRtIekaNmYy kat;RCugmYyénRtIekaNmYyeTot)an 3 Ggát;b:un²Kña . 2

I. II.

2

2

2

2

2

2

2

2

2

A P

Q

B

C

R

III.

IV.

kumar 3 nak; A , B , C manXøIerog²xøÜn . ebIsinCa A [XøI 1RKab;eTA B ehIy B [XøI 1 RKab;eTA C enaHGñkTaMgbImancMnYnXøIesµIKña . rkcMnYnXøI Edlmñak;²man edaydwgfamñak;²manXøIticCag 10 RKab; ehIycMnYnXøIrbs; A nig B CacMnYnbzm . enAkñúgrUbxageRkam ABCD CactuekaNBñayEkg . AD  DI , M CacMNucrt;enAelI CD . kMNt;TItaMgén M enAelI CD edIm,I[ AM  MB manRbEvgtUcbMput . C

B

M A V.

D

I

k> sresrcMnYnbzmEdltUcCag 100 . x> 5 cMnYnbzmtUcCag 100 dUcCa 2 , 41 , 53 , 67 , 89 RtUv)ansresredayeRbIRKb;elxBI 1 dl; 9 ehIyelxnImYy² eRbIEtmþg. cUrrksMNMuén 5 cMnYnbzmdUcenHepSgeTot[)an 5 sMNMu .

8 

531





: ១៩ :

២០០៧







   I.

bursmñak;RtUvkarpwkTwkmþg 700 cm b:uEnþKat;mankaTwkEtBIrKW kamYymancMNuH 500 cm nigka mYyeTotmancMNuH 300 cm . etIbursenaHeFVIdUcemþc eTIbGacpwkTwk[Gs; 700 cm . cUrbMeBjcenøaHenAkñúgRbmaNviFIxageRkam edayeRbIelxxus²KñaBI 1 dl; 5 ³ 2  .....  .....   .....   ......   6 . ]bmafa a  a  1 . cUrKNnatémøénkenSam A  a  2a  4a  3a  2 . enAkñúgkareFVIEtsþKNitviTüaelIkTI2 sisSmñak;)anBinÞúelIsBinÞúEdl)ankalBIeFIVEtsþelIkTI1 cMnYn 16 BinÞú. sisSenaHsgÇwmfaxøÜnnwg)anBinÞú 88 kñúgkareFVIEtsþelIkTI3 ehIyBinÞúenHnwgdMeLIgmFümPaK énBinÞúTaMgbIelIkdl; 80 BinÞú. etIsisSenaH)anBinÞúb:unµanxøH enAkñúgkareFVIEtsþelIkTI2 nigenAelIkTI2 ? rkRKb;KUéncMnYnKt;rWuLaTIb x , y  EdlepÞógpÞat; 1x  1y  13 . kñúgrgg;p©it O kaM R eKKUsGgát;FñÚ AB Edl AB  R rYcKUsGgát;FñÚ AC  Edl BAˆ C  45 . k> KNnargVas;mMu ACˆ B nig ABˆ C . x> KNna BC nig AC CaGnuKmn_én R . ¬eK[ cos 45  22 nig cos 30  23 ¦ 3

3

3

II.

III. IV.

V. VI.

3

2

4

3

2

o

o

8



532



o



: ១៩ :

២០០៧

៩(





   I.

eday[témøeTAcMnYnKt; n BI 0 , 1 , 2 , 3 , ... cUrbBa¢ak;témø n EdlnaM[vismPaB 2  n Bit . []TahrN_témø X mYy ¬ X CacMnYnBitEdlnaM[smPaB X 1  X 1 Bit¦ nig[témø X mYy EdlsmPaBenHminBit . etItémø X NaxøH EdleFVI[smPaBenHBit ? rkBIrcMnYnKt;viC¢man a nig b EdlmanplbUkesµInwg 92 nig a 1 CaBhuKuNén b . cUrrkcMnYnKt;minGviC¢mant²Kña EdlmanplbUkesµInwg 10 . ¬ GacCaplbUkén 2 cMnYnKt; 3 cMnYnKt; 4 cMnYnKt; >>> ¦. ABC CaRtIekaNsamBaØ EdlmanmMu A CamMuTal . eKKUskm
II.

III. IV.

V.

2

8



533





: ០៦ :

២០០៨







   I. II. III.

KNnakenSam A eday[lT§plCabIktþa ³ A  12  2823  6 . cUrbMEbkRbPaK 30 CaplbUkénbIRbPaK EdlRbPaKnImyY ²manPaKEbg CacMnYnbzm . 31 eK[smIkar ax  bx  c  0 a  0 Edlmanb¤sBIrepSgKñaKW x nig x . k> bgðajfa 2ax  b  0 nig 2ax  b  0 . x> KNna y  2axx  b  2axx  b . yuvtInak;manR)ak; 2500 erol ykeTATijEtmbiTsMbuRt[)anBIrRbePT EdlRbePTTI1 mantémø 300 erol nigRbePTTI2 mantémø 500 erol. etIyuvtIenaHTijEtm)anb:unµansnøwk ? etIkñúgenaHman RbePTEtm 300 erol b:unµansnøwk ? nigRbePTEtm 500 erol b:unµansnøkw ? eK[kaer ABCD. eKbnøayRCug AB eTAxag B [)an BE  AB . M CacMNucenAkñúgkaereday MAC  MCD  x . k> KNnargVas;mMu AMˆ C KitCadWeRk . x> bgðajfactuekaN AMCE CactuekaNcarwkñúgrgVg;mYy. bBa¢ak;p©iténrgVg;enH ? K> bgðajfa MC  CaknøHbnÞat;BuHmMu EdlpÁúMedaybnÞat;  AM  nig ME  . 2

1

1

2

1

1

IV.

V.

2

2

8



534



2



: ០៦ :

២០០៨







   I. II. III. IV.

V.

VI.

eK[BIrcMnYnBit a nig b Edl 2  a  5 nig 3  b  7 . cUrkMNt;témøFMbpM uténRbPaK ba . mnusSmYyRkummanKña 13 nak;. cUrBnül;famanmnusS 2 nak;y:agtic ekItenAkñúgExEtmYy . cMeBaHcMnYnBitxusKña a , b , c cUrKNna ³ A  a  baa  c  b  abb  c  c  a c c  b . sresrcMnYnEdlmanelxbIxÞg; edayeRbInitþsBaØa abc ehIy abc  100 a  10b  c ¬]TahrN_ 432  100 4 10  3  2 ¦ . cUrrk a nig b edaydwgfa 5ab  500  500  ab5 . RtIekaNmYymanrgVas;RCug a , b , c EdlepÞógpÞat; 24a  18b  12c . k> KNnargVas;RCugénRtIekaN edaydwgfa b  c  10 cm . x> KNnargVas;km
B 5cm

A

10cm 8cm

4cm

K

H 14cm

D

8



535





: ០១ :

២០០៩







   I. II.

III.

IV.

V.

etImancMnYnKt; n b:unµanxøH EdlepÞógpÞat; 72  13n  54 . 24 B E RtIekaN ABC RtUv)ankat;ecjBIRkdasragCactuekaNEkg 12 dUcrUbxagsþaM . etIRkdasEdlenAsl;manb:unµanPaK ? A C 10 D 1> ebI x 1 2  2 etI x 1 3 esµIb:unµan ? 2> ebI x 1 3  3 etI x 1 4 esµIb:unµan ? 3> Tajrk x  1n  1 ebIeKdwgfa x 1 n  n . A r)arEdkRtg;mYymanRbEvg 25m RtUv)aneKdak;Ep¥kcugxagelI C 25 m eTAelICBa¢aMgQrmYy Edlcm¶ayBICBa¢aMeTAcugr)arxageRkam manRbEvg 20 m . ebIeKbgçitcugr)arxageRkamecjBICBa¢aMg O 20 m Efm 4 m eTot etIcugr)ar)anFøak;cuHcMnYnb:nu µan m ?¬emIlrUb¦ D 4 m B Rcvak;EdlmankgmUlb:un²Kña 2 manRbEvg 12 cm . Rcvak;EdlmankgmUlb:un²Kña 5 ¬b:nu nwgkgRcvak; mun¦ manRbEvg 27 cm . etIRcvak;kgmUlb:un²Kña 40 ¬b:unnwgkgRcvak;mun¦ manRbEvgb:unµan ?

12 cm

VI.

27 cm

RtIekaN ABC mYyEkgRtg; A ehIymanbrimaRt 60 cm nigépÞRkLa 120 cm . cUrrkrgVas;RCugnImYy²rbs;RtIekaN ABC . 2

8 

536





: ០១ :

២០០៩







   I. II.

bgðajfaRtIekaNEdlmanrgVas;mMu  ; 2 ; 3 CaRtIekaNEkg . cUrrktémø x nig y enAkñúgrUbxageRkamenH ³ 40 o 40 x

III. IV.

V.

VI.

o

3x

o

yo

o

80 o

eKdwgfa f x f x  1  9 nig f 3  81 . cUrrk f 9 . ABC CaRtIekaNEkgRtg; A . eKKUskm
nig z CabIcMnYnKt;viC¢mantUcCag 9 . rkRKb;cemøIyrbs;smIkar x  y  z  20 .

8



537





: ០១ :

២០១០







  

eK)ansaksYrsisSmkRbLgsisSBUEkcMnYn 240 nak; GMBImeFüa)ayeFVIdMeNIrmkkan;raCFanIPñMeBj. GMBImeFüa)ayeFVIdMeNIrTaMgenaHrYmman ³ A: rfynþRkug B: rfynþtak;sIu B  135 C: rfynþpÞal;xøÜn nig D: eTacRkyanynþ . RkabpøitenHbgðajBIlT§pl A  120 énkarsaksYr ¬dUcrUb¦. cUrrkcMnYnsisSEdleFVIdMeNIrtammeFüa)aynImYy² . II. sisSmYyRkum)anRBmeRBógcUlluyKñaedIm,IeFVIBiFICb;elogmYy. luyEdlRbmUl)ansrub 770 000 erol edaydwgfasisSRbusmñak;RtUvbg; 30 000 erol nigsisSRsImñak;RtUvbg; 20 000 erol. cUrkcMnYnsisSRbus nigcMnYnsisSRsIénRkumenH . III. cUrrkcMnYnKt; x Edl 700  x  800 edaydwgfaplbUkRKb;xÞg;én x esµI 17 nigebIeKbþÚrelxxÞg;ryeTA xagsþaMéncMnYnenaH eK)ancMnYnfµImYyticCagcMnYnedImc 441 . 1   1  1  1   IV. cUrKNnakenSam ³ A  1  1  1    ...  1    2  3  4   n 1 B  0.001   0.02   0.0001  10 10 . 3x  7 y  m V. 1> eK[RbB½n§smIkar  . cUrkMNt;témø m edIm,I[RbB½n§smIkarmanKUcemøIyviC¢man. 2 x  5 y  20 2> cUredaHRsaysmIkar a b x  b x  a x  a b  0 ¬ x CaGBaØat ehIy a , b  0 ¦ . 3> eK[smIkar 2x  1  5  ax . cUrrktémø a edIm,I[smIkarmanb£stUcCag b¤esµI 1 . VI. TIFøamYymanépÞRkLaesµI 864 m eKEckTIFøaenHCabIcMENk. eKdwgfacMENkGñkTIbI esµInwgplbUk cMENkGñkTImYy nigcMENkGñkTIBIr. pleFobcMENkGñkTImYy nigcMENkGñkTIBIresµInwg 11/ 5 . rképÞRkLaéncMENknImYy² . VII. eK[RtIekaNsm½gS ABC EdlRCugmanrgVas;esµI 2a . I CacMNuckNþal AB  . B enAxageRkARtIekaN ABC sg;knøHrgVg;BIrEdlman AI nig BI  CaGgát;p©itrYcsg; A FñÚ énrgVg;Edlmanp©it A kaM AB EdlFñÚénrgVg;p©it A kaM AB x½NÐedaycMNuc B nig i B kaM AB Edlx½NÐedaycMNuc A nig C . eK)an C nigsg;FñÚénrgVg;Edlmanp©t C rUbmYy ragebHdUg ¬dUcrUbxagsþaM ¦. KNnaépÞRkLaénrUbebHdUgenH . VIII. eK[RtIekaNEkg ABC EkgRtg; A EdlRCugénmMuEkgmanrgVas;esµI b nig c . AI  CaknøHbnÞat;BuHénmMu BAC . cUrKNnargVas; AD . I.

o

D  45o

C  60

2

3

2

2

2

2

4

5

4

2

4

2

2

2

2

8 

538



o

o



: ០១ :

២០១០







   I.

1> cUrKNnakenSam ³ A  40 2  57  40 2  57 . 2> eK[smIkar x  2ax  k  0 manb£smYyesµI a  b  0 . cUrkMNt;témø k . 3> cUredaHRsayRbB½n§smIkar EdlmansmIkarnImYy²KW ³ 12xx  y ; 12yy  z ; 12zz  x . eK[RtIekaN ABC Edlman AB  c ; AC  b nig BC  a . D ; M nig N CaeCIgénknøHbnÞat;BuH mMukñúgTaMgbIrbs;RtIekaN edaydwgfa AD  x ; BM  y nig CN  z . cUrRsaybMPøWfa 1x  1y  1z  1a  b1  1c . f x  CaGnuKmn_kMNt;cMeBaHRKb;cMnYnBit x nigepÞógpÞat; xf  x  2  x  9 f  x  . cUrRsaybBa¢ak;fasmIkar f x  0 manb£sbIy:agtic . cUrrkcMnYnEdlRtUvdak;bnþenAral;esrILÚsIuk kñúgcMeNamcemøIyEdl)anesñIeLIgTaMgR)aM . ]TahrN_ ³ 3 6 12 24 ? k> 72 x> 18 K> 37 X> 48 g> 11 cemøIyRtwmRtUvKW X> 48 ¬eRBaHcMnYnEdl)anRtUvKuNnwg 2 ral;elIk¦ . 1> 1 5 9 13 ? k> 15 x> 16 K> 17 X> 18 g> 19 . 2> 5 2 4 1 3 ? k> 0 x> 1 K> 2 X> 3 g> 4 . 3> 6 9 13 18 ? k> 23 x> 24 K> 25 X> 26 g> 27 . 4> 18 54 45 135 126 ? k> 136 x> 257 K> 378 X> 499 g> 620 . P ; Q ; R nig S CacMNuckNþalerogKñaénRCug AB  ; BC  ; CD nig DA rbs;RbelLÚRkam ABCD . cUrKNnaépÞRkLaénctuekaNEdlpÁúMedaybnÞat;  AQ  ; BR  ; CS  nig DP  edaydwgfa épÞRkLarbs;RbelLÚRkam ABCD esµI a . eK[ctuekaNBñaysm)at ABCD mankm
2

2

2

II.

III.

IV.

V.

VI.

2

2

2

8 

539



2

2



: ០១ :

២០១១







   I.

1> eKmanbnÞHelah³mYysnøwkEdlmankRmas; 3mm ehIymanm:as 264kg . cUrrképÞRkLaénbnÞH elah³enHKitCa m edaydwgfam:asmaDénelah³enH 8kg/dm . 2> eKmancMnnY Kt;tKña 91 , 92 , 93 , 94 , 95 , 96 , 97 , 98 nig 99 . cUrdak;cMnYnKt;xagelIkñúgkaertUc²énrUbxagsþaM eFVIy:agNa[)an ³ plbUkCYredknImYy² esµInwgplbUkCYrQrnImYy² esµInwgplbUkCYr Ggát;RTUgnImYy² esµnI wg 285 . ¬smÁal; ³ cMnnY nImYy²eRbI)anEtmþg¦ 1> cUrKNnakenSam D  243   81  4  16  . 2> x nig x Cab£sénsmIkar ³ x  2m  1x  m  2m  0 . cUrbgðajfa x  x CacMnYnefr. 3> cUrrktémø m edIm,I[RbB½n§smIkar ³ 32xx  75 yy  m20 manKUcemøIyviC¢man .  RkumsamKÁImYymandIERsBIrkEnøgmanragCakaerdUcKña EdlmanépÞRkLaxusKña 75m ehIyplbUk brimaRtdIERsTaMgBIrkEnøg manrgVas;esµI 100 m . cUrKNnaplRsUvtamkEnøgnImYy² edaydwgfa ERsTaMgBIrkEnøg TTYlpl)an 0.35kg/m . cUrrkKUéncMnYnKt;rWuLaTIb x , y  EdlepÞógpÞat; x  249 xy  250 y  6033 . A B eK[kaer ABCD EdlmanrgVas;RCugesµI a . enAkñúgkaerenH M sg;mYyPaKbYnénrgVg; EdlmankaMman rgVas;esµI a ehIyp©it Q N rbs;vaCakMBUlTaMgbYnrbs;kaer ABCD . P C D cUrKNnabrimaRtrUbpáakUlab AMBNCPDQA Edlsg;)anenH . Ggát;RTUgénctuekaNBñay ABCD EckctuekaNBñayCaRtIekaN 4 . s nig s CaépÞRkLaén RtIekaNEdlmanRCugmYyCa)at rbs;ctuekaNBñay . cUrrképÞRkLa S énctuekaNBñay CaGnuKmn_eTAnwg s nig s . 3

2

II.

0. 2

0.25

0. 5

2

1

III.

0.75

2

1

2

2

2

IV. V.

VI.

2

2

1

1

2

8 

540



2

2



: ០១ :

២០១១







   I.

1> cUrRsaybBa¢ak;fa 3 2> cUredaHRsaysmIkar

2

2

3

.

x  4 x  3 x  2 x 1    0 2008 2009 2010 2011  x y 5    x y0 x 6  y x  y  5 

.

3> edaHRsayRbB½nsmIkar II. III.

cMeBaH

.

cUrrkcMnYnmYyEdlmanelx 4 xÞg; abca edaydwgfa abca  5c  1 . eK[kenSam M  x  y  2 z  t cMeBaH x , y , z nig t CacMnYnKt;minGviC¢man . cUrrktémø tUcbMputén M nigbNþatémøRtUvKñaén x , y , z nig t edaydwgfa x  y  t  21 nig x  3 y  4 z  101 . a , b nig c CargVas;RCugrbs;RtIekaN . cUrRsaybBa¢ak;fa ³ 3ab  bc  ca   a  b  c   4ab  bc  ca  . kaermYyRCugmanrgVas;esµInwg 1 ÉktaRbEvg. tamcMNucRbsBVénGgát;RTUgkaer eKKUsbnÞat;cl½tmYy. cUrKNnaplbUkkaeréncm¶ay BIkMBUlTaMgbYnrbs;kaer eTAbnÞat;cl½t . eK[RtIekaNsm)at ABC kMBUl A manépÞRkLaesµI S . MN Ca)atmFümRtUvnwg)at BC ehIy O CacMNucRbsBVén MN nigkm
2

2

2

2

2

2

IV.

2

2

2

V.

VI.

8



541



2

2



: ០២ :

២០១២







   I.

¬10BinÞú¦ KNnaplbUk ³ 1> A  a  a1 1   a  11 a  2   ...   a  20111 a  2012 

III.

8

3

2

4

30

IV.

V.

VI.

VII.

a0

2> B  2011 2012  2012  ...  2012  2012  2012  1  1 . ¬10BinÞú¦ 1> cUrrktémøénb£skaer ³ 2012  2011 2012  2011 2012  2011 ... . 2> M nig N CaBIrcMnYnénkaerR)akdtUcCag 100 . ebI M  N  27 cUrKNnatémøén M  N . ¬10BinÞú¦ cUreRbóbeFobBIrcMnYnxageRkam ³ 1> A  2013 nig B  2010 2012 2014 2016 . 2> P  2  3  4 nig Q  3 24 . ¬10BinÞú¦ haglk;smÖar³kILamYy )aneFVIkmµviFIlk;BiessdUcteTA ³ ral;GtifiCnTI 25 RtUvTTYl)an rgVan;)al;mYy nigral;GtifCi nTI 35 RtUvTTYl)anrgVan;GavyWtmYy . vIr³ CaGtifiCnTImYy EdlTTYl )anrgVan;TaMg)al; nigGavyWt. 1> etImanGtifiCncMnYnb:nu µannak; Edl)ancUlTijhagenHmunvIr³ ? 2> dar:a CaGtifiCnEdlTTYlrgVan;mun vIr³ ehIybnÞab;mkKWvIr³ . etIdar:aCaGtifiCnTIb:unµan ? ehIyTTYl)anrgVan;GVI ? ¬10BinÞú¦ kñúgkarsikSaRsavRCavsisS 8000 nak;)an[dwgfa sisSEdlcUrcitþeronKNitviTüa mancMnYn esµInwgbIdgéncMnYnsisSEdlcUlcitþeronrUbviTüa nigmancMnYn 48 nak; cUlcitþeronTaMgBIrmuxviC¢a . cUrrkcMnYnsisSEdlcitþeronrUbviTüa nigcMnYnsisScUlcitþeronKNitviTüa . ¬10 BinÞú¦ xYbkMeNItTI n rbs; davId nwgRbRBwtþeTAenAqñaM n énstvtSTI 21 enH. etIxYbkMeNItelIkTI 32 rbs;edvIdeFVIenAqñaMNa ? ¬20 BinÞú¦ ABCD CactuekaNEkgmYy Edl AB  a nig AD  b , E CacMNucmYysßitenAelIRCug CD . RtIekaN AED manRkLaépÞesµInwg 15 énépÞRkLactuekaNe):ag ABCE . cUrKNnaRbEvgGgát; DE [Cab;Tak;TgeTAnwg a . 9

II.

,

30

10

30

2



542





VIII.

¬20 BinÞú¦ PQRS CactuekaNe):agEdlmancMNuc A , B , C nig D CacMNuckNþalerogKñaénGgát; PQ , QR , RS nig SP ehIy M CacMNuckNþalénGgát; CD nig H CacMNucmYyenAelIGgát; AM Edl HC = BC . bgðajfa BHM  90 . o

8



543





: ០៤ :

២០១២







   I.

II.

¬15 BinÞú¦ 1> eK[ x 

3 5

nig y 

3 5

x y

. KNna

x y

.

2> eRbóbeFobcMnYn n  1  n nig n  n  1 . ¬15 BinÞú¦ 1> rksMNMuéncMnYnKt;viC¢manTaMgGs; (x , y , z) EdlepÞógpÞat;lkçxNÐEdl[dUcxageRkam³ 1 1 1   1 , x  y  z . x y z 2> rkRKb;sN M MucemøIyéncMnYnKt;viCm¢ an (x , y , z) EdlbMeBjlkçxNÐ[RbB½n§smIkar ³ 3x  8 y  z  27 .  6 x  3 y  z  33 

III.

¬15 BinÞú¦ 1> eK[ x  12  3

1 n



2> eKman x

1 2

x



1 2

1   3 n  

3

. KNnakenSam  x 

. KNnakenSam

P

1  x2

x 2  x 2 3 2

x x

IV.



3 2

 . n

.

¬15 BinÞú¦ edaHRsaysmIkar nigvismIkarxageRkam ³ 1> 1 x  1 x  5 . 2> x x 8  x  2 . ¬10 BinÞú¦ kMNt;témø m edIm,I[bnÞat; y  mx RbsBVnwgGnuKmn_ y  x 1  x  2 Rtg;bIcMNuc . 3

3

3

3

V.

VI.

A

¬10 BinÞú¦ tamrUbxagsþaM KNnaplbUkmMu ³

B C

A  B  C  D  E  F  G

.

G

D VII.

¬20 BinÞú¦ eK[ctuekaN ABCD carwkkñúgrgVg;p©it O . bgðajfa AC  BD  AB  CD  AD  BC .

8 

544



F

E



៩ :

   I. II. III.

IV.

bgðajfa ³ 6  2 5  13  48  3  1 . 3  x 2  x x 1 edaHRsaysmIkar ³ 1997    3 . 1998 1999 bIcMnYn x , y , z smamaRtnwg 5 , 7 , 11 . 1> KNnacMnYnTaMgbIenH kalNa ³ k> x  2 y  3z  48 x> x  my  z  72 ¬ m CacMnYnKt;EdleK[¦ rktémø m minRtUvman . 2> kñúglT§plénsMNYr 1> ¬x¦ eKcg;[ x , y , z CacMnYnKt;viC¢man. etIcMnYn 16  7m RtUvbMeBj lkçxNÐy:agNa ? etImantémø m b:unµanEdlbMeBjlkçxNÐenH . 3> eKcg;[ m CacMnYnKt; . KNna m ¬mancemøIyeRcIn¦ nigtémørbs; x , y , z . eK[kaer ABCD manRCugRbEvg a . eKcg;sg;RtIekaNsm½gS EdlmanGgát;RTUg AC CaRCug ehIy mankMBUl E enAxag B . O CacMNucenAkNþalén AC  . k> bgðajfacMNuc E , B , O nig D rt;Rtg;Kña . x> KNna BE CaGnuKmn_én a . K> bgðajfa EB ED  AB . X> BI E eKKUsbnÞat; EP  b:HrgVg;carwkeRkAkaer ABCD Rtg; P . bgðajfa EP  a . 2

GñkeFVIviBaØasa eday has; sm,tþi

3 

545 



៩ :

   I.

KNnakenSamxageRkam ³  k> Y  169   14  52    2 1 16    5  4 19  27  3

II.

x> Z  11 2  2 1 3  3 1 4    49 1 50  50 1 51 . RsaybBa¢ak;faebI a , b , c CargVas;RCugénRtIekaNmYy enaHeK)an ³ a  b  c  2ab  bc  ca  . edaHRsayRbB½n§smIkar xxy  6y  35 . 2

2

2

3

III. IV.

V.

3



sYnc,arragctuekaNEkgmYy manépÞRkLa 720 m . ebIeKbEnßmbeNþay 6 m nigbnßyTTwg 4 m enaHépÞRkLasYnc,arminpøas;bþÚreT . KNnavimaRténctuekaNEkgenH . eK[RtIekaN ABC mYy carwkkñgú rgVg;p©it O kaM R . bnÞat;KUsBI B RsbnwgbnÞat;b:HrgVg;Rtg; A kat;bnÞat; AC Rtg; D . 1> bgðajfa ABC~ ADB rYcbBa¢ak;fa AB  AC  AD . 2> bnÞat;mYyKUsBI B RsbnwgbnÞat;b:HrgVg;Rtg; C kat; AC Rtg; E nigrgVg;Rtg; F . cUreRbobeFob ABC nig BEC . 3> bgðajfa BED nig BFC CaRtIekaNsm)at . 4> eKsnµt;fa BAC  60 . R)ab;eQµaHRtIekaN BFC rYcKNna BF CaGnuKmn_én R . 2

2

o

PñMeBj> éf¶TI 28 Ex kumÖ³ qñaM 2003 GñkeFVIviBaØasa eday Tk; yUGUn

3 

546 



៩ :

   I. II. III. IV.

V.

bM)at;r:aDIkal;BIPaKEbg edaHRsaysmIkar ³ 32 x

3

11 2m  3 12n 1 2 2  x 0 3 3 1 2 4 2 y  x4    y  2x  7 3

. .

begáItsmIkaredaysÁal;bs£ nig  1 4 2 . 1> edaHRsayRbB½n§smIkar . 2> sg;bnÞat;EdlmansmIkar TaMgBIrelIRkabPicEtmYy . bBa¢ak;cemøIyelIRkaPic ebI M CacMNuc RbsBVénbnÞat;TaMgBIr . 3> sresrsmIkarénbnÞat;Edlkat;tamcMNuc P 2 , 5 nig Q4 , 2 . bgðajfabnÞat;enHkat;tam M . 4> bnÞat;TI1 kat;G½kS xx Rtg; A ehIybnÞat;TI2 kat;G½kS yy Rtg; B . sresrsmIkarbnÞat; AB . 5> bgðajfa AM  BM rYcKNnaRkLaépÞRtIekaN AMB . eK[rgVg; C O , R  nigrgVg; C O , R b:HKñaxageRkARtg; A eday OA  4 cm nig OA  2 cm . tam A eKTaj ExSFñÚEkgKña eday AB C O , R  nig AC  C O , R . k> bgðajfa OB // OC . x> BC  OO  I  . bgðajfa I CacMNucnwg ehIybBa¢ak;TItaMgva edayKNna IO nig IO . K> eKKUs OH Ekgnwg BC Rtg; H . rksMNMucMNuc H kalNa B rt;elI C O , R  . eFVIenAERBklab> éf¶TI 10 Ex mIna qñaM 2003 GñkeFVIviBaØasa eday hIug sm,tþi

3 

547 



៩ :

   I. II.

dak; E CaplKuNktþa E  ab  c   ba  c   ca  b  . eK[cMnYnviC¢man a , b , c , m , n , p Edl a  b  c  1 . eKdwgfacMnYn a , b nig c RcassmamaRt erogKñaeTAnwgcMnYn m , n nig p . bgðajfaeK)an am  bn  cp  1 11 1 . 2

2

2

2

2

2

m

III. IV.

V. VI.

n



p

eK[kenSam A  xx  13 . kMNt;cMnYnKt; x viC¢man edIm,I[kenSam A CacMnYnKt;viCm¢ an . RsaybBa¢ak;fa smIkarxagsþaMenHmanb£sCanic© ³ x  ax  b  x  bx  c  x  cx  a  0 cMeBaH x CaGBaØat nig a , b , c CacMnYnBit . RsaybMPøWfa 49  20 6  49  20 6  2 3 . eK[RtIekaN ABC EdlRCugnigkm
4

1

1

VII.



2

3



1

2

3

2

3



eK[RtIekaNsm)at OAB Edlman)at AB nig AOB  30 . bnÞat;Ekgnwg OA Rtg; O kat; bnøayén)at ABRtg; D . bnÞat;Ekgnwg OB  Rtg; B kat; OD  Rtg; E . RsaybMPøWfa RtIekaN BED CaRtIekaNsm)at . o

GUrEbkk¥m> éf¶TI 18 Ex mIna qñaM 2004 GñkeFVIviBaØasa eday Kwm b‘unFI

3



548 



៩ :

   I.

cUrKUssBaØa kñúgRbGb; cMeBaHcemøIyEdlRtwmRtUv ³ eK[bIcMNuc A , B , C mankUGredaenerogKñaKW 3 , 1 ;  4 , 4 nig  2 , 5 . k> kUGredaenéncMNuc I kNþal  AC KW ³ I  12 , 23   I  3 , 92  

. x> kUGredaencMNuc D qøúHénc B eFobnwg I KW ³ D 3 ,  2  D 1 , 2  I  2 , 1 . 5  I  , 3 2 

K> tamrUbxageRkamenH eK[  d  //  d  . KNnatémø x ³ 1

2

10

cemøIy ³

x 6

12

x  66



x  36



x  11

.

x

II.

k> KNna A  16 16 Edl x CacMnYnkt;viC¢man . x> edaHRsaysmIkar x  x  2 1  A . K> rktémø a EdlnaM[bnÞat; y   a  2 x  3 EkgnwgbnÞat; y  12 x  1 . rYcsg;bnÞat;TaMgBIrenH kñúgtRmúyGrtUNremEtmYy . X> rktémø a nig b EdlnaM[RbB½n§smIkarxageRkam manKUcemøIyeRcInrab;minGs; ³ 4 x 1

1> III. IV.

x

x

ax  by  10  4 x  3 y  5

2>

6 x  y  30  1   b  1 x  y  b  a  3 

.

eK[BIrcMnYn tUc b¤FMCagKñabIÉkta ehIyplbUkkaeréncMnYnTaMgBIrenH 89 . rkcMnYnTaMgBIrenH . eK[RtIekaN ABC carwkkñúgrgVg; . knøHbnÞat;BuHén BAC kat;RCug  BC  Rtg; I nigFñÚ BC Rtg; J . 1> RsaybMPøWfa ABI AJC rYcbBa¢ak;fa AI  AJ  AB  AC . 2> Bgðajfa BAJ  CBJ . 3> RsaybMPøWfa JB  JA  IJ . PñMeBj> éf¶TI 28 Ex kumÖ³ qñaM 2003 GñkeFVIviBaØasa ³ R)ak; kaNaDI 2

3 

549 



៩ :

   I.

RsaybBa¢ak;fa ³ k> 11a aa  a   11 aa  

x>





2 3  2 3  6

2

1

.

.

    2    2  x  x  1  1 1   A   2 2 15 x  1         2 x 1 2 x 1    1  1       3  3     

II.

KNnatémøénkenSam ³

III.

KNnatémø x ; y Edl y  0 BIsmIkar ³

IV.

V.

eK[ x ; y ; z Edl

 x2  2 y  1  0  2  y  2z 1  0 z2  2x 1  0 

x2  4x  y  6 y  13  0

. KNnakenSam ³ 2

2

VI.

2

2

3



550 

.

A  x 2000  y 2000  z 2000

eK[RtIekaN ABC mYyman  AM  Caemdüan nigkm
.

.



៩ :

   I.

BICKNit 1> edaHRsaysmIkar ³ 4x  3x  x . 2> eK[ M 1 ,  2 CacMNuckNþalénGgát; AB Edl A 2 , 2 . KNnakUGredaenéncMNuc B . 3> KNna A  x 1 x  x 1 x  x2x 1 . 4

2

4> sRmÜlkenSam ³

2

3

2

2

xa xa 2 xa F xa xa 1 xa

.

5> eTscrN_mñak;ecjdMeNIrenAem:ag 7 BIeCIgPñMeTAkMBUlPñMkñúgel,ÓnmFüm 300 m/h . luHcuHBI elIPñMmkvijedayel,ÓnmFüm 450 m/h mkdl;eCIgPñMvijenAkEnøgecjdMeNIr. enAevlaem:ag 18h 45mn . kñúgry³eBleFVIdMeNIr eTscrN_enaHsRmakGs; 4h 15mn . rkcm¶aypøÚvBI eCIgPñMeTAkMBUlPñM . 6> edaHRsayRbB½n§smIkar ³ II.

 2 x  y 2 x  y  x 24      2 x  y 2 x  y  2 x  y 11 3 y  2 x  1 

1  2

.

FrNImaRt 1> CD Cakm eK[rgVg;p©it O BIcMNuc A mYyelIrgVg; eKKUsGgát;FñÚBrI  AB ,  AC enAmçagénGgát;p©itKUs ecjBI A . bnÞat;b:HRtg; A nig C énrgVg;Rtg; S . Ggát;RTUgmYyEkgnwg  AB kat;  BC  Rtg; T RsaybMPøWfa ³ k> SAT nig TAB sm)at ehIymMu)atrbs;vamanrgVas;esµIKña . x> R)aMcMNuc A , S , C , T nig O sßitenAelIrgVg;EtmYy . K> ST  //  AB .

3 

551 



៩ :

   I. II. III.

IV.

KNna A  19781979 1979 1979  ... 1980 1 . eK[ x  3  2  3  2 KNna f  x  x  3x . eK[smIkar  x  a  b x  b  c x  a  ca  b  c  abcx . edaHRsaysmIkarebI a  2 , b  3 , c  4 . rktémøKt;én x , y nig z EdlepÞógpÞat;smIkar  x  4 y 1 z  25  80xyz . edaHRsayRbB½n§smIkar ³  xy  73xx  37 yy  00 . 9

3

8

7

3

3

2

2

2

3

V.



3

rktémøKt;én x , y nig z EdlepÞógpÞat;smIkar x  y  z  4  2 x  2  4 y  3  6 z  5 . VII. eK[RtIekaN ABC manemdüan AM , BN , CP . 1> RsaybMPøWfa AM  BN  CP  AB  BC  AC . 2> RsaybMPøWfa AM  BN  CP  AB  BC2  AC . VIII. eK[mMuEkg xoy enAelI ox  eKedAcMNuc B nigenAelI oy  eKedAcMNucbIKW C , D nig E Edl OC  DE  CD  OB . RsaybMPøWfa ODB  OEB  45 . VI.

o

¬viTüal½ysn§rm:uk¦ PñMeBj> 03 mIna 2004 GñkeFVIviBaØasa eday Ect lI

3



552 



៩ :

   I.

cUrKUssBaØa kñúgRbGb;xagmuxcemøIyEdlRtwmRtUv ³ 1> kenSam A  53 95  13 45  5 15 mantémø ³ k>  A  33 x>  A  5 K>  A  3 5 X>  A  55 . 2> ABC CaRtIekaNEkgRtg; A Edl BC  5 3 cm nig AC  5 2 cm . AB manRbEvg ³ B

II. III.

IV.

V. VI.

k>  AB  2 5 cm x>  AB  4 cm K>  AB  5 cm X>  AB  5 cm A eRbóbeFobcMnYn 3  3 nig 6  2  3  . plbUkBIrcMnYnesµI 84 ÉplEckvaesµInwg 3 . rkcMnYnTaMgBIrenaH . edaHRsayRbB½n§vismIkar

 8  3x x  3  3  4   x 1  x  2  5

5 3 cm

5 2 cm

C

.

KNna ¬KitCa cm¦ RbEvgRCugTaMgbI x , x  2 , x  4 énRtIekaNEkgmYy . edaHRsaysmIkar ³ k>  2 x  2 35  4x  43   12  x   0 





x> 4x  2x 1  19x  3 . VII. ABC CaRtIekaNEkgRtg; A Edl BC  2a nig Bˆ  60 . KNnargVas;RCug AB nig AC CaGnuKmn_én a . VIII. kñúgRtIekaN ABC eKKUskm eRbóbeFob AC ni g rY c ni g . AE AF AD AG x> bgðajfa AC  AF  AB  AG . K> bgðajfa  BC // GF  . ¬GnuvTi üal½y h‘un Esn burI 100 xñg ¦ 2

o

3 

553 



៩ :

   I.

KNna

P

III.

IV.

V. VI.

1 1 2a 4a 3 8a 7   2   a  b a  b a  b 2 a 4  b 4 a 8  b8

. eK[smIkar 3a  3b  10ab nig b  a  0 . rktémøénRbPaK F  aa  bb . cMBYyTwkbI EdlkñúgenaHmanBIrbBa©ÚlTwkdak;kñúgGag nigmYyeTotbeBa©jTwkBIGag. edIm,IbMeBjGag cMBYyTI1 RtUvkarry³eBl 1h 30mn . cMENkÉcMByY TI2 vijvaGacbMeBjGagkñúgry³eBlminsÁal;. edIm,IbeBa©jTwk[Gs;BIGag cMBYyTI3 RtUveRbIry³eBl 2h . ebIeKebIkcMBYyTaMgbI[hUrTwkRBmKña eK segáteXIjfa GagenaHeBjkñúgry³eBl 40mn . etIcMBYyTI2 RtUveRbIry³eBlb:unµanedIm,IbMeBjGag? E

II.

1 1 1   2 2 2 2  b  c   a  ac  b  bc   c  a  b  ab  c  ac   a  b   c  bc  a 2  ab  2

2

eK[

2

 a  b  c  1  2 2 2 a  b  c  1 x y z    a b c

1  2

. RsaybBa¢ak;fa

xy  yz  xz  0

.

 3

eK[RtIekaN ABC carwkkñúgrgVg;p©it O sg;km
¬TYlsVayéRB ¦

3



554 



៩ :

   I. II. III. IV. V.

VI.

RsaybMPøWfa 4  2 3  4  2 3  2 3 . KNnatémøelxénkenSam A  1 1 2  2 1 edaHRsayRbB½n§smIkar

 x 2  y 2  130   xy   x  y   47

3



1 1  ...  3 4 99  100

.

.

eKman a  b  c  0 nig ab  bc  ca   4010 . cUrKNna a  b  c  0 . 2 eK[ctuekaNBñaysm)at ABCD man  BC  C B Ca)attUc Edl BC  16cm . Ggát;RTUg  BD nigRCugeRTt  AB EkgKñaRtg; B . A D O H eK[ BD  40 cm . KNna AD  x . eK[RtIekaNsm½gS ABC Edl AB  AB  BC  a ehIyman  AH  Cakm KNna CM nig BM CaGnuKmn_én a . 2> KNnaRkLaépÞctuekaN AHCM CaGnuKmn_én a . 4

4

4

¬vi> vtþekaH ¦

3



555 



៩ :

   I. II. III.

IV.

V.

VI.

x x 1 x  2 x  3 KNna x Edl 1999    4 . 2000 2001 2002 eRbóbeFobcMnYn 14 48 nig 7  4 3  7  4 3 edaHRsayRbB½n§smIkar nigBiPakSatémø m xageRkam ³  x  my  1 .  mx  3my  2m  3 fñalsMNabmYymanragCactuekaNEkgmanRkLaépÞ 400 m nigbeNþaymanRbEvgelIsTTwg 23 m . cUrrkvimaRtfñalsMNabenaH . cUrsg;bnÞat; D : y  2x  5 nigeK[bnÞat;  :  m 1 x  my  m  2 , m Ca):ar:aEm:t . k> KNnakUGredaencMNucRbsBV I rvag  D nigbnÞat;    cMeBaH m  13 . x> KNna m edIm,I[bnÞat;  D    . K> KNnaépÞRkLaénRtIekaN EdlpÁúMedaybnÞat;  D nigG½kSkUGredaen . cUrsresrCaRbB½n§bIvismIkar ¬kñúgrUb¦ ³ D  4

4

2

2

4

I  D3  tbMnc;eMly 1 2

VII.

o

4

 D1 

eK[rgVg;BIr (O) nig (O’) manp©it O nig O’ mankaMRbEvg R < R’ . rgVg;TaMgBIrb:HKñaxageRkARtg; A . eKKUsbnÞat;b:HrYmkñúg nigbnÞat;rYmeRkA Edlb:HrgVg; (O) Rtg; B nigb:HrgVg; (O’) Rtg; C . bnÞat;b:HTaMg BIrkat;KñaRtg; M . 1> bgðajfa MA  MB  MC ehIyfaRtIekaN ABC EkgRtg; A . 2> bnÞat;  BA nigbnÞat; CA kat;rgVg; (O’) nig (O) Rtg; D nig E . bgðajfa  BE CaGgát; p©itrgVg; (O) ehIy CD CaGgát;p©iténrgVg; (O’) . R)ab;eQµaHctuekaN BCDE . 3> bgðajfa BEA  ABC eRbóbeFobRtIekaN BCD nig BCE rYcbgðajfa BC  BE  CD . 4> eK[ R  4.5cm nig R  2cm . KNna BC nigRkLaépÞctuekaN BCDE . 2

3 

556 



៩ :

   I.

eK[ 2a  2b  5ab Edl b  a  0 . cUrKNnatémøelxén F  aa  bb . eKman ax  by  0 . bgðajfa a a b  x x y  1 . 2

2

2

II. III.

2

2

cUreRbóbeFobpleFob

 x  y

2

2

nig

x2  y 2

2

2

x2  y 2

 x  y

2

ebI x  y  0 .

RsaybBa¢ak;fa 3  3  2  3  4  24 Eckdac;nwgcMnYn 27 . V. eK[bIcMnYnKt;rWuLaTIbtKña a , b , c Edl a  b  c . k> KNnaplbUk S  a  b  c CaGnuKmn_én b . x> Tajrktémø a , b , c edaydwgfa S  333 . VI. edaHRsaysmIkar  y  2 x  6   2 y  x  4   0 . VII. dImYykEnøgmanragCactuekaNEkgmanépÞRkLa S Edl 2hm < S < 3hm eKEckdIenaHCaLÚt_² man épÞRkLa 150m , 180m nig 210m . k> KNnaRkLaépÞéndIragCactuekaNEkgenaH . x> KNnaRbEvgbeNþay nigTTwgctuekaNEkgenaH ebIdwgfaTTwgesµInwg 74 énbeNþay . VIII. eK[RtIekaNEkg ABC EkgRtg; A Edl Bˆ  2Cˆ nig BC  a . enAeRkARtIekaN ABC sg;RtIekaN sm½gS ABF nig ACM . k> eRbóbeFobRkLaépÞénRtIekaN ABF nigRkLaépÞénRtIekaN AFM . x> KNnaRkLaépÞctuekaN BCMF CaGnuKmn_én a . IX. eK[RtIekaNsm)at ABC man)at  BC  . D CacMeNalEkgéncMNuc B elI  AC  . bgðajfa BC  2 AC  CD . 2005

IV.

2006

2005

2006

2

2005

2005

2

2

2

2

2

2

2

¬vi> )ak;TUk ¦

3 

557 



៩ :

   I. II.

III.

IV.

3 4

edaHRsaysmIkar nigepÞógpÞat;cemøIy ³  x  x  4  8 . RsaybBa¢ak;fa 49  20 6  49  20 6  2 3 . 2

4

KNnakenSam

4

1 ab

a b  A 1

1

Edl a  b  0 .

a 2  b2

eK[cMNuc A  1 , 0 ; B 1 , 0 ; C  11  xx 

2 2

,

2x   1  x2 

enAkñúgtRmúyGrtUNremEtmYy. bgðajfa

CaRtIekaNEkgRtg; C . ABC CaRtIekaNEkgRtg; A kMNt;edayrgVas;RCug AB  c , AC  b . knøHbnÞat;BuHkñúgénmMu A kat; GIub:Uetnus  BC  Rtg; D . bnÞat;Rsbnwg (AD) EdlKUsecjBI B CYbbnøayénRCug CA Rtg; E . k> RsaybMPøWfa AE  AB rYcKNna BE . x> KNna AD . K> KNnaépÞctuekaN ADBE . ABC

V.

¬Gnu> TYlGMBil ¦

3



558 



៩ :

  

KNnakenSam A  3273 , B  2  16  16 .  x 18  x 21  x 15  x 12  x 555 edaHRsaysmIkar ³ k> 241979      0 . 1985 1982 1988 1991 111 x> 84  16 . 3

I. II.

4 x 1

x

x

6

x 1

x

x 1

III.

IV.

edaHRsayRbB½n§smIkar ³

1 1 1 1  a  b  c   12  1 1 1 7      c b a 12 1 1 1 5  a  c  b  12 

eK[bnÞat;BIrKW  D  : y   2m  5m  4 x  2m  5m  5 nig   kMNt;témø m edIm,I[bnÞat;  D  nig   RsbKña . 2

2

m

m

V.

.

edaHRsayRbB½n§vismIkar ³

m

 : y   m2  m  1 x  m2  m 1

m

x  0 y  0   x  y  0 3 x  4 y  36

tamRkaPic .

rktémø x edIm,I[cm¶ayrvagBIrcMNuc A 2 , 9 nig B  x , 9 esµInwg 2004 Ékta . VII. eK[ A 2 , 2 ; B  3 ,  3 nig C  6 , 6 . bgðajfa A , B , C sßitenAelIbnÞat;EtmYy . VIII. ABC CaRtIekaNEkgRtg; C ehIy CH  Cakm
vi> b£sSIEkv> éf¶TI 09 mIna 2005 eday cab e):as‘ag

3 

559 



៩ :

   I.

KNnakenSam

II.

. eK[ a , b , c CargVas;RCugTaMgbIénRtIekaNmYy. cUrbgðajfasmIkar b x  b Kµanb£s .

III.

bgðajfa X  2

IV.

edaHRsayRbB½n§smIkar ³

V.

VI.

1 1 1 1    ...  1 2 2  3 3  4 1999  2000 n 1 P  2 n  4 x 2  4 x  1 2x 1 S

2 2

3  5  13  48

 c2  a2  x  c2  0

CacMnYnKt;viC¢man .

6 2  x  xy  y  1   y  yz  z  4  z  zx  x  9 

.

sisS 6 nak; A , B , C , D , E nig F RbLgsisSBUEkKNitviTüaRbcaMsala. KNemRbeyaKRbkasfa mansisSBIrnak;)anRbLgCab;edayKat;niyayfa ³ 1> A nig C Cab; 2> B nig E Cab; 3> F nig A Cab; 4> B nig F Cab; 5> D nig A Cab; . eKdwgfa XøaTaMgR)aMmanXøamYyxussuT§saF ehIybYnXøaeTotmanmYyXøa²RtUvBak;kNþal. etIsisS BIrnak;NaEdl)anRbLgCab; . cUrRsaybBa¢ak;fa A  11...11  22...22 CacMnYnmYymankaerR)akd . 2n

VII.

2

tYén 1

n

tYén 2

manRtIekaN ABC EkgRtg; A nigkm
1

2

2

3

3

vi> c,arGMeBA> éf¶TI 13 mIna 2005 eday nk kn

3 

560 



៩ :

   I. II.

eRbóbeFobcMnYn edaymin)ac;eRbIm:asIunKitelx ³  2000 nig 3000 . KNnatémøelxénkenSam A   x  x  x  2x 1 cMeBaH x  1 2 3000

4

3

2000

2005

2

2  1 1

III. IV.

VI.

.

2 1 1

rktémøGb,brmaénBhuFa ³ W  a b  5a  9b  6ab  30a  45 . RsaybMPøWfa a  b  c  d 1  a  b  c  d RKb;témøén a , b , c , d . eK[kenSam P  x x2x2  5 . rkRKb;témøKt;viC¢manén x edIm,I[ P mantémøelxCacMnYnKt; . 2 2

2

2

2

4

V.



1

2

2

2

2

3

1> edaHRsayRbB½n§smIkar ³

 xy  64  1 1 1 x  y  4 

.

2> KNna N  4  15  4  15  2 3  5 . 3> RsaybBa¢ak;fa RKb;cMnYnBit a , b , c enaHsmIkar x 1 a  x 1 b  c1 manb£sCanic© . VII. eK[RtIekaN ABC . km
ABC

MNP

vi> bwgRtEbk> éf¶TI 10 mIna 2005 eday kuy EkvLúg

3



561 



៩ :

   I.

KNna A  12 19  6 10   3 2  2 5 , B  3  5  3  5 2 2  3 5 2 2  3 2. rkcMnYnEdlmanelxBIrxÞg; AB ^epÞógpÞat; ³ AB  BA  1980 . 1. edaHRsaysmIkar 2 3  3  x 3  y 3 Edl x , y CacMnYnsniTan . 2 x  12 x  17 x  2 2. KNnatémøelxénkenSam ³ A  x2 x 13 169 27 ebI a  b  a  c , .   c  b  2a  b  c  1.

2

II.

3

a  c

III.

2

2

eKman x  0 , y  0 , z  0 ehIyEdl x  y  z  xyz , x  xy . RsaybBa¢ak;fa x  3 . 2. smIkar a 1  x   2 2bx  c 1  x   0 Edl a , b , c CaRCugénRtIekaNEkg ABC Edl Cˆ  90 ³ k> RsaybBa¢ak;fa smIkarmanb£sBIr x , x . x> ebI x  x  12 cUrkMNt;témøelxén M  a b c . 2

1.

2 1

1.

2

o

2

1

2

2 2

edaHRsayRbB½n§smIkar

2 2 3x  2 xy  y  0  2  x  5 y  6

.

enAkñúgRtIekaN ABC man Bˆ  120 , BA  8 cm , BC  12 cm . cMNuc P rt;elI  AB edayepþIm BIcMNcu A eTA B nigcMNuc Q rt;elI  BC  ecjBI C eTA B . ebI P rt;kñúgel,Ón 1cm/s ehIy Q rt; kñgú el,Ón 2cm/s ecjdMeNIrkñúgeBlEtmYy. k> etIb:unµanvinaTIeRkay eTIbépÞRkLaRtIekaN PBQ esµInwgBak;kNþalépÞRkLaRtIekaN ABC ? x> kñúgeBlCamYyKñaenaH etI  PQ manRbEvgb:unµan ? 1. ctuekaNesµI ABCD EdlmanRCugesµI a . R nig r CakaMénrgVg;carwkeRkARtIekaN ABD nigRtIekaN 1 1 4 ABC . RsaybBa¢ak;fa .   R r a 2. kñúgRtIekaN ABC man BAC  60 .  AD  CaknøHbnÞat;BuHmMu BAC  60 kat;  BC  Rtg; D . ebI SS  85 ehIyrgVg;p©it I carwkkñúgRtIekaN ABC manépÞesµI 12 .  AB ,  BC  nig  AC  b:HrgVg;p©it I Rtg;cMNuc E , N , M . KNnaRbEvg AD ? o

2.

V.

5

2

2

IV.

.

5

10

2

2

2

o

o

ABC

ADC

3 

562 



៩ :

   I. II. III.

rktémø x nig y edaydwgfa x  y  120 nig PGCD  x , y   30 . eK[ ba  dc bgðajfa 44ba 33dc  xbxa  ydyc rYcrktémø x nig y . eKmanbIcMnYn a  0 , b  0 , c  0 Edl a  b  c  1 nig 1a  b1  1c  0 . RsaybMPøWfa a  b  c  1 . edaHRsay nigBiPakSa ³ ax  2x  1  0 , a Cab)a:r:aEm:t . ebkçCnRbLgmñak;cab;eqñat 3 snøwkkñúgsMNYr 22 EdlerobcMeLIgedayKN³emRbeyaK. kñúgsMNYr 22 enHman ³ 10 sMNYrBICKNit , 7 sMNYrRtIekaNmaRt , 5 sMNYrnBVnþsaRsþ . k> KNnaRb)ab edIm,I[sMNYrTaMgbICasMNYrBICKNit . x> KNnaRbU)ab edIm,I[sMnYrTaMgbI CaBIKNit RtIekaNmaRt nignBVnþ . 2

IV. V.

VI.

2

2

2

1> edaHRsayRbB½n§smIkar ³

 xy  64  1 1 1 x  y  4 

.

2> KNna N  4  15  4  15  2 3  5 . 3> RsaybBa¢ak;fa RKb;cMnYnBit a , b , c enaHsmIkar x 1 a  x 1 b  c1 manb£sCanic© . eK[RtIekaN ABC EkgRtg; A nig  AH  Cakm KNna CH , BH , ABH . x> R)ab;eQµaHRtIekaN IAC ( I CacMNuckNþal  BC  ) . K> rgVg;Ggát;p©it  AB nigrgVg;Ggát;p©it  AC kat;KñaRtg;cMNcu mYyeTot M . RsaybMPøWfa M RtYtelI H enAelI  BC  . 2

VII.

o

Gnu> BgTwk> éf¶TI 13 mIna 2005 eday RkUc suvNÑara

3 

563 



៩ :

   I. II.

rktémøKt; x , y , z EdlepÞógpÞat;smIkar  x  4 y 1 z  25  80xyz . eK[ a , b , c CaRCugénRtIekaN ABC . KNnaRkLaépÞénRtIekaN ABC edaydwgfa ³ 2a 2b 2c . b , c ,a 1 a 1 b 1 c edaHRsaysmIkar xx 11  xx  44  xx  22  xx  33 . eK[ x  y  x  z  y  z . RsaybBa¢ak;fa 1x  1y  1z  0 . 2

2

2

2

III. IV. V.

2

2

2

2

edaHRsayRbB½n§smIkar

2

 x 2  y 2  z 2  xy  yz  xz  2005 2005 2005 2006  x  y  z  3

.

KNnatémøtUcbMputénBhuFa 2x  4xy  5 y 12 y  13 . 3 2 . VII. edaHRsaysmIkar 2 VIII. eK[RtIekaN ABC EkgRtg; A nigman  AD Cakm
VI.

1 x 3 y

2

2 x  4 y 1

o

3

3

2

vi> sn§rm:uk> éf¶TI 08 mIna 2005 eday Ect lI

3



564 



៩ :

   I. II.

eK[ a  b  c  1 , a  b  c  1 , ax  by  cz  m . cUrKNna KNna A  1  12 1  13 1  14   ... 1  991  2

2

2

B  6  4 x 1 81x  2 81

P  xy  yz  zx

.

x

C  4 74 3  2 3

S   x  1   x  2   x  3  ...   x  100 III.

edaHRsaysmIkar ³ k> 2 x  5  x> 2x  x K> 3 9  x 2005

3x  5  2

2003

V.

VI.

edaHRsayRbB½n§smIkar ³ k>

.

2  2 x 2004  2

2 x2 3 x

IV.

rYcbBa¢ak;BItémøelx S ebI x  1 , 2 , 3 .

 x  1  x  x2003  x2002  

 x  xy  y  2  3 2  2 2  x  y  6

x>

1  x x y z t  2  3  4  6  zyt xzt xyt xyz      14625 y z t  x

.

.

eK[smIkarbnÞat; y  32m mx . 1 k> sresrsmIkarbnÞat;Edlkat;tamcMNuc A0 , 1 . x> K CacMNucEdlsßitelIbnÞat;tagRkaPicRKb; m . KNnakUGredaenén K’ qøúHnwg K eFobnwg A . ctuekaNEkg ABCD EdlTTwg AB  a tamcMNuckNþalén  AB eKKUsmMu KOH  90 EdlcMNuc H enAelI  AD nigcMNuc K enAelI  BC  . k> eRbóbeFobRtIekaN AOH nigRtIekaN OBK rYcKNna AH × BK . x> eK[ AH = x nig BK = y KNnaépÞGb,brmaénRtIekaN KOH . o

Gnu> Twkl¥k;> éf¶TI 01 mIna 2005 eday hYt sIN u n

3 

565 



៩ :

   I. II. III. IV.

V.

VI. VII.

KNnakenSam ³ A  2  2  edaHRsaysmIkar ³ k> 5  6

KNnakenSam RsaybBa¢ak;fa

1 x  4 y 4

ebI

2

3 7  2  3 6  7  2  3 6  7  2 4

5 5

x

5 8

4

 1  x    1296 y 

52003  52004  52005

edaHRsayRbB½n§smIkar ³ k>

x> nig

x 4 y

2   4x x 1 8 3 x 1

3

.

.

.

Eckdac;nwg 31 .

1 1 1 x  y  z  4    2  1 8  xy z 2

x>

 xy  18  2 2  x  y  24

.

KNnacm¶ayrvagcMNuc A6 , 6 eTAbnÞat; D : y  x  4 kñúgtRmúyGrtUNrem . eKmansmIkar x  mx  4  0 KNnatémø m nigb£smYyeTot edaysÁal;b£sesµI 2 . 2

D VIII.

tamrUbxagsþaM  AB //  EF  //  DC . RsaybBa¢ak;fa 1x  1y  1z .

B E x

A IX.

z

y F

C

eK[rgVg; C(O , R) nigGgát;p©it  AB nigcMNuc M rbs;rgVg; C ehIybnÞat; D b:HrgVg; C Rtg;cMNcu A . P CacMeNalEkgén M eTAelI (AB) ehIy Q CacMeNalEkgén M eTAelI (PQ) . k> bgðajfa AIO CaRtIekaNEkg . x> bnÞat;Edlb:HrgVg;Rtg; M kat;bnÞat; D Rtg; T . bgðajfa AM CaknøHbnÞat;BuHénmMu QMO nig TMP . K> bgðajfa AIO ATM ehIy AIP AOM . X> KNna AQ , AI , AP ebI AT = x , OA = R .

vi> b‘unr:anI h‘un Esn vtþPñM> éf¶TI 03 mIna 2005 eday Eg:t can;sux

3 

566 



៩ :

   I.

rktémø x edIm,I[ sRmYl xx 11 .

x x x x 1 1 1      1    5 10 15 20 2 4 5

.

2

II. III. IV. V.

VI.

rkRKb;témø m Edl m  0 edIm,I[smIkar  m  2 x  m  5  0 manb£sviC¢man . RsaybMPøWsmPaB 2  3  2  3  2 . 2  2 3

2  2 3

GtþBlkrBIrnak;rt;edayclnaesµIenAelIpøvÚ mYymanragCargVg; Edlmanrg; 480 m. ebIGtþBlkrTaMgBIr rt;tamTisedApÞúyKña enaHGñkTaMgBIrCYbKña 45 vinaTImþg. ebIGtþBlkrTaMgBIrrt;tamTisedAEtmYy enaH Gñkrt;elOnECgGñkrt;yWt ral;bInaTI. k> KNnael,ÓnénGtþBlkrTaMgBIr . x> ]bmafa A CacMNucecjdMeNIr etIGtþBlkrmñak;² rt;b:unµanCMu)anCYbKñaRtg; A . eK[RtIekaN ABC mYycarwkkñúgrgVg; (C) Edl Bˆ  Cˆ  90 . k> bgðajfa Ggát;p©it AA’= 2R énrgVg; (C) Rsbnwg  BC  . x> bgðajfa AB  AC  4R . K> eK[  AH  Cakm
2

2

2

2

b£sSIEkv> éf¶TI 28 kumÖ³ 2005 eday pn sar:at

3



567 



៩ :

   I.

II.

3 A  4

2000

9    16 

1

1> KNna . 2> cUrkMNt;TtI aMgvg;Rkck edIm,I[)ansmPaB ³ B  8  4  2  2  9  3  3  3  4  0 . 1> cUrdak;kenSam A CaplKuNktþa Edl A  a b  c   b  a  c   c  a  b  . 2> bgðajfa ³ ebi a  b  c enaH a 2bab c  b 2cbc a  0 Edl a  0 , b  0 , c  0 . x x 1 x  2 x  3 1> edaHRsaysmIkar ³ 2004    4 . 2005 2006 2007 1

1

1

2

2

2

III.

2

 x  3  2 y 1  2

2> edaHRsaysmIkar 

2 x  3  y  1  4

IV.

V.

2

2

2

1  2

2

2

2

2

2

2

.

1> cUrrkbIcMnnY Kt;esstKña edaydwgfa plbUkcMnYnTaMgbIesµInwg 909 . 2> cUrrkbYncMnYnKt;KU edaydwgfaplbUkcMnYnTaMgbYnesµInwg 1028 . eKmanrgVg;p©ti O mYycarwkeRkARtIekaNsm)at ABC kMBUl B nigkm cUrRsaybBa¢ak;fa BCK  CBF  BCH nig FAE  EAK . x> bgðajfa FK  2MP . K> cUrRsaybMPøWfabIcMNuc F , M , H sßitenAelIbnÞat;EtmYy . X> cUreRbobeFob OM nig AH .

GUEbkk¥m> éf¶TI 13 mIna 2005 eday Xun Bisidæ

3 

568 



៩ :

   I. II. III.

bgðajfa ³ 6  2 5  13  48  3 1 . 3  x 2  x x 1 edaHRsaysmIkar 2002    3 . 2003 2004 eK[bIcMnYn a , b , x epÞógpÞat;tMnak;TMngTaMgbIxageRkam ³ a  2b  1  0 , b  2 x  1  0 , x  2a  1  0 . cUrKNnaplbUk S  a  b  x . eK[smIkar  x 1 x  4 x  5 x  6  m . k> kMNt;témø m edIm,I[smIkarKµanb£s . x> kMNt;témø m edIm,I[smIkarmanb£sDub . K> edaHRsaysmIkarebI m = 8 . kñúgtRmúyGrtUNrem mancMNuc A 3 , 2 ; B 9 , 2 nig C 3 , 10 . KNnabrimaRt nigRkLaépÞén RtIekaN ABC . eK[bnÞat; D : 2  3x  y  0 nig D : 4  m  1 m x  my  0 . rktémø m EdlnaM[ ³ k> bnÞat; D nig D kat;KñaelIGk½ SGab;sIus . x> bnÞat; D nig D EkgKña . RCugénkaer ABCD manrgVas;esµI 1 . enAelIRCug  AB nigRCug  AD edAcMNuc E nig F EdlbrimaRt RtIekaN AEF esµI 2 . RsaybBa¢ak;fa ECF  45 . 2

2

2

2005

IV.

V.

VI.

VII.

1

2005

2005

2

1

2

1

2

o

Gnu> TYlR)asaTEsnsux> éf¶TI 09 mIna 2005 eday BuT§ v½nþ

3 

569 



៩ :

   I.

1> dak;CaplKuNktþadWeRkTI 1 nUvBhuFa ³ P  x  2x  5x  6 . 2> dak;CaplKuNktþadWeRkTI 2 nUveTVFa ³ A  x  64 . 3> bgðajfa plbUk S  39  51 Eckdac;nwg 45 . 3

2

4

51

ax  by  cz  dt  0 bx  ay  dz  ct  0   cx  dy  az  bt  0 dx  cy  bz  at  0

II.

eKman

III.

edaHRsayRbB½n§smIkar ³ k> xx 1y y 651  18 2



IV.

V.

2

39

. bgðajfa

x>

x y  z t 0

1 1 5 x  y  6    1  1  13  x 2 y 2 36



a bc d 0

K>

 yz 10 x  3   zx 15   y 2  xy 6   z 5

.

.

1> brimaRténRtIekaN ABC manrgVas;esµInwg 80 cm . eyIgsnµt;fa BC  a , AC  b , AB  c . eK[ a , b , c smamaRtnwgcMnYn 5 , 7 , 4 . KNna a , b , c . 2> tamcMNuc M enAelI  BC  eKKUs ME //  AB Edl E  AC . eK[ MB  x ehIy y Ca brimaRténctuekaN ABME . KNna y CaGnuKmn_én x . 3> sg;bnÞat; D tagGnuKmn_én y EdlrkeXIjkñúgsMNYrTI 2 . 4> KNnatémø x ebI y = 56 . ABC CaRtIekaNcarwkkñúgrgVg;p©it O kaM R ehIy [AH] Cakm
vi> vtþekaH ³ eday )an fn

3 

570 



៩ :

   I.

sRmYlkenSam ³ A   xx  11  22xx 11    2xx11  2xx11  .  m  1 1  m 4m2    1 1  m  B   2   2  3  2  1  2 m   1  m 1  m m 1    m  m

II.

1> edaHRsayRbB½n§smIkar Edlman x CaGBaØat nig m Ca):ar:aEm:t ³ 5x  m 2x  m m 5 5  x  1    . 6 5 5 20 2> rktémø m Kt;viC¢man edIm,I[ 0  x  10 . KNnakenSam ³ A   2  3    2  3  . 5 2 6 52 6 B    2  25 . 52 6 52 6 eK[rgVg;p©it O kaM R Ggát;p©it AB . sg;kaM OI Ekgnwg AB . J CacMNucmYyelIFñÚtUc AI . BJ kat; OI Rtg; K ehIy AJ kat; OI Rtg; L nig AK kat;rgVg;Rtg; P . 1> RsaybMPøWfa B , P , L enAelIbnÞat;EtmYy . 2> bgðajfactuekaN AOKJ nig JKPL carwkkñúgrgVg; . 3> RbdUc BOK nig ALO rYcbgðajfa OK  OL  R . 4> RsaybBa¢ak;fa OJ b:HrgVg;carwkeRkActuekaN JKPL . 2004

III.

.

2005

2

IV.

2

PñMeBj ³ éf¶TI 14 mIna 2005 eday Qwm esg

3



571 



៩ :

   I. II. III.

RsaybBa¢ak;fa 5  5  5 Eckdac;nwg 31 . KNnatémøénkenSam A  1 1 2  2 1 3  3 1 4  ...  99 1 100 . eK[ a  0 , b  0 nig a  b  c  0 . k> RsaybBa¢ak;fa a  b  c  3abc . x> eKtag c  2n . RsaybBa¢ak;fa aa bb  cc  3n . cabmYyhVÚgehIreTATMelIpáaQUkkñúgRsHmYy. ebIcabmYyTMelIpáaQUkmYy enaHmancabmYyKµanpáaQUkTM EtebIcabBIrTMpáaQUkmYy enaHenAsl;páaQUkmYyTMenr. rkcMnYnpáaQUk nigcMnYncab . edaHRsayRbB½n§smIkar  xy  33xy 66  22yx 21 . 2001

2002

3

IV.

3

2003

3

3

3

3

2

2

2

2

V. VI.



 

2

Ggát;RTUgénctuekaNBñaysm)at EckctuekaNBñayenH)anRtIekaNcMnnY 4 EdlkñúgenaHRkLaépÞ RtIekaNBIr Cab;nwg)atmanrgVas; S nig S . KNnaRkLaépÞénctuekaNBñayxagelI . eK[RtIekaN ABC . M CacMNuckNþalén [AB] , D CacMNucmYyenAelI [MB] Edl 2MD = DB , MCD  BCD . cUrbgðajfa ACD  90 . 1

VII.

2

o

vi> h‘un Esn b‘unr:anIvtþPñM ³ éf¶TI 09 mIna 2005 eday erol rdæa

3



572 



៩ :

   I.

RsaybBa¢ak;fa plbUk 385a 1001b  Eckdac;nwg 77 .

II.

 x2  2 y  1  0  2  y  2z 1  0 z2  2x 1  0 

III.

IV.

V.

3

eK[ x , y , z Edl

5

. KNna A  x

2000

 y 2000  z 2000

.

eK[smIkar  4  m x  4x  m  0 . manb£sBIrKW x , x . kMNt;témø m edIm,I[smIkarman plbUkkaerénb£sesµI 10 . kukmYyehIrCYbRksarmYyhVÚgk¾ERsksYrfa {sYsþI¡ mitþTaMg 100 { eBlenaHemxül;énhVÚgRksareqøIyfa {eT¡ cMnYnBYkeyIgminRKb; 100 eT} cMnYnBYkeyIgbUknwgcMnBYkeyIg bEnßmBak;kNþalcMnYnBYkeyIg ehIy Efm 14 éncMnYnBYkeyIg RBmTaMgmitþÉgeToteTIbRKb;cMnnY 100 . KNnacMnnY RksarenAkñúghVÚg . eK[bIcMNuc A , B , C sßitenAelI (xy) . KUsRtIekaNsm½gS ABD nigRtIekaNsm½gS BCE enAEt mçagénbnÞat;enH . 1> RsaybMPøWfa AE = CD . 2> eK[ M nig N kNþalRCug [AE] nig [CD] . bgðajfaRCug BM = BN . 3> RsaybMPøWfa RtIekaN BMN CaRtIekaNsm½gS . 2

1

2

vi> h‘un Esn b‘unr:anIvtþPñM ³ éf¶TI 07 mIna 2005 eday em:A TUc

3



573 



៩ :

   I. II. III.

KNna

S

a

b



 a  b  a  c   b  c  b  a   c  a  c  b 

eK[bIcMnYn x , y , z xusBIsUnü Edl x  y  z  1 nig 1x  1y  1z  0 . bgðajfa x dak;CaplKuNktþanUvkenSam A  ab  x  y   xy  a  b  . RsaybBa¢ak;smPaB 1 2axaxa ax x 1x  1  a 1 2axax  x    1 1a . 2

2

2

V.

VI.

2 2



 y2  z2  1

.

2





2

2



1> kñúgtRmúyGrtUNrem rksmIkarénbnÞat;kat;tamcMNuc A6 , 2 nig B  2 ,  2 rYcrksmIkarExS emdüaT½rrbs;Ggát; [AB] . 2> eK[cMNuc C  2 , 6 . bgðajfaRtIekaN CAB CaRtIekaNsm)at . rgVg;mYykaMmanrgVas; R . eKKUsGgát;FñÚBrI EkgKña [BC] nig [DE] ehIyRbsBVKñaRtg; A ehIy [BB’] CaGgát;p©iténrgVg;enaH . RsaybMPøWfa AB  AC  AD  AE  4R . RtIekaNsm)at BAC nig ADC EkgRtg; A nig D manRCugrYm [AC] ehIytaMgenAsgxagRCugrYmenH. eK[ AB  AC  a . 1> bgðajfactuekaN ABCD CactuekaNBñayEkg . 2> KNna BC , AD , BD . 3> Ggát;RTUgTaMgBIrrbs;ctuekaNkat;KñaRtg; O . bgðajfa OAD COB rYcrkpleFob dMNUc RBmTaMgKNna OA , OB , OC , OD . 2

VII.

2

2

2

IV.

.

c



2

2

2

2

PñMeBj ³ éf¶TI 23 kumÖ³ 2005 eday R)ak; kaNaDI

3 

574 



៩ :

   I.

1> bgðajfa

2 3 2  2 3

2> KNnatémøelxénkenSam II. III.

.

5 3 2 27  2 3 3 4 3

.

9 16

2

2

 b2  2ab

x> ba  ba  2 .

2

2

y 1  x    a  2 a  2 a  2   x  y  1 a  2 a  2 a  2 

.

1> KNnabIcnM Yn x , y , z edaydwgfaplbUkvaesµInwg 292 ehIy x nig y smamaRtnwgcMnYn 150 nig 90 ehIy y nig z smamaRtnwgcMnYn 24 nig 21 . 2> eK[knSam E   a 1 x  2 b  4 x  3c 15 . cUrkMNt;témø a , b nig c edim,I[BhuFa E = 0 cMeBaHRKb;témøén x . 2

VI.

 2

eK[ a nig b CaBIrcMnYnmansBaØadUcKña . bgðajfa k> a 1> dak;CaplKuNktþa E  12  x  3  27  x  5 . 2> edaHRsaysmIkar 4x  5x 1  0 . 3> edaHRsayvismIkar 1x 21  1x 12  x  4 . 4> edaHRsayRbB½n§vismIkar

V.

2  2 3 A

4

IV.

2 3



edaHRsayRbB½n§smIkar

2

9 x  6 y  10 z  1   6 x  4 y  7 z  0  x2  y 2  z 2  9 

.

eK[rgVg; C (O , R) Ggát;p©it [AB] EdlbnÞat; AB EkgnwgbnÞat; D Rtg; H . (B enAcenøaH O nig H). M  C (O , R) bnÞat; AM , BM nigbnÞat;b:HrgVg;Rtg; M kat;bnÞat; T er[gKñaRtg; D , C nig I . bnÞat; AC kat;rgVg;Rtg; E . 1> bgðajfa I CacMNuckNþalén [DC] rYcTajbBa¢ak;fa (IE) CabnÞat;b:HénrgVg; C (O , R) . 2> K CacMNucRbsBVrvag (OI) nig (ME) , J CacMNucRbsBVrvag (ME) nig (AB) . RsaybBa¢ak;fa OJ  OH  OI  OK  R rYcbgðajfabnÞat;(ME) kat;tamcMNucnwgmYykalNa M rt;elIrgVg; (C). 2

3 

575 



៩ :

   I. II.

RbsinebI a bc  2 nig ab  2 . KNnaplKuN P  abc . rkBIrtYbnÞab;énsVIútcMnYn 1002 , 2005 , 4011 , ....... , ......... . 2004

2005

2004

2004

2 3  1     x 1 y  2 z  3  x  2 y  3z  56 

 x 2  y 2  2 xy  8 2

x> 

III.

edaHRsayRbB½n§smIkar k>

IV.

KNnaplbUk S edayRsaybBa¢ak;rUbmnþTUeTACamunsinKW ³

VI.

1  ... n  n n 1

 n  1

.

rYceTIbKNna ³

. eK[ [AM] CaemdüanénRtIekaN ABC EkgRtg; A . ehIyman AB = 4cm , AC = 5cm . KNna épÞRkLaénRtIekaN AMB nigRtIekaN AMC . man [Sx) , [Sy) nig [Sz) tamlMdab;enH Edl xSy  60 , ySz  90 . cMNuc A , B nig C enAelIknøH bnÞat;TaMgbIerogKña eday SA = SB = SC = a . 1> KNna AB , BC nig AC CaGnuKmn_én a . rYcR)ab;RbePTRtIekaN ABC . 2> H CacMNuckNþalén [AC] . bgðajfa [SH] EkgnwgépÞénRtIekaN ABC . bEnßm ³ xSz  120 . S

V.

 x  y  4

1 1 1   ...  2 1 1 2 3 2  2 3 100 99  99 100

o

o

o

vi> b‘unr:anI hs vtþPñM> éf¶TI 14 kumÖ³ 2005 eday hYt riT§I

3



576 



៩ :

   125  4 2 4 5 4 625  10

II.

sRmÜlr:aDIkal; ³ eK[ x  y  0 nig

III.

edaHRsayRbB½n§smIkar

I.

IV.

V. VI. VII.

4

.

2 x 2  2 y 2  5 xy

. KNna

 x 2  y 2  13   xy  6

E

eK[smIkar x   4a  34 x  4a  a  2 x  4  a 1  0 . k> edaHRsaysmIkarcMeBaH a   12 . x> edaHRsaysmIkarxagelI[Cab;GnuKmn_én a . cMkarmYyragCactuekaNEkg. RkLaépÞvaesµIBIrdgénplbUkbeNþay nigTTwg. KNnavimaRtcMkar . bgðajfa 39  51 Eckdac;ngw 45 . KNna B  10110001100000001 ...1 00...00 1 . 3

51

2

2

39

énelx

IX.

.

.

2n 1

VIII.

x y x y

0

eKmanRbGb;bYndUcKña nigb:unKña. kñúgRbGb;TI1manXøIs 1 Rkhm 1. kñúgRbGb;TI2manXøIs 2 Rkhm 3 kñúgRbGb;TI3manXøIs 3 Rkhm 5 . kñúgRbGb;TI4manXøIs 4 Rkhm 7 . eKeRCIserIsRbGb;mYy rYceK ykXøImYyedayécdnü ecjBIRbGb;enaH . RbU)abedIm,I[eKerIsykRbGb;TI1 esµInwg 101 . KNna RbU)abedIm,I[eKerIsyk)anXøIBN’s . eK[ctuekaN ABCD mYycarwkkúñgknøHrgVg;Ggát;p©it [AD] nigp©it O ehIy AB  2 5 cm , BC  2 5 cm nig CD  6cm . KNnakaMrgVg;carwkeRkActuekaNenH .

PñMeBj> éf¶TI 05 kumÖ³ 2004 eday taMg RTI

3 

577 



៩ :

   I.

KNnatémøelxénkenSam ³ A   2005  02005 12005  2 ... 2005  3005 15 2 27  8 3 4 9 16  5 3 4 . B  3

3

4

II.

1> eK[1  x

2

0

3

3

33 4

9 3 16

2

 1 1 x 1  1  x  x2 1 A  x     1   2  1 x  1 x 1 x  1 x    4  4  4  4  f  a   1  1  1    ...  1  2  1  9  25    2a  1 

cUrsRmÜlkenSam

2> eK[ a  1 . bgðajfa III.

4

.

CacMnYnGviC¢man .

1> edaHRsaysmIkar 12  x  14  x  2 . 2> edaHRsayRbB½n§smIkar  xy 11  22yx 12 . 3

3

3



IV.

3

 

1> RtIekaN ABC sm)atkMBUl A , [AH] Cakm H CaGetUsg;énRtIekaN ABC . k> bgðajfa H’ CacMNucqøúHén H eFobnwg (BC) sßitenAelIrgVg;carwkeRkAénRtIekaN ABC . x> I , M nig Q Cap©itrgVg;carwkeRkAerogKñaénRtIekaN AHB , AHC nig BHC . bgðajfa (IM)//(BC) nig (MQ)//(AB) . 2

Gnu hs bUrI100xñg> éf¶TI 25 kumÖ³ 2005 eday C½y sMGun

3



578 



៩ :

   I.

II.

III. IV. V. VI.

eK[smPaB  x  y    y  z    z  x    x  y  2z    y  z  2x    x  z  2 y  . bgðajfa x  y  z . 2

edaHRsayRbB½n§smIkar

2

2

1 1 1 x  y  z  2    2  1 4  xy z 2

2

2

2

.

edaHRsaysmIkar 2 x  2 x  1  4 x  1 . eK[kenSam A   x  y  x  2 y  x  3y  x  4y   y . bgðajfakenSam A CakaerR)akd . KNnakenSam ³ B  1 1 2  1  21  3  1  2 1 3  4  ...  1  2  3 1 ...  100 . RsaybBa¢ak;fa TIRbCMuTm¶n; p©itrgVg;carwkeRkA nigGrtUsg; énRtIekaNmYy CabIcMNucrt;Rtg;Kña . 2

4

Gnu hs bUrI100xñg> éf¶TI 01 mIna 2005 eday Tk; yUGUn

3



579 



៩ :

   I. II. III.

IV.

bgðajfa ³ 6  2 5  13  48  3 1 . 3  x 2  x x 1 edaHRsaysmIkar 1997    3 . 1998 1999 eK[bIcMnYn x , y , z smamaRtnwgcMnYn 5 , 7 , 11 . 1> KNnacMnYnTaMgbIkalNa ³ k> x  2 y  3z  48 . x> x  my  z  72 , m CacMnYnKt;EdleK[ . rktémøén m minRtUvman . 2> kñúglT§plénsMNYr 1>¬x¦ eKcg;[ x , y , z CacMnYnKt;viC¢man . etIcMnYn 16-7m RtUvbMeBj lkçxNÐy:agNa ? etImantémø m b:unµanEdlbMeBjlkçxNÐenH ? 3> eKcg;[ m CacMcMnYnKt; . KNna m ¬mancemøIyeRcIn¦ nigtémørbs; x , y , z . eK[kaer ABCD manRCugRbEvg a . eKsg;RtIekaNsm½gS EdlmanGgát;RTUg [AC] CaRCug ehIyman kMBUl E enAxag B . O CacMNuckNþalénRCug [AC] . k> bgðajfacMNuc E , B , O nig D rt;Rtg;Kña . x> KNna BE CaGnuKmn_én a . K> bgðajfa EB  ED  AB . X> BI E eKKUsbnÞat; (EP) b:HrgVg;carwkeRkAkaerRtg; P . bgðajfa EP = a . 2

eday hak; sm,tþi

3



580 



៩ :

  

rkcMnYnEdlmanelxBIrxÞg; ab EdlepÞógpÞat; ab  ba  1980 . x  5 x  3 x  2000 x  2002 II. edaHRsaysmIkar .    2000 2002 5 3 2 III. bM)at;r:aDIkal;BIPaKEbg ³ A  . 4  16  64  256 IV. KNnabIcMnYnviC¢man a , b , c edaydwgfa ab  30 , ac  40 , bc  75 . V. eKmanR)ak;my Y cMnYnEck[mnusSbInak; A , B , C . R)ak;cMENk A nig B elIscMENk C cMnYn 500 ` R)ak;cMENk A nig C elIscMENk B cMnYn 330 ` nig R)ak;cMENk B nig C elIscMENk A cMnYn 60 `. 1> rkcMnYnR)ak;EdlRtUvEck[mnusSTaMgbI . 2> KNnaR)ak;EdlmnusSmñak;RtUvTTYl)an . VI. edaHRsaysmIkar ³ 0.17  2.3  x  0.3 . VII. eK[kaer ABCD nig M mYyenAelI BC . (AM) kat; (DC) Rtg; N . RsaybBa¢ak;fa AB1  AM1  AN1 . VIII. kMNt;RbePTRtIekaN ABC edaydwgfakm
I.

8

2

2

8

8

2

8

2

Gnu> pSaredImfáÚv> 01 mIna 2005 eday eqg Kwmetg

3



581 



៩ :

   I. II. III. IV.

V.

sRmÜlkenSam E  625  2 80 . eKmanBIcMnYn a  b  0 bgðajfa RKb;cMnYn n  eK)an edaHRsayRbB½n§smIkar a a b 8b  3 . 3

4 3

*

 3

a n  bn

.

3

hIugmYyenAkñúgGNþÚgmYymanCeRmA 7m . stVhIugenHxMetageLIgmkelI Edlkñgú mYyéf¶etageLIg)an 3m EtFøak;cuHvij 1m . etIb:unµanéf¶eTIbhuIgenH eLIgputBIGNþÚg ? eK[RtIekaNsm)at COB Edlman)at [OB] nigkm
2

2

2

vi hs Cm<Úv½n > 28 kumÖ³ 2005 eday Rs‘un saerOn

3



582 



៩ :

   I.

1> etIcMnYn A  2  5 ,  n   bBa©b;edayelxsunücMnYnb:unµan ? 2> eRbóbeFobcMnYn 200 nig 300 . x  4 x  3 x  2 x 1 edaHRsaysmIkar 2001    4 . 2002 2003 2004 edaHRsayvismIkar 1x 21  1x 12  x  4 . enAkñúgtRmúyGrtUNrem edAcMNuc A 6 , 0 ; B 6 , 0 nig C 3 , 9 . 1> sresrsmIkarRCugénRtIekaN ABC . 2> sresrsmIkaremdüaT½rrbs;RCugRtIekaN ABC . eK[RtIekaNEkgsm)at PMN EkgRtg; M . kñúgmMu MNP eKKUsknøHbnÞat; [Nx) Edlkat; [MP] Rtg; D . tamcMNuc P eKKUsbnÞat;Ekgnwg [Nx) Rtg; E ehIyknøHbnÞat;enHkat; (MN) Rtg; F . 1> bgðajfabnÞat; (FD) Ekgnwg [NP] rYcKNnargVas;mMu NFD . 2> bgðajfa M , D , E , F sßitenAelIrgVg;EtmYy rYcbBa¢ak;p©iténrgVg;enH . 3> bgðajfa MD  MF . 4> kñúgkrNI MNx  30 nig NP  a . KNna MN nig DM CaGnuKmn_én a . n

2 n 1

*

300

II. III. IV.

V.

200

o

vi samKÁI ¬PñMeBj¦ > 20 kumÖ³ 2005 eday vn vNÑa

3



583 



៩ :

   I. II.

III.

KNnakenSam

x xy y  x  y  E   xy   x y  x  y    

V.

.

eK[RtIekaN ABC EkgRtg; A manbrimaRt 12cm nigépÞRkLa 6cm . KNnargVas;RCugénRtIekaN ABC enH . 2

edaHRsayRbB½n§smIkar

x y  xy  1  yz 2   yz x z 5   xz

.

eK[kenSam A  xx 3xx 24 . 1> sRmÜlRbPaK A . 2> rktémø x EdlnaM[ A = 4 . eK[rgVg;nwg C(O , R) Edlmanp©it O nigkaM R nigGgát;p©it [AB]. H CacMNucmYyEdlEckGgát; [AB] tampleFob 13 eday H enAcenøaH A nig B ehIy HA < HB . eKKUsGgát;FñÚ [CD] Ekgnwg [AB] Rtg; H . 1> KNna HA nig HB CaGnuKmn_én R ehIyTajbBa¢ak;fa H CacMNuckNþalén [OA] . 2> KNna CH , CA nig CB CaGnuKmn_én R . 3> P CacMNucGefrenAelI [CD]. bnÞat; (AP) kat; C(O , R) Rtg; M’ CacMeNalEkgén M elI [AB] k> rksMNMucMNucénp©itrgVg; carwkeRkActuekaN HPMB kalNa P rt;elI [CD] . x> eRbóbeFobRtIekaN AHP ; AMB nig BMM’ ehIyTajrktémøénplKuN AP  AM CaGnuKmn_én R . 4> eKsnµt;fa PAH  30 . kñúgkrNIenHKNna AP , AM nig BM CaGnuKmn_én R . 8

IV.

2

4

4

2

o

Gnuvi> TYlsVayéRB

3 

584 



៩ :

   I. II. III. IV.

V.

eK[ a  b  c  1 , a  b  c  1 nig ax  by  cz . RsaybBa¢ak;fa xy  yz  zx  0 . edaHRsaysmIkar 3x  11 3x  2  3x  21 3x  3   3x  31 3x  4  3x2 4 . 2

2

2

KNnatémøelxénknSam A  x 12x 12x 12x 12x  ... 12x 12x 1 cMeBaH x  11 . rkcMnYnKt;EdlenAcenøaH 40 nig 50 edaydwgfa ebIbrþÚ lMdab;elx eK)anCYbcMnYnfµImYyeTot esµInwg 3223 éncMnYnenaH . eKmanRtIekaNsm½gS ABC nigrgVg;carwkeRkARtIekaNenH mankaM R . eKP¢ab;cMNuckNþal D énFñÚ AC eTAcMNuckNþal H énRCug [BC] nigbnøay [DH] [RbsBVrgVg;Rtg;cMNuc M . 1> R)ab;RbePTRtIekaN DCH . 2> KNna DH CaGnuKmn_én R . 3> RsaybBa¢ak;fa HD  HM  HC  HB . 4> rktémø HM nig DH CaGnuKmn_én R . 17

16

15

14

13

2

vi> samKÁI ¬PñMeBj¦

3



585 



៩ :

   I. II. III.

IV.

V.

VI.

KNnatémøelxénknSam A  1 1 2  2 1 3  3 1 cUrRsaybBa¢ak;fa 4  2 3  4  2 3  2 3 . x  4 x  3 x  2 x 1 edaHRsaysmIkar 2001    4 . 2002 2003 2004 edaHRsayRbB½n§smIkar

2 x  y  z  18  x  2 y  z  1 x  y  2z  2 

4

 ... 

1 99  100

.

.

tamcMNuc O enAkñúgRtIekaNsm½gS ABC eKKUsGgát;EkgeTAnwgRCugTaMgbIénRtIekaNenaH . bgðajfa plbUkcm¶ayBIcMNuc O eTARCugTaMgbI esµInwgrgVas;km KNna CM nig MB CaGnuKmn_én a . 2> KNnaRkLaépÞctuekaN AHCM CaGnuKmn_én a .

vi> samKÁI éf¶TI 25 kumÖ³ 2005 eday haM sarun

3



586 



៩ :

   I. II.

III. IV.

V.

edaHRsaysmIkar ³ k> 5x  3 x>  2x  3  5x eK[kenSam A  5x  7 x  2x nig B  2x  2   x  5x  6x  . k> dak;kenSam A nig B CaplKuNénktþa . x> sRmÜlRbPaK E  BA . K> KNnatémøelxén E cMeBaH x  2 . kMNt;témø m nig n edIm,I[smIkarCaÉlkçN³PaB ³ x13  x m 4   x  3n x  4 . 2

2

3

2

eK[RbB½n§smIkar 2y y2xx  74 

3

 D  D '

2

2

.

1> k> sg;bnÞat;TaMgBIrenAkñúgtRmúyGrtUNremEtmYy . x> KNnakUGredaenéncMNuc M CacMNucRbsBVénbnÞat;TaMgBIr . 2> sresrsmIkarbnÞat;Edlkat;tamcMNuc P  2 , 5 nig Q  4 , 2 . rYcbgðajfabnÞat;enHkat;tam cMNuc M Edlrk)anxagelI . 3> bnÞat;TI1kat;G½kS x’x Rtg;cMNuc A nigbnÞat;TI2kat;G½kS y’y Rtg; B . sresrsmIkar bnÞat; AB . 4> bgðajfa AM Ekgnwg BM rYcKNnaRkLaépÞénRtIekaN AMB . eKmanRtIekaNEkg ABC Edl AB = 4cm ; AC = 3cm . eKP¢ab;cMNuckNþalerogKña A’ , C’ , B’ énRCug BC , AB , AC . 1> eRbógeFobRtIekaN ABC nigRtIekaN A’B’C’ . 2> eRbóbeFobrgVas;km
eday S.B

3 

587 



៩ :

   I.

bM)at;r:aDIkal;BIPaKEbg ³

II.

edaHRsayRbB½n§smIkar

III. IV.

V.

A

20

3 5  2 2 5  x  y  3   x  z  2  xy  yz  zx  2 

.

.

eK[ a  b  1 . cUreRbóbeFob ba 11 , ba nig ba 11 . eK[RtIekaN ABC manrgVas;RCug a , b , c nigRtIekaN A’B’C’ manrgVas;RCug a’ , b’ , c’ . ]bmafa ABC ABC cUrbgðajfa aa  bb  cc   a  b  c  a  b  c  . knøHbnÞat;BuHénmMu A rbs;RtIekaN ABC kat;rgVg;carwkeRkARtIekaNenHRtg; D . RsaybMPøWvismIkar AD  AB 2 AC .

vi> RBHsIusuvtßi> éf¶TI 05 kumÖ³ 2005 eday Gwug Kwmh‘ag

3



588 



៩ :

   I. II.

III.

IV.

V.

eRbóbeFobBIrcMnYn x  5 2  7  5 2  7 nig eK[ M  2 40 12  2 75  3 5 48 nig N  3

VII.

.

y  51  10 2  51  10 2

2 8  2 15



1 52 6



3 7  2 10

.

bgðajfa M = N . bgðajfa k> 1 1 2  2 1 3  3 1 4  ...  9999 1 10000  99 . 1  100 . x> 11  12  13  ...  10000 edaHRsaysmIkar ³ k>  x  2004  x  0 . x> 1 x x  2 x x  3 x x  ...  2004x  x  2005x  x . k> sresrCaplKuNktþanUvsmPaB ³ 1a  b1  1c  a  1b  c . x> bgðajfa ebIbIcMnYnminsUnü a , b , c ehIymanBIrcMnYnpÞúyKñay:agtic enaHeK)anTMnak;TMng ³ 1 1 1 1 .    a b c abc 2004

K> edaHRsayRbB½n§smIkar VI.

3

x , y

2004

³

 x  y   x  y  20  2  x  y  15 3 

.

enAem:ag 6h30mn narImYyRkumcab;epþImsÞÚgRsUvBIPøWmçageTAPømW çageTotEdlmancm¶ay 100m eday el,Ón 30m/h ehIyyuvCnmYyRkumeTotcab;epþImsÞgÚ BIPøWmçagedayel,Ón 20m/h . k> etIRkumTaMgBIrsÞÚgCYbKñaenAem:agb:unµan ? x> etIRkumnImYy²sÞÚg)anRbEvgb:unµanEm:Rt ? eK[kaer OACB p©it I . sg;rgVg;p©it P (P enAelI AB) kat;tam O kat;bnÞat; (OA) Rtg; M nig (OB) Rtg; N . k> RbdUcRtIekaN CMA , CNB nig CPI . KNna AM rYcbgðajfa CP   MN  . PI x> sg; C’EdlCacugTI2énGgát; [CC’] énrgVg; (P) bnÞat;TajBI C’Ekgnwg [OC’] kat; [MN] Rtg; Q . bgðajfa [CC’) BuHmMu OCQ .

3 vi> RBHsIusuvtßi> éf¶TI 13 mIna 2005 

589 



៩ :

   I. II. III.

IV.

V.

VI.

edaHRsaysmIkar 3  3  30 . RsaybBa¢ak;fa ebI abc  1 nig a  36 enaHeK)an sRmÜlRbPaK A  x3x14xx 1x eday x  0 . 2 x

2 x

3

a2  b 2  c 2  ab  bc  ca 3

.

2

edaHRsayRbB½n§smIkar ³

x y 1  xyz  2  yz 5    xyz 6 x z 2    xyz 3

.

RCugBIrénctuekaNEkg ABCD manrgVas; 20cm nig 30cm . kMNt;TItaMgrbs;kBM UlRbelLÚRkam MNPQ EdlcMNuc M , N , P , Q enAelIRCugerogKña [BC] , [AB] , [AD] , [DC] nig MB  BN  QD  DP edIm,I[épÞRbelLÚRkamFMbMput rYcKNnaépÞFMbMputenaH . kñúgRtIekaN ABC emdüan [AA’] , [BB’] nig [CC’] kat;KñaRtg; G . F CacMNuckNþal [BG] . BI F eKTajbnÞat;Rsbnwg (AB) ehIyBI G eKTajbnÞat;Rsbnwg (AC) ehIybnÞat;TaMgBIrkat;KñaRtg; E . bgðajfa cMNuc B’, E , C’ rt;Rtg;CYr .

vi> TYlTMBUg> éf¶TI 09 mIna 2005 eday G‘uk sam:aNa

3



590 



៩ :

   I. II.

CacMnYnKt;FmµCati  n  . rkcMnYnKt;FmµCati n edIm,I[BIcnM Yn n 12 nig n  77 CakaerR)akd. k> eRbóbeFob 1  2012 nig 2013  2  2012 . x> edaymineRbI 2012  4048144 nig 2013  4052169 cUrrKNna ³  2012  2012 . A  1  2012      2013  2013 n

2

2

2

2

2

2

III. IV.

bgðajfa N  2013 5  3  29 12 5 CacMnYnKt; . eK[bIcMnYn a , b , c EdlepÞógpÞat;lkçxNÐ a  2b  1  0 , b  2c  1  0 , c  2a  1  0 cUrKNnakenSam F  a  b  c  2012 . kñúgrgVg;p©it O Ggát;p©it [BC] Edl BC = 5cm . eKKUsGgát;FñÚ [BA] Edl BA = 3cm . k> KNnargVas;RCug AC . x> RsaybMPøWfa cos ABC  sin ABC  1 K> eKKUsemdüan [BM] énRtIekaN ABC Edlbnøayrbs;va kat;rgVg;p©it Rtg;cMNuc D . Bgðajfa MB  MD  MA . 2

14

V.

2

2

2

2

2013

2

2

Gnu> s éf¶TI 24 mkra 2013 eday Gan suxKn§a

3



591 



៩ :

   I.

eRbóbeFobcMnYn 2012  2014 nig 2 2013 .  zx edaHRsayRbB½n§smIkar  xx  y y z zxy  yz2013 . 2

II.



III.

KNnaplbUk S  2 1 1 1

IV.

bgðajfa

V.

2 3 2  2 3



eK[ ax  by  cz  0 nig cUrKNnakenSam A 

2

2013

2



2

2013

2013

2013

1 1 1   ...  3 2 2 3 4 3 3 4  n  1 n  n

2 3

.

.

 2 2  2 3 1 abc  2013 ax 2  by 2  cz 2

.

bc  y  z   ac  x  z   ab  x  z 

VI.

 n  1

2

2

2

.

CaRtIekaNcarwkkñúgrgVg;p©it O kaM R . ehIy [AH] Cakm
ABC

a

, AC  b ,

Gnu> s éf¶TI 24 mkra 2013 eday Gan suxKn§a

3



592 



៩ :

   I.

A

B

A  a  x 2  1  x  a 2  1 B   2 x  3  9  x  5  2

2

2  A 1 , 8  , B  2 ,  1 , C  , 7  ។ 3  1 1 1   0 a  b  c 1 a b c

II. III.

a,b,c K

IV. V.

3x 2  14 x2  4

O [AD]

VI.

ABC

a 2  b2  c 2  1

E

[AC]

[BC]

M

[AM]

E

[BD] ME EN

N [AB]

BE  2EA CE

[AM]

>



O O

[AM]

CE  4OE

3



593 





៩ :

   I.

E  2 x2  y 2  2x x  y  x  y

II.

A  a2b2 b  a   b2c2  c  b   a2c2  c  a 

III.

a c  b d

ad  bc 2cd  2ab ad  bc

IV.

110 cm

7cm

4cm

V.

ABC E

H

O

[AC]

ABH

[BC] ,

D

G DOE

AH  2DO ២

AHG

DOG

H ,G,O

GH

GO

>

3



594 







៩ :

   I.

A  11  6 2  11  6 2 x4  3x2  10  0

II. y

III. IV.

1 3



3



2 1

3



2 1

3

a,b,c a 2  2b  1  0 , b 2  2c  1  0 , c 2  2a  1  0

V.

S  a 2004  b2004  c 2004 30o

O

>

3



595 







៩ :

   x  4 x  3 x  2 x 1    4 2001 2002 2003 2004

I.

4

II. 4

III.

8

2 1 

2 1 4



8

2 1

1 2

3 9 15 6n  3 75    ...   2 2 2 2 2

n ២

8

A

 6  12  18  ...  96 

12  24  36  ...  192  S

IV. V.

2 2

1 1 1 1    ...  2 1 1 2 3 2  2 3 4 3  3 4 100 99  99 100 ˆ ˆ  20o Aˆ  20o ABC CBx ABC [Bx)

AB3  BC 3  3 AB2 BC

VI.

ABCD

O

ˆ  OBA ˆ  15o OAB

ˆ OCD



3



596 



៩ :

    24x 112x 18x 16x 1  330 x, y A   x  y  x  2 y  x  3y  x  4 y   y 4

I. II. III.

72002  72003  72004

IV.

220 1  5  1  20 6  2 5

 D1  : 2  3x  y  0  D1   D2   D1   D2 

V.

VI.

ABCD 2

57

 D2  : 4  m  1 m x  my  0

1

[AB]

[AD]

m

E

AEF

F

ˆ  45o ECF



3



597 





៩ :

   I. 6 5

22004 3  2

21

1  2004 11  72

ax3  by 3  cz 3  1 1 1 x  y  z 1 

II.

xa 2  by 2  cz 2  3 a  3 b  3 c

1 1 1 1    ...  1 1 2 2  3 3  4 n  n  1

n 1

III.

3

2 xy  y  4 x 2  2 x  1

x, y

A  2004 xy  2003 y3

f  x   x17 13x16  13x15 13x4  ... 13x2 13x 1

x  12

15x  9 y  z  300 (x , y , z   x  y  z  100

IV. V.

48 cm 2

ABCD

5,7

ABCD VI.

ABCD H

[AB] [AE]

[BC]

E

D

[AC]

DFH



3



598 

F





៩ :

    D2  : y  

 D1  : y  2x  4

I.

 D1   D2   D1   D2 

1 x4 2

T A

TO2  OA  OB

B

TAB II.

x 5m

y

110 m 150 m 2

2m

III.

TAB

ABCD

A

D

[AB]

[AC] IV.

[BC] O

[AB]

O’

AB

O’ (MA) , (MB) MAD

(O)

C

D

O’

A

(NA) , (NB)

B

M

(O)

E

F

NBE



3



599 



N





៩ :

   A  1002  992  982  972  ...  32  22  1

I.

B  100  99  98  97  ..  3  2  1

A

B

1

1  27  3 E  54     3  4  4 



3

2

3x3  x 2  8 x  4  0 x 1 x  2 x  3   3 2000 1999 1998 ៤

3951  5139

45

II.

18 cm , 24 cm

III.

A(-3 , 2) ; B(9 , 2)

36 cm

C(3 , 10)

ABC IV.

ABC

O

R

R V.

ABCD [AC]

E

O A

[BC]

B

[AD] [BD]

F

OA OB  OC  OF  OD  OE ២

 EF  || CD



3 

600 







៩ :

   1999  2001

I. ២

S

2 2000

1 1 1 1   ...   2 1 1 2 3 2  2 3 1999 1998  1998 1999 2000 1999  1999 2000

A  3 9  80  3 9  80

II.





B  A  3 26  15 3  2  3

III.

 ២

x 4  2 x3  ax 2  bx  1

a,b ២

x 2  y 2  24

x,y a,b,c

ab  bc  cd  a2  b2  c2  2  ab  bc  cd   x  xy  y  1   y  yz  z  3  z  zx  x  7 

IV. ២

a  b  c  abc

a,b,c

a  b2  1 c2  1  b  a 2  1 c2  1  c  a 2  1b2  1  4abc

x2   2m  3 x  m2  3m  0 1  x1  x2  6

m V.

ABC ABC , AHB ២

(O)

(O’)

R1  R2  R3  AH

AHC (O)

[AH] , R1 , R2 , R3

A

(O’) (CA)

B

A (O’)

B

[AC]

[AD]

E

EBD

AC  CE  2BE 2



3 

601 





៩ :

  



P  2 3 3

S  1 3 3

I.

F

II.

A 2x  4  B x 1

 4x

A0

x



B0

2  4 x  1  x  1  4    A 2 2  x  6 x  9  x  1  x  x  1

III.

2

x

A

1 2

2 x  3 y  z  4  4 x  2 y  3z  1 ។  6 x  y  2 z  7 

IV.

2 dm 3

2.5 dm

V.

4 dm 3

2.5 dm

VI.

A

dm 2

B

AAB ២

A

B A

VII.

C(O , R)

[CD]

(DC)

T

[CD]

H

[AH]

I

M

BC

M

CMD

[MA) ២

[AB ]

TIM ACM

IMD

MA MI  MC  MD ៤

HIMB AMB

ˆ "  30o MAB

AH

MB

R



3 

602 





៩ :

   385a3  1001b5

I.

K

II. III.

77 3x 2  14 x2  4

a,b,c

ab  bc  ac  a2  b2  c2  2  ab  bc  ac 

IV.

 x2  2 y  1  0  2  y  2z 1  0 z2  2x 1  0 

x,y,z

A  x 2000  y 2000  z 2000

 4  m x 2  4 x  m  0

V.

x1 , x2

m

VI.

.

10 ABC

G

H , K , K’



A,B,C

AH  BK  CK '

G

[KK’] , [AG] VII.

(C)

C

R

OI 

I



[AG] R 3

[MN]

I

[MN] [MN] J

[MN]

J

[MN]

I



3



603 







៩ :

   A

I.

C 1 x  4 y 4

II. III.

4 x 1

16 x  16 x

B

2 1 3  3 9

6

4

V.

ABC

OD   BC

O

OF    AB ABC

3

 x 1 4  x    1296 y y  x  12 x  11 x  74 x  73    77 78 15 16

A  4  15  4  15  2 3  5

VI.

3 3 27

6

ឃ D  4  2 3  1 3

3

IV.

C

3

A

D

OE   AC

BD2  CE 2  AF 2  DC 2  AE 2  FB2

F [AH]

H

AB 3 BD  AC EC

3



604 

[AC]

E

 AB

D



៩ :

  



A  1 3 3

I.





B  3 2 27  48  3

26  2 26  2 28  6 3  1

A



B A

II. III.

1 1 1 1    ...  1 2 2 3 3 4 99  100 x 2  px  1

a,b

x 2  qx  1

c,d

 a  c b  c  a  d  c  d   q2  p2 x3  3ax2  3  a 2  bc  x  a3  b3  c3  3abc  0

IV. V.

[BC]

R

[DE]



A

AB  AC  AD  AE  4R2 2

2

VI.

2

2

O

a

 AB

[BC]

ABC

a

AC

 AB CD

D

F

 AO

BFC

OF   AG 

E AF

2 3

 AC  a

CF

ABC

 BC  OF   BF 

 BC  H

3



 AB 

E

1 2

 AC 

F

a

605 

H

G (G

A ABC



៩ :

   I. II. III.

ab  bc  ac  a2  b2  c2  2  ab  bc  ac 

a,b,c

A

1 1 1 1    ...  1 2 2 3 3 4 99  100

x2  x  1  0

x14 

1 x14

x2  x  1  0

1 1930

 x1945 

1 1945

 x1987 

1 1987

x x x x 1 x6 x2 x5  2  2  2 2 x  2 x x  12 x  35 x  4 x  3 x  10 x  24  x  2 y  3 z  4v  31 x y z v 3 x  3 y  4 z  v  8        1 3 4 5 2 x  y  5 x  3v  13  xyz  xyv  yzv  xzv  20 2 x  2 y  z  v  17

IV.

V.

VI.

x1930 

 AB  CD

O

OB

M

OC 

N

 AN  ||  DM 

ˆ  OBD ˆ ˆ , OBN ˆ  OCA OCM

3



606 





.



៩ :

    3 x  3 y  4   xy  27

I.

E  12  6 3  3 729  4 9

II. III.

x2  2 x  1  0

 t  2

3

0

IV.

8 37.50%

V.

230

150

75 1 cm

300

50

 y  x  2 1   x  2 y  2  2 

VI.  1 I 0 ,   2

 2

 PQ

1

Q

 yy '

VII.

AB  AD

ABCD I

P

 BH  , J

CD

 BD

A ˆ AIJ



3 

607 

H



៩ :

   A  4  15  4  15  2 3  5

I.

35  278  2  911 

II. III. IV.

15  816  12  319 

x y0

2 x 2  2 y 2  5 xy

x y x y

1 1 1 1    42 56 72 90 1 1 1 1 B    15 35 63 99 A

y 3 x    3 4 5  xy  yz  zx  21

V. ២

VI. VII.

E

ABC

1 10  72

x

 AM  ;  BN  MNP

CP

1 10  6 2

 MA ;  NB

H



3



608 

 PC 



៩ :

   1 1 1 1 (x    ab  0) a b x a b x 1 1 5 x  y  6  ,  x  0 , y  0   1  1  13  x 2 y 2 36

I.

II.

x xy y

III.

 x  y K

IV.

x y





2 y x y



xy 1 , x y

3a 2  14 a2  4

VI.

n  n  1 , n 2

9A

40

VII.

9B

A,B,C (AC) AP = 4cm

[Ax)

[Cy)

BC CM

AB = 5cm, BC = 12 cm

C

[BM]

36

[Ax)

[Cy)

P

M

[BP]

BAP

MBC

PBM H



A

CM = 15cm AP AB



, x  y

K 1  2  3  ...  n 

V.

x  0 , y  0

B

[MP]

PABH

BCMH

AHC



3 

609 





៩ :

   I.

II.

a5  b5   a3  b3  a 2  b2    a  b 

ab  1

 x2  2 y  1  0  2  y  2z 1  0 z2  2x 1  0 

x, y,z

III.

ABC

IV.

0  a 1 2 1 1  x2

V.

 AH 

 AM 

AB 2  AC 2  2 AM 2 

BC 2 2

x 1  a   2 a 

1

A  x 2000  y 2000  z 2000

2 1 1  x2

 a 1   1  a   a   1

 x  1  y  2002  2003   x  2002  x  1  2003

VI.



3



610 







៩ :

   I.

x 2003  3x 2002  2 x 2001

II.

a,b,x

III.

a 2  2b  1  0 , b 2  2 x  1  0 , x 2  2a  1  0

IV.

x y  2 y x

x 2  y 2  2 xy

y

x

 a  a   a 2  b2  b b A     2     2    a a  b  b   2ab 

a,b

V.

S  a 2003  b2003  c 2003

a

1

a b 1

b

 a  b   a2  b2  a4  b4    a8  b8   0 1 y  x  a  2  a  2   a  2   x  1  y  a  2 a  2 a  2

VI.

VII. P

ABC

 AA ,  BB

CC

2  AA  BB  CC  3P

xoy

VIII.

120o , [oz ) [ox)

M



B

[oy )

[oz )

xoy M A

B

AM  AM MM    OA AB OB 1 1 1   OM OA OB

[oy )

M

[oz )

[ox)

[ox)

B

OA AM OM   AB AB BB



3 

M

611 





៩ :

   ២

I.

3x 2  2 x  5  0

២ x  2 x  4

x2  0.4 x  0.16  0

៤ x  7 x  15

2  x 3  x  4  1 3x  7 3  5  3x      3 2 4 6 2



3 14 x  3  3 x  2   4  x  4   3 x  14

5  6 x  7  4 x  7 ៤   8 x  3  2 x  25  2

2

2

II.

720 m 2

III.

IV.

V.

x  5 x  3 x 1 x  2    2 4 3 6

ABC

(3 , 0) ; (10 , 3)

6m

4m

(3 , 6)

x

B \

9

M A

x?

N 3

6

\

P

8

C

24



3 

612 





៩ :

   1 1 1 1    ...  1 2 2  3 3  4 99 100 1 1 1 1 B    ...  1 2 2 3 3 4 899  900 A

I.

 x  3 x  4 x  4 x  6  m

II.

m m

m8 x yz 0

x, y,z

III.

x2  y 2  z 2  2

x3  y 3  z 3  3xyz

S  xy  yz  xz

IV.

[Ox)

[ Ny)

MON [Ox)

V.

[ Ny)

A

B

AB  4 dm

ABCD

 BD

MNO

BCD

S ABD  6 dm 2

3



613 

MON

 AB  AD  3.5 dm

M

 NO  BC  ABCD



៩ :

   4

I. x y0

II.

125  4 2 4 5 4 625  10

E

2 x 2  2 y 2  5 xy

x y x y

 x 2  y 2  13   xy  6

III.

x3   4a  34 x2  4a  a  2 x  4  a 2  1  0

IV.

a

1 2 a

V. 3951  5139

VI.

45

B  101100011000001 ... 100...001

VII.

2n 1

elx 0 ឃ

VIII. ឃ



3

3



1





1 ឃ

5

4



2

7



1 10 IX.



 AD

ABCD AB  2 5 cm , BC  2 5 cm

O

CD  6 cm



3 

614 







៩ :

   I.

A

II.

B

4

53  5 54 2

511

2  3

74 3

x

III.

2



 7 x   2  x 2  7 x   48 2

1

1



1



 3x  1 3x  2   3x  2  3x  3  3x  3 3x  4  IV.

2



2 3x  4

2 3  3 5

2 19  5 15

2 x  2 y  3xy   y  6 x  4 xy

V. VI.

3x 2  14 K 2 x 4

VII.

ABC

VIII.

Aˆ  2 Bˆ

A

ABC H

D

R

[BC]

[DH]

AC

M

DCH DH

R

HD  HM  HC  HB

>

3



615 









៩ :

   1

 2 3  2 A  2    3   6 2   4 3

I.

B 2



2 3 2  2 3



3  

 2

1

2 3



2  2 3



4 x 163 x1  8

II.

mx2   m  n 1 x  2m  n  8  0

III.

m

S 4

n

P2 a,b,c

IV. 7

a

V.

Bˆ  20o

ABC

70

b

c

a  2b  3c  90

a,b,c

9

50

b

[AB]

BM  AC

M

ˆ AMC

VI.

O

[AB]

(AM)

d 

(BM)

ANI

d 

R N

[OB]

I

M

P

PBI

IN  IP  IA  IB 

3 2 R 4

A,I,P,M

 BN    AP 

>

3



616 



៩ :

   I.

20022003  20021979

II. III.

6

a , 36

a < 36

1 3

a 2  b2  c 2 

a  b  c 1

IV.

PPCM  a , 36  72

a

x

2

 x  3 x 2  x   4

2  x  y  2 , (x  0 ; y  0  2  x  y  2

V. VI.

x  y  1)

A  2 , 3 ; B  4 , 4

[AB] ឃ

PGCD  a , 36  12

2

4



6



VII.

4 2

VIII.

4

R ABC

IX.

ABC

R

O

ABC

B

(OA)

ABC

ABM X.

BC 20 cm

ABC

[AK] [AC]

E

[BD]

H

[BC]

F

ABC

H,G,O

3



(AC)

N

ABN

AH  2OF G

M

617 

O

ABC



៩ :

   I.

a

a 2  b2  2ab

b

1999   2001 2

2

2 II.

a

 3999999

b

x2  x  1  0

1  1 x14

x14 

a b  c d

 a  b  c  d  a  b  c  d    a  b  c  d  a  b  c  d 

III.

C



6 2



32



32

A   a  b  c    a  b  c    a  b  c    a  b  c  2

IV.

2

2

1 1 1  2  2 0 2 2 2 2 b  c  a c  a  b a  b2  c 2

a bc  0

2

 x 2  y 2  xy  37 1  2 2  x  z  xz  28  2   2 2  y  z  yz  19  3

V.

2

1  2  x

VI.

2





 2 1 2 x 1 3 2  0

x x x    1  abc  x  a  b  c  ab bc ac x x x   2  a  b  a  c   b  a  b  c   c  a  c  b  VII.

O

a

[BC]

AC

a

D (AC)

[AB]

[AB] F

ABC [CD]

F

[AO]

E

E

1 2

[AC]

2 3

BFC (OF) (AG)

a

[BC] (BF)

CF

a

ABC (OF) H

[BC] H

3 

AF

(AB)

618 

G(G ABC ៕

A



៩ :

  



 

A 2 32 5  2 32 5

I.

  3



2

3 5 3 3 5

 2a  2b    2a  2b   3a  b 3a  b  F 2

2

9b2  6ab  a 2

a bc  0

a,b,c

III.

E

3  3 2 1  2  1    3 



abc  0

5 5 5  2  2 2 2 2 2 2 2 b a c b a c a b c 2

a n , bn , cn , d n

a,b,c,d

IV.



3

 a  bb  c  c  a   abc  0

ab  bc  ca  0

a,b,c

II.

E3



(n

a , b , c

a,b,c

a

2

 b2  c 2  a2  b2  c2    aa  bb  cc 

a  b  c 1

a,b,c

1 1 1   0 a b c

a  b  c 1

a,b,c

V.

2

ab  bc  ca  0

a 2  b2  c 2  1 K

a 2  b2  c2 2003

A 6 ,  3 ; B  2 , 5 ; C  4 ,  8

VI. A ABC

a2 x2  1 a 2  b2 x2  y 2

ax  by  0

VII.

x xy y

 x  y VIII.

x y

ABC [AC]





2 y x y

xy x y

x0

x, y

[AH]

A

M



E

D

H

[AB]

[BC]

 ED   AM  K

[AM] M

 BK  ||  ED

[HD] [EH]

[AB]

L

3 

619 

BEDK

 ML   AH 

[BK]



៩ :

   3 2 3 5

M

I.

1 ab

a b 

II. 1

2

18

III.

1 a  b2 2

 217  215  214   2x  x  y  4 1  2  xy  z  6 z  13  2 

IV.

1 1 1 1    1 1 1   1 P          a  b  c  a b c  ab  bc  ac  ab ac bc 

V. VI.

9x 2

MNPQ

ABCD

AM BM CP DP 1     AQ BN CN DQ 2

A

Q

abc  10

ABCD ?

M

B D ២

P

C

N

3



620 





៩ :

   A  ab  a  b   bc b  c   ca  c  a 

I.

A 2 , 2 ; B  3 ,  3 ; C  6 , 6

II.

x y z     5 3 4   xy  yz  zx  21

III.

AB  1

A, B,C

IV. x

5 1 2

BC  x

BC AC  AB BC

V.

10 m

M

3m VI. VII.

AB  9cm

C

O

[AB] [AB]

D

AB

[CD] (AB > CD)

P

PH

H

[CD] I

ˆ HPO

5 2

[OP]

O,K,P,H

ˆ KPO

PK

3



621 

K



៩ :

   I.

220 1  5  1  20 6  2 5

3

II.

1 1 1 x  y  z  2    2  1 4  xy z 2

 x  xy  y  2  3 2  2 2  x  y  6

x 2  px  1  0

III.

a,b

3 3 3  3 3 3 3  23 3

x 2  qx  2  0

b,c

b  a b  c   pq  6 IV.

10

20

1.70 m

1.61 m V.

ABCD

 AC   BD ,

AC  20a , BD  12a

AM 1 BN 2 AP 3  ,  ,  AB 2 BC 3 AD 4

[AB] , N  BC  , P  AD

MBNP

S ABD  2S BCD

3



622 

M



៩ :

   A

I.

3

1 3



3

2 1



2 1

3



3

3  2 2  2 1 a b  1

1 ឃ

1 ab ,

a 2  b2

B  6  6  6  ... ២

II.

ax 2  2bx  c  0

1

bx 2  2cx  a  0

2

cx 2  2ax  b  0

3

S

abc  1

a,b,c

III.

 a  b  0

 1  2  3 

1 1 1   1  a  ab 1  b  bc 1  c  ca

.

IV. V.

O [AB]

 xy 

[AB] D

E

A

C

[AB]

 xy 

F

 xy 

C M

[DE]

AMO M

C O

OCE

[CA) ឃ

C

AME

AFC



3 

623 







៩ :

   M  a 2  b2  2ab  1

I.

N  a 2  b2  1  2ab

P  4a 2b 2   a 2  b 2  1

2

M

P N

4  3x 6 12 x  1 3   3x  2 3x  2 3  x  5

II.

x x2  4

x 4  4 x 2  32  0 x  y  z 1

a,b,c

III. IV.

1 1 1   0 x y z

M’N’P’

MNP

MI

M’I’

A

 D

x2  y 2  z 2  1

MI M I  V.

O

 D

R

(AC)

O

OA

B I

OIH

OEA

C

OE

 D

E

(AB) BC

OE

H

OE  OI  OH  OA

OB2  OA  OH



3



624 



៩ ២០១២-២០១៣ :

១២០

១០០

EE o DD 31 ។

52013  52014  52015

I.



 , 2 n 1  n

II.

3



n  n 1 ។

A  2012  2013  2013  2013  2014  4026 2013 ។

6  4 3  2 5  15 ។ 23 3  5 a  b  c  0 ។  ab  bc  ca  0 14 2013  a 1  b2   c  1  2011 ។ N

III.

IV.

a,b

c

1  20122

20132  2  2012 ។

20122  4048144

20132  4052169 2

 2012  2012 A  1  2012   ។    2013  2013 ABCD O ។ AC  BD  AB  CD  AD  BC ។ ˆ  45o ។ BAC O AC R AB AB  R 2

V. VI.

ˆ ACB

BC cos 45o 

AC

ˆ ។ ABC

R។

2 3 , cos 30o  ) 2 2

7



625





៩ ២០១២-២០១៣ :

១២០

១០០

EE o DD I.

N

5 3 2 27  2 3 3 4 4

9 3 16

1  1 x y  x y  2    3  4 7  x  y x  y

II.

III.

,

M  22  288

A  2012



x y z    ។  5 3 4   xy  yz  zx  21 ។

5  3  29  12 5

a 2a  3b 3b  4a ។ ។  b2 3 2 P   x 1 x  2 x  3 x  6 2

IV.



V.



 AC   BC ។

AC ។

ABC

PBA

P

D (  AB

A

ABCD

x

B

PBC ។

PB 2  PA  PC ។ BA2 PA  ។ BC 2 PC

7



626



 AC 

P។



៩ ២០១២-២០១៣ ១:

១ ០

១០០

EE o DD I.

1)

A  20133  2013  2014  2012

2)

B  1  2  2  4  5  6  7  8  9  ...  2014  2015  2016

3) 4) II.

x x  20132013

2014

x

44  4

128

22

2n

។ 2009

9

1)

a,b

2)

9

11 ។

 92011  92012  92013

abc

c

A

III.

n ។ 2010

a  b  c  1 ; ab  bc  ac  4

20131111  1 20132222  1

20132222  1 ។ 20133333  1

B

13

IV.

a  b  S  8   8   b  c 

a  b  c  ab  ac  bc ។ 2

2

2

x 2  3x  1  0

V.

x P

2 1

 2x

 x1  1

a,b,c

VI.

2

2000

c  8   a 

2013



x2 ។

x1

x 

abc  2 ។

2 2

 2 x2 

 x2  1



2

a 2  2b  1  0 ; b 2  2c  1  0 ; c 2  2a  1  0 ។

S  a 2013  b2013  c 2013 ។ VII.

5cm ។

ABCD

x2   2m 1 x  4  m 1  0 ។

OB

O។

OA

m ។

ABCD ។ VIII.

O1

C ។ PC

O2

P។

O2

D។ APB ។

PD

PC  AC  BC  PA  PB ។ 2

7 

627



AB

O2 

O1 



៩ ២០១២-២០១៣ (១៤/០២/២០១៣) ២:

១ ០

១០០

EE o DD

 x

I.

2.63  2 ។

x ។

 x ។

x  20132  2014

N  2010  2011 2012  2013 1 ។

II.

N



IV.

A

B f

V. VI. (

A  3 2 5  3 2 5 ។

VII. (

ABCD

B

x ។

E ។

C

F E D

7



628



a ។

B A ។

42 cm 2 ។

3 AE  FC   4EF ។

A



x4 ay  2 2ax  y  1 x6 A B ។   2 x  2x x x  2 f  x   2 f 5  x   x

III.

F

f 1 ។ AC ។



៩ (០៣/០៣/២០០ ) ១:

១ ០

១០០

EE o DD x  x  4  4m  0 ។

I. 2 2 6

II.

2  2 3



2 2 6 2  2 3

3

III.

1 x x 1 x 3 x

2 ។

 x 1 ។

a  3 2  17 ; b  4  19 ; c  5

IV. V.





32 ។

cba ។



N X

X X



34

X



X+1 VI.

ABC ABC

ACD ។



15 [AD] ។

A

 O1O2 

 AB

ABC

AKL ។

S1  2S2 ។

7



629



O2

O1

 AC 

X

K

L។

S1

S2

N។



៩ (១៧/០២/២០១០) ១:

១២០

១០០

EE o DD 2010 ។ x  4x  7 1 2 x  x A ។ x 1 x xx x x  14 x 5  3 ។ 3 x 5

I.

2

II.

III. IV.

a

a 2  b2  ab ។ 2



b

9992  1 0012  1 999 998 ។

V.

O

 AB

R

CD

I។

IA2  IB2  IC 2  ID2  2R2 ។ VI.

ABC ។

G AC

BC

P

Q។

BP , PQ

7



G

630



AB QC ។



៩ (១ /០២/២០០៩) ២:

១ ០

១០០

EE o DD I.

a,b,c

 ab  cd  II.

a

2

a c  b d



d

  a 2  c 2  b2  d 2  ។

b

III.

a 2  b2  41 ។



a b ។

A  2 x 2  9 y 2  6 xy  6 x  12 y  30

y

x

 a  c  b  d 

ab  cd 





m2  x  2  m2  x  2  2  2  2 x  m  1   m  1  1 ។ 8 8 BC  a , CA  b , AB  c ។ A BC 2

IV. (

m



V.

ABC D។I

2



IA ID

DB , DC I

O

VI.

I 

I

 

BC

AB

O

E

AB = 2R

O

EF ។

OC

AB ។

J

OB ។

I 

C

F។

AC

J 

OA

 

c ។

a,b

M

O 

J 

OC

N។

C  x ។

OI

R

x ។

x

MN ។ S

O ។

OI

O

I 

 

7



631





S

S ។



៩ (១៣/០៣/២០០ ) ១:

១ ០

១០០

EE o DD I. 1 2  3 6 2 35 12  2 2  6 3 4  7 12  2 2  32  6 ............................... 

12



S

II.

13  1 23  1 33  1 20083  1    ...  ។ 11 2 1 3 1 2008  1 ។

p



2008o ។

III. IV. ( V.

p



1 1 1 1    ...   43 ។ 4 5 5 6 6 7 n  n 1

n





: 4 x  4 3  4 x  3n  24  0 2

n ។

n ។

VI.



ABC ABC ។

VII.

n។

1 2008 ។

។ ។

7



632





៩ (១៣/០៣/២០០ ) ២:

១ ០

១០០

EE o DD I.

a0 , b0

II.

 x , y

III.

ABC

bc ។ ab

b c   2008 ។ a b

x 2  20082  y 2  2007 2 ។

P

ABC ។

PAB , PAC , PBA

P ។

IV. (

A A។

100 km/h A។

A។

A

B។

B

V.

3 8

B

A, B, C ។

A

B 16 $

៣។

C





VI.

12 ។

5



9



7



633



10

3



៩ (១ /០២/២០១០) ១:

១ ០

១០០

EE o DD A

I. II.

2a3  326  5b9

2a3

246912 ។ 123457  123456 123458 2

5b9

5b9

9

a b ។ F

III. IV. (

1666...66 6666...64 a * b  ab

*

a *b * c    a *b * c

a * bn   a * n  * c

 a *b

n

 a *  bn 

( a, b, c, n

9។

V. ។

VI.

10

x ។

19 96

1

d

a

b



1

9



9 1។

i

ABCD ។

7 

c

10

ABCD c, d, e, f, g, h



x



3

b ។

a

a *b  b * a

VII.



2010

634



a, b,



៩ (១ /០២/២០១០) ២:

១ ០

១០០

EE o DD a 2  a  1 ។

I.

A  a 4  2a3  4a 2  3a  3 ។

III. IV. (

a

92

b



HAO  ACB  

b ។

a 1



A O ។

n



ABC B

VI.

0, 1, 2, 3, …

n

2n  n 2

V.

1 1 1   ។ x y 3

 x , y

II.

[AO] ( H

[AH]

BC = 2a ។

AH

AO

a។ ABCD ។

AB

B

BE = AB ។ M

MAC  MCD   ។ ។

AMC



AMCE

7



635







៩ (១ /០២/២០០៩) ១:

១២០

១០០

EE o DD ។

I.

8 ។

9 II.

A



1 3 2 2 3 ។  2 3 3 2 2 3

 xy  100  1 1 1 ។ x  y  5 

III. IV. (

4

O



M

M ។

M



V.

2 cm ។

12



7



636







៩ (១ /០២/២០០៩) ២:

១២០

១០០

EE o DD I.

2 2 2 A   x  1   3x  2     x  1   3x  2   ។  

x ។

A

B

A ។ 2x  2 B 2 ។

x

II.

x 2 x 2  x 2 x 2  2 ។ x 2 1 x 2

III.

1  2  y  1  2x 1  1    4  2 3  2 x  1 y  1

1  2



5x  4 x6 ។  6x  2  4  5 3

IV. ( V.

BAC ។

ADC

A

D

AC

AB  AC  a ។ ។

ABCD

BC, AD

O។ ។

OA, OB, OC [BC]

[BD]

DK

7



637

a ។

K។

BCD ។

[CK]

AOD OD



a ។

BD

OK ។

COB



៩ (២០០៩-២០១០) ១:

១២០

១០០

EE o DD 4 40 ។ f  x   x2  x  3 9

I.

P  2  a3  b3   3  a 2  b2   1 ។

a  b 1 ។

2  x  y   16  3xy ។

II.

A  3 7 5 2  3 7 5 2 ។

III.

333 IV. (

b  a  b

a

9

63 ។ V. K VI.

[AB] ។

ABCD O

a, b, c

[AB]

O

VII.

D

[CD] ។

ABC ABC ។

A

A

O

AD = AH + DK ។ O

R

[AH]

S

abc  4RS ។ [AB] ។ C

។M

C។D

B

C

CD2  AM  BN ។

7



638



H

N

AB ។



៩ (២០០៩-២០១០) ១:

១២០

១០០

EE o DD I.

a



b

B  a  b  2 ab ។

A a  b

A

m, n, p

II.

ab 2

a 2  b2 ។ 2

B

q

m 2  2n  1  0 , n 2  2 p  1  0 p  2q  1  0 , q  2 m  1  0 2

2



I  m 2010  n 2010  p 2010  q 2010 ។

III.

x 9 x 8 x 7 x 6 x 5     5 ។ 2009 2008 2007 2006 2005

IV. (

x1 , x2

a 2  pa  1  0

y1 , y2

 x1  y1  x2  y1  x1  y2  x2  y2   q2  p2

b 2  qb  1  0



a, b, c

V.

a2  b2  c2  2  ab  bc  ca  ។ VI.

218  220

 2001

1  2000 

2

2

VII. VIII.

20

ABC

 2  2000  ។



100 1

IX.



5



100

BAC ។

[AD)



D។

BC

AB DB ។  AC DC ។

X.

A



B ។



PmUi A 

7 

639





PmUi B



៩ (១ /០២/២០១០) ១:

១ ០

១០០

EE o DD 1 2 x 5

I.

4

II.

1 x2

49  5 24  4 49  5 24  2 3 ។ B  2 2009 ។

A  2008  2010

III.

1 2 3 2009 ។    ...  1 2 1  2  3 1  2  3  4 1 2  3  ...  2010 1 ។ A  1 1 2  3  ...  2010

IV. (

A

V.

x2  y 2  1

a0 , b0 ។

bx 2  ay 2

x 2010 y 2010 2 ។  1005  1005 1005 a b  a  b

VI. (

a,b

c

a  b  c  1 , a 2  b 2  c 2  1 , a 3  b3  c 3  1 ។

A  a 2008  b2009  c2010 ។ VII. (

O1

O2

r1

M។

r2

O2

O1 O2

O3

AB 

A

B។I



[AB] ។

4r3 r1r2 ។ r1  r2

7



O3

640



r3

M

O1



៩ (១ /០២/២០១០) ១:

១ ០

១០០

EE o DD I. II. III.

A

A x2  x  6

n

7h30mn

n2

A

2 2 ។ 12  8  3  6 ។

x

5 km/h ។

B

1h

20 km/h ។

A 17 km ។

1  a  b  c  a 1

V.

ABC

bc ។

VI. (

CD  CA ។

[BN] ។

A

BD  2BN ។

7



641

C



BCD ABC

AC



AC

-

13h6mn ។

ba ។ AB  AC  1 ។

A  90o

CD  BC ។

A

B ។

A IV. (

B

D



៩ (២២/០៥/២០០៩) ១:

១ ០

១៥០

EE o DD 2  2 x1 4x  4x

I. II.

3

a bc ; b  ac

a, b, c

1 3



3



2 1

3



2 1

3



a 2  b2  c 2  2 ។

c  a b

a 2  b2  c2  2abc  2 ។

 x 1 x  2 x  3 x  4  3 ។

III. IV. (

72016 ។

a, b

V.

c

a 2  2b  1  0 ; b 2  2c  1  0 ; c 2  2a  1  0 ។

VI. (

10 m

M ។

3m VII. ( VIII.

M។

A។

ABC E។

A

BD = 20 , DC = 16 ។ D B

[BC]

DA

[AC]

[BD]

BC

D

Y។

[BD]

X។ XY = 2

AYC ។

AXC IX.

AB AC2 ។



ABCD

S  a 2009  b2009  c 2009 ។

X, Y, Z Z X

X Z

X។

Z

X។

Z Z។

X

1 4

Y

7



642







៩ (២៧/០២/២០០៩) ១:

១២០

១០០

EE o DD 13 x 3

I.

1  2 x 3 x  20 ។ x

II.

12 cm

8 cm។

x cm ។

x

64 cm 2 ។

a, b, c

III. IV. ( V.

a  b 1 ។

B  a 2  b2  ab ។

a, b, c

a3  b3  c3  3abc  0 ។ ។

x, y, z

1 1 1 1 1 1      ។ x y z a b c

VI. (

A។

M

MB2  MC 2  2MA2 ។

7



643



[BC] ។



៩ (២៧/០២/២០០៩) ២:

១២០

១០០

EE o DD 1 3  2 x  y  x  ។  2 y  1  3  x y

I.

f  n   32n  7 ,  n 

II. III.



E

n

f  n  1  f  n 



IV. (

n n 2 n3   3 2 6 1 8

8។

។ ។

20% ។



V.

13 cm

17 cm ។



VI. (

ABC

AA '  CA ។



AB , BC

CA

S A ' B 'C '  7 S ABC ។

7



644



BB '  AB , CC '  BC

sYsþI¡ elakGñkmitþGñkGanCaTIRsLaj;rab;Gan enAkñúgEpñkenHelakGñknwg)aneXIj BIlMhat;l¥² nig cemøIyrbs;vaCaeRcIn Edlbgáb;eTAedayviFIsaRsþedaHRsayl¥² RbkbedayKMnitEbøk² . ´Føab;erobcMEpñkenH rYcehIykalBImun EtmanlMhat;cRmúHfñak;rhUtdl;fñak;TI 12 ៩

critlkçN³enAkñúgEpñkenH KWEckecjCaBIrRkumrYmmman RkumRbFanlMhat;l¥² nigRkumcemøIyén lMhat;l¥² EdlpÁÚpgÁ KñaeTAedayelxerogBIxagmuxcab;BI 1 rhUtdl; 400 . sUmkMuBüayamedaHRsaylMhat; TaMgenHtamlMdab;lMeday ebIcg;eFVIlMhat;Na cUreFVlI Mhat;enaHEtmþgeTA . RbsinebIelakGñkmanbBaða b¤cm¶l;Rtg;cMNucNa EdlmanenAkñúgEpñkenH elakGñkGacTak;Tg;eTAkan; RKU b¤mitþPkþirbs;GñkEdlmansmtßPaB b¤GñkeroberogesovePAenHkñúgeBlevlaGñkKitfaKYr . …

vii

1> 2> 3> 4>

lMhat;l¥² rkRKb;KUéncMnYnKt;viCm¢ anén a , b EdlepÞógpÞat; TMnak;TMng ³ a  b  a  b  8 . RsaybBa¢ak;fa E CakaerR)akd Edl E  x  1000 x  2000 x  3000 x  4000   1000 . rkelxenAxÞgr; ayéncMnYn ³ A  3  7  3  7 . KNnakenSam ³ P  3  2 2  3  2 2 . 2

2

4

2011

2012

17  12 2

2013

2014

17  12 2

5> KNnatémø x edIm,I[ F mantémøGb,brma ¬tUcbMput¦ Edl ³ F  x 1x  2x  3x  6 . 6> KNna x  y edaydwgfa x  y  8100 nig x  y  30 . 7> RsaybMPøWfa ³ 11 2  21 3  31 4  ...  n  n1  1  1 Edl n CacMnYnKt;viCm¢ an ehIyFMCag 1 . 2

3

2

3

8> eK[ n CacMnYnKt;viC¢man Edl n Ecknwg 7 [sMNl; 5 ehIy n Ecknwg 8 [sMNl; 3 .

k> etI n Ecknwg 56 [sMNl;b:unµan ? 9> eK[sVIútcMnYnBit a  1  1  1n     2

n

14> 15> 16>

2

bgðajfa A  a1  a1  a1  ...  a1 CacMnYnKt; . KNnatémøelxénkenSamelx A  182  33125  182  33125 . eK[BIrcMnYnKt;viC¢man x , y Edlman 2 xy  y  4 x  2 x  1 . KNna A  x  y . eK[ f x  x 13 x  13 x 13 x  ... 13 x  13 x 1 . KNna f 12  . brimaRténRbelLÚRkam ABCDmanrgVas;esµInwg 48cm . rgVas;km
10> 11> 12> 13>

x> rkcMnYn n enaHedaydwgfa 5616  n  5626 .  1 1  1   Edl n  1  n

2

3

20

3

3

2

2011

2010

2009

2011

2008

2011

2

2

2

17> eK[ x  y  0 nig 2 x

2

KNna E  xx  yy .

 2 y 2  5 xy

18> sRmYlkenSam E  2x  y  2x x  y  x  y  x  y x  y  Edl x  y  0 . 19> edaydwgfa sin a  cos a  2 sin 45  a  nig 3 cos a  sin a  2 cos30  a  . 2

2

o

o

cUrKNnaplKuN ³ k> A  1  cot1 1  cot 2 1  cot 3  1  cot 44  x> B   3  tan1  3  tan 2  3  tan 3   3  tan 29  . o

o

o



o

o

645



o

o

o

-

20> 21> 22> 23> 24>

25> 26> 27> 28> 29> 30> 31> 32> 33> 34>

ebIeK[bIcMnYnBitviC¢man a , b , c . cUrbgðajfa ³ a  bb  cc  a  8abc . eK[bIcMnYnBitviC¢man a , b , c . bgðajfa ³ a  b  c  ab  bc  ca . rkb¤sKt;viCm¢ anénsmIkar ³ 2x  y   16  3xy . RsaybBa¢ak;fasmIkar ³ x  ax  b  x  bx  c  x  cx  a  0 manb¤sCanic© EdlenAkñúgsmIkarenHman x CaGBaØat nig a , b , c CacMnYnBit. eK[TMnak;TMng ³ f x   4 4 2 . k> KNna f x  f  y  edaydwgfa x  y  1 . 1   2   3   2010  x> TajrkplbUk S  f  2011  f   f    ...  f   .   2011   2011   2011  KNnalImIt ³ lim x . KNna ³ A  2010 2011  2011  2011  ...  2011  2012  1 . eK[BIrcMnYn a nig b EdlepÞógpÞat; a b  1 . bgðajfa a  ba  b a  b  a  b   0 . 1  KNna A  1  12   1  13   1  14   ...  1  2011  .  edaHRsaysmIkar ³ 4x  5x  1  0 . ebI abc  1 sUmbgðaj[eCOfa ab 1a  1  bc 1b  1  ca 1c  1  1 . KNna S  2 1 1 1 2  3 2 1 2 3  4 3 1 3 4  ... 100 99 1 99 100 . sUmbgðaj[eKeCOfa ³ 2002  2002 Eckdac;nwg 6 . RKb;cMnYnBit a , b , c EdlepÞógpÞat; a  b  c  1 . bgðaj[eKeCOfa a  b  c  13 . RKb;cMnYnBit a , b , c ,..., x , y viC¢man nigxusBI 1. sUmbgðaj[eKeCOfa ³ log b  log c  log d .... log y  log a  1 . eyIgman f x  log 11  xx  . bgðajfa f x  f  y  f  1xxyy  . 2

2

x

x

x

x0

2010

2009

2008

2

2

4

2

c

4

8

8

1979

2

b

4

2

2003

a

35>

2

x

2

2

y





36> edaHRsaysmIkar  7  48    7  48   14 . 37> RKb; a nig b CacMnYnBitviC¢man nigxusBI 1. sUmbgðajfa ³ x

x

log a b  log b a  2log a b  log ab b   log b a  1  log a b

.

cosa 1  cosa 4 cot a 38> sUmbgðajfa ³ 11  cos .   a 1  cosa sin a 39> edaHRsaysmIkar ³ 5  50  x . log x

log 5

 646 

-

40> eKe)aHRKab;LúkLak;mYyEtmþgKt; . KNnaRbU)abEdle)aH)anelxess b¤ elxFMCag 5 . 41> edaHRsaysmIkar x  4x  16x  ... 42> cMeBaHRKb;cMnYnKt;viC¢man n eK[ f n  3

4n x  3  x  1 1

n  2n  1  n 2  1  3 n 2  2n  1 2

3

f 1  f 3  f 5  ...  f 999997   f 999999 

43> edaHRsayRbB½n§smIkar ³

44> eK[ a nig n CacMnYnviC¢man ehIy n Kt; EdlplKuN a  a 1

45> edaHRsayRbB½n§smIkar

. KNnaplbUk

. 1  x y 4  5  400 b/  1 5 x  6 y  900 

5log y x  log x y   26 a/   xy  64

1  a1 1  a2 1  a3 ...  1  an   2 n

.

2

 a3  ...  an  1

.

. sUmbgðajfa

.

 7 x 3  3x 2 y  21xy 2  26 y 3  342 a/  3 2 2 3 9 x  21x y  33xy  28 y  344

4 x  3 y 1  27 y  171 b/  x x 1 2 y  172 8  2  3

.

46> cMnYnmYymanelxR)aMxgÞ ;EdlelxxÞg;vaerobtamlMdab;KW x , x  1 , x  2 , 3x , x  3 ehIyeKdwgfa 47> 48> 49> 50> 51> 52> 53> 54> 55> 56> 57> 58>

cMnYnenaHCakaerR)akd . cUrrkcMnYnenaH . KNnaplbUk S  1 1 2  2 1 3  3 1 4  ...  2024 1 2025 . RsaybBa¢ak;fa ³ f n  3  7 Eckdac;nwg 8 Edl n CacMnYnKt; . man f x  2x  1 nig g f x  x  3x  1 . sUmKNna g 3 . RKb;cMnYnKt;viC¢man n RsaybMPøWfa n3  n2  n6 k¾CacMnYnKt;viC¢manEdr . KNnaplbUk S  11 2  21 3  31 4  ... 20101 2011 . eK]bmafa x  x 1  0 . cUrKNna x  x 1 . cMnYnmYyCakaerR)akdmanrag abcd . edaydwgfa ab  cd  1 cUrrkcMnYn abcd enaH . sUmbgðajfa n! 3 cMeBaHRKb;cMnYnBitviC¢man n  7 . GnuKmn_ f kMNt;eday f x  a  12  f x  f x cMeBaHRKb; x  0 nig a  0 . sUmbgðaj[eXIjfa f CaGnuKmn_xYbelIcenøaH 0 ,   . cMeBaH n! n  n 1 n  2 ...  3 2 1 ¬ n! Ganfa n hVak;tUErül¦. bgðajfa 0 ! 1 . 21n  4 bgðajfa F  14 CaRbPaKsRmYlmin)an cMeBaHRKb;cMnYnKt;FmµCati n . n3 rkcMnYnKt;FmµCatitUcbMput Edlman 6 CaelxenAxÞg;Ékta ¬xÞg;ray¦ ehIyebIbþÚrelx 6 eTAxagmuxeK bMputvij enaHeKnwg)ancMnYnfµI EdlesµInwg 4 dgéncMnYnedIm . 2n

2

2

2

3

2011

2011

n

2

 647 

-

59> eK[lkçxNÐbI EdlbursbInak;

eTAsþIdNþwgnarIbInak; 1, 2 , 3 CaKUGnaKt dUcxageRkam ³ k> ebIburs A CaKUnwgnarI 1 enaH burs B CaKUnwgnarI 2 x> ebIburs A CaKUnwgnarI 3 enaH burs C CaKUnwgnarI 1 K> ebIburs B minCaKUnwgnarI 3 enaH burs C CaKUnwgnarI 1 . sMNYrsYrfa etIbursNa CaKUnwgnarINa ? 60> rk 11 cMnYnminGviC¢man EdlcMnYnnImYy² esµInwgkaerénplbUkén 10 cMnYnepSgeTot . abc  0 61> eK[ a , b , c CacMnYnBit epÞógpÞat; ab . KNna A  a  1  b  1  a  1 .  bc  ca  0 A, B , C

2010

2011

2012



62> KNnaplbUk

S  1

1 1 1 1 1 1  2  1  2  2  ...  1   2 2 1 2 2 3 2010 2011 2

63> edaHRsaysmIkarman x CacMnYnKt;³ k> x

.

 x 2011  x 2012  x 2013  4

2010

x> x  x  x  x  0 . 64> edaHRsaysmIkar ³ 2 x9 y  2  9 . ¬eKsresr 2 x9 y bB¢ak;faCaelx4xÞg;mann½yfa 0  x  9 , 0  y  9 ¦ . 21 65> rkRKb;cMnYnKt;FmµCati N  a a a ...a EdlnaM[ 2a a a ...a 1  12 . 1a a a ...a 2 2010

x

2011

2012

2013

y

1 2 3

1 2 3

1 2 3

66> KNnaplbUk ³

n

n

n

1 1 1 1 S    ...  1 2  3 2  3  4 3  4  5 nn  1n  2

.

67> sRmYlkenSam ³ 2  3   2  3   3 . 68> sUmbgðaj[eXIjfa x 11  x 1 1  x 2 1  x 4 1  x 81 . 2011

2012

2

4

8

69> cMeBaH n! n  n 1 n  2 ...  3  2 1 . KNnaplbUk S  21!  32!  43!  ...  n n 1! . 70> 71> 72> 73> 74>

kMNt;elxxagcugénplbUk ³   1  2  3  ... 2010  2011 . kMNt;elxxagcugénplbUk ³   1!2!3!... 2010!2011! . eK[ a  a  1b  b  1  1 . KNnatémø A  a  ab .  4022 . edaHRsaysmIkar ³ 2011  x eK[ ab  1 . RsaybBa¢ak;[eXIjfa ³ a  b  a  b a  b   a  b . 2

2

2

log 2012 x

a

a c  b d

. bgðajfa

2

2012

2011

log 2012 2011

5

76> BIsmamaRt

2

2

75> eK[ x , y nig z EdlepÞógpÞat;

77>

2

5

3

3

2

2

x 2  2 y  1  0  2 A  x 2010  y 2011  x 2012  y  2z  1  0  z 2  2x  1  0  ad  bc 2cd  2ab ad  bc 1  a  a  a 2  b 2  b b  A     2    2  a a  b  b  2011 ab 

. KNnakenSam ³

.

.

nig b CaBIrcMnYnKt;viC¢man. cUrsRmYlkenSam ³

 648 

-

.

78> eK[ a  b  c  1 , a  b  c  1 nig ax  by  cz  m . cUrKNna 79> eK[RtIekaNsm)aTmYy EdlmanmMumYymanrgVas;esµI   2

2

P  xy  yz  zx

2

.

a nigRCugBIrEdlGmnwgmMuenH manrgVas;esµIKña ehIyesµI a . KNnaRkLaépÞRtIekaNenH CaGnuKmn_én  nig a . 80> eRbóbeFobcMnYn k> 6  5 nig 21 x> 1  11  72 nig 2 3  2 . 81> rktémøKt;én x , y nig z EdlepÞógpÞat;smIkar ³ x  y  z  4  2 x  2  4 y  3  6 z  5 . 2011

2011

82> eK[

ax 3  by 3  cz 3   1  1  1 1  x y z

. RsaybMPøWfa

3

ax 2  by 2  cz 2  3 a  3 b  3 c

.

83> RsaybBa¢ak;fa TIRbCMuTm¶n; G p©itrgVg;carwkeRkARtIekaN O nigGrtUsg;énRtIekaN H énRtIekaN

mYy CabIcN M ucrt;Rtg;Kña . 84> eK[ P  a b  5a  9b  6ab  30a  45 . cMeBaHRKb;témøéncMnYnBit a nig b bgðajfa P  0 . 85> sUmbgðaj[eXIjfa 39  51 Eckdac;nwg 45 . 86> KNna A  10110001100000001 ...1000...001 . 2 2

2

2

2

51

39

man 2

87> KNnatémø n EdlnaM[ 88> edaHRsayRbB½n§smIkar

3 9 15 6n  3 300    ...   2011 2011 2011 2011 2011 x2  2x  y  2 y  2y  z  z 2  2z  x 

k>

4 4

8

8

2 1 

91> sRmYlkenSam B   2

xx   x x 1

92> eK[bIcMnYnrYmman ³

 1 dgénelx 0

x  4 x  3 x  2 x 1    4 2007 2008 2009 2010

89> edaHRsaysmIkar³ 90> RsaybB¢aak;fa

n

A  888...88

man n tYénelx *

2 1 4

8

 2 1

1 2

. x>

.

1 1 1 1  a  b  c   12  1 1 1 7      c b a 12  111 5   a c b 12

.

.

1   x 2    1   x  1   x  x  1 

B  222...222

. nig C  444...444

man n  1 tYénelx @

man 2n tYénelx $

RsaybB¢ak;[eXIjfa A  B  C  7 CakaerR)akd . 93> kalNa)aténRtIekaNmYyekIneLIg 10% etIkm eK[ a , b nig c CargVas;RCugénRtIekaNmYy.Rsayfa ³ ab  bc  ac  a  b  c  2ab  bc  ac . 2

 649 

2

2

-

95> eK[bIcMnYn a , b nig c Edl a  b  c  0 nig abc  0 . KNna E Edl E

2011 2011 2011  2  2 2 2 2 2 b a c b a c a  b2  c2 2

.

96> bgðajfa 2010  2012 2011  12011  12011  12011  1  2011  1 . 97> eK[ ABC CaRtIekaNmYy Edlman AM  Caemdüan . bMPøWfa 2 AM  AB  AC . 98> RtIekaNmYymanrgVas;RCug x , x  a nig x  2a Edl x  0 nig a CacMnYnKt;viC¢man . rkRKb;rgVas; 2

4

8

16

32

RCugénRtIekaNenH EdltUcCag b¤esµI 10 edIm,I[vaCaRtIekaNEkg . 99> RtIekaNmYymanrgVas;RCug 3 , 4 , 5 . RtIekaNenHCaRtIekaNcarwkkñúgrgVgm; Yy . tag A , B , C CaRkLaépÞEpñkbøg; EdlenAkñúgrgVg; nigeRkARtIekaN ehIy C CaEpñkRkLaépÞEdlFMCageK . KNna A  B CaGnuKmn_nwg C . 6 cm 100> eK[ctuekaN ABCD CactuekaNBñay nigman MN Ca)atmFümén A B N ctuekaNBñayenH. KNnaRbEvg)atmFümenAcenøaHGgát;RTUg x dUcrUb? M x C D ebIeKdwgfa )attUc AB  6 cm nig)atFM CD  10cm . 10 cm 1000 101> cUrKNnaplbUk S  11 3  32 5  53 7  ...  1999 .  2001 2

102> RsaybBa¢ak;[eCOfa

2

2

2

6  6  6  ... 6  30  30  30  ... 30  9

man n r:aDIkal;

man n r:aDIkal;

103> k> cUrKNnaplbUk S  1 2  3  2  3  4  3  4  5  ...  nn  1n  2

x> RsaybBa¢ak;fa 4S 1 CakaerR)akd cMeBaHRKb;cMnYnKt;viC¢man n . 104> eK[ 0  x  x  x  ...  x . RsaybBa¢ak;fa x  xx  xx  ...x  x  x  xx  xx  ...x  x 105> ebI x , y CacMnYnBitEdlepÞógpÞat; x  3xy  y  60 . rktémøFMbMputénplKuN xy . F 106> rkplbUkrgVas;mMu ¬KitCadWeRk¦énmMu A, B , C , D , E nig F C A B enAkñúgrUbxagsþaM . 1

1

2

3

2

3

3

6

9

1

2

3

4

8

12

12

2

9

7

.

12

2

D

E

107> RsaybBa¢ak;facMnYn A  111...11222...22 EdlmancMnYntYénelx! nigelx@ esµIKñaKW 2011tY.

RsaybBa¢ak;fa A CaplKuNénBIrcMnYnKt;tKña . 108> ]bmafa x , x Cab¤sénsmIkar ³ 2011 x  t  2011 x  2011  0 . rktémøtcU bMputénkenSam ³ x x 1 1 H  x  x   4    . 2 x x 2

1

2

2

2

2

1

109> KNnatémøelxén

1



2

1

2



A  3 5 3 5 3...

.

 650 

-

110> eKmanBhuFa

. eKdwgfasMNl;énviFIEckrvag px nig x esµI 1 ehIysMNl;énviFIEckrvag px nig x 1esµI 2 . rksMNl;énviFIEckrvag px nig xx  1 . ¬GñkGaceRbobeFoCamYylMhat;TI8 TMBr½ TI!¦ 111> RsaybBa¢ak;facMnYn 5  5  5 Eckdac;nwg 31 . 112> rkelxéntYcugeRkaybg¥s;éncMnYn 2 . 113> rkelxéntYcugeRkaybg¥s;éncMnYn 123456789 114> RsaybBa¢ak;facMnYn A  13  2  1 2  1 CacMnYnKt;viC¢man . 115> bBa¢ak;témøéncMnYnBit x edayeRbIsBaØavismPaB. edaydwgfa x CacMnYnEdlmanEpñkKt;manelx BIrxÞg; kalNaeKsresrvaCacMnYnTsPaK. 116> k> eRbóbeFobcMnYn 1 2000  nig 2001  2  2000  2000  x> edaymineRbI 2000  4000000nig 2001  4004001KNna A  1  2000   2000 .   2001  2001 p x 

2011

2012

2013

34

2011

3

3

3

3

2

2

2

2

2

2

2 3

117> eK[TMnak;TMng x  x y  y  x y  a . RsaybBa¢ak;fa a  x 118> eRbóbeFobcMnYn 2001  2002 nig 2 2002 . 119> RsaybBa¢ak;fa ³ A  111...111 444...44 1 CakaerR)akdéncMnYnKt; . 2

4

3

2

2

1

 1 1       p q

 p  q 121> KNnatémøelxénkenSam ³ A  3  2

3

122> RsaybBa¢ak;fa ³

3 3

2 1  3

4

9



 1 1     3  q  p q  p 2



125 3 125  3 9 27 27

1 3 2 3 4   9 9 9

x  1 x  5 x  7 x  11    4 . 125> edaHRsaysmIkar ³ 1991 1987 1999 1981 126> edaHRsaysmIkar ³ x  6 x   2  3 x . 127> edaHRsaysmIkar ³ log log log x  2 . 128> KNnaplbUk A  111111 ...111...11 . 1998

2

y

2 3

.

3

Edl  p , q  0 .

.

.

123> KNnatémøelxénkenSam S  6  6  6  6  ... . 124> ]bmafa a  0 , b  0 nig ba  bc  2011 . KNnatémøén 2000

2 3

n énelx$

2n énelx!

120> sRmYlkenSam ³ E 

2

3

bc ab

.

1999

4

n énelx!

129> edaHRsaysmIkar ³k> x

x

 xx

x> x 

x x

x  x x 

 651 

. -

130> eK[ a , b , c CacMnYnBitEdlepÞógpÞat;RbB½n§smIkar

a  b 2  2ac  29  2  b  c  2ab  18  c  a 2  2bc  25 

. cUrKNna a  b  c .

131> KNnaplbUk S  1 2  3  ... 2011 . ¬edaHRsayBMutamrUbmnþsVúIt¦. 132> fñak;TI 9B mansisSsrub 28 nak;. sisSRbusmankm
. ebIdwgfakm KNnakenSam A  a  b  c    a  b  c   a  b  c   a  b  c  . 2011 2011 134> eK[ a  b  c  0 . bgðajfa b 2011   0 . c a c  a b a b c 135> kMNt;témø a nig b edIm,I[BhuFa x  2x  ax  bx  1 CakaerénRtIFadWeRkTI@ x  px  q . 136> cUrRsabMPWøfa 49  20 6  49  20 6  2 3 . 137> KNna E   3  5  3  5    3  5  3  5  . 138> kMNt;témø m nig n edIm,I[smIkar x 1 3  x m 4  x  3n x  4 manb¤seRcInrab;minGs; . 1.60 m

2

2

2

2

2

4

4

2

2

3

2

2

2

2

2

2

2

2

4

2

2

139> kMNt;témø a edIm,I[RbB½n§smIkar 2xxyya3 manb¤sepÞógpÞat; x  y . 

140> eK[ a , b , c epÞógpÞat; a  b  c  0 nig ab  bc  ca  0 . KNna D  a  1  b  1  c  1 . 141> KNna S  1 3  2  4  3  5  ...  2010  2012   1  2  3  ...  2010  . 142> bgðajfa A  9  8  7  6  5  1  2  3  4 Eckdac;ngw 5 . 143> eK[GnuKmn_BIr f nig g kMNt;eday ³ f : x  f x  px  2 Edl p Ca):ar:aEm:RtBit nig 2010

2

2011

2011

2011

2011

2011

2

2

2011

2011

2012

2

2011

2011

2011

. nigKNna g  f .

g : x  g x   4 x  3

k> KNna f  g x> kMNt;témø p edIm,I[eK)an f  g  g  f . 144> eKman P  cos 2x cos 2x cos 2x  ... cos 2x . bgðajfa P  21  sin xx . n

2

3

n

n

n

sin

145> edaHRsayRbB½n§smIkarkñúg  énRbB½n§smIkar  x  y 2

2

 5440

PGCDx, y   8

2n

.

146> edaHRsaysmIkarkñúgsMNMucMnYKt;FmµCati énsmIkar xy  3x  2 y  37 . 147> bMPøWfacMnYn N  4n  3  25 Eckdac;nwg * . 148> RsaybMPøWfa ebIeKmansmPaB a  b c  d   ad  bc enaHeKRtUv)an a , b , c nig d CatYén 2

2

smamaRtmYy. 149> eK[ ax  by  0 . bgðajfa

2

2

2

2

a2 x2  1 a2  b2 x2  y 2  652 

. -

b c Edl a  0 , b  0 , c  0 . KNnatémøén K  a 2011 . 151> bgðajfa A  2011 5  3  29  12 5 CacMnYnKt; . 152> edaHRsaysmIkar x  4x  4  x  2x 1 . 153> KNnabIcMnYnKt;tKña ebIeKdwgfa plEckénplKuNcMnYnTaMgbI nwgBak;kNþalkaerénplbUkcMnYnTaMgbI esµI 130 . 21 154> ebI x yz  7 nig xy  7 . cUrKNnatémøelxén xyz . 155> rktémøelxén 22  22 . 156> cMeBaH a  b  c KNnakenSam H  a  baa  c   b  cbb  a   c  acc  b . 157> eKdaMkUneQI 40edIm B½T§CMuvijcmáarmYymanragCactuekaNEkg. etIcmáarenaHGacmanRkLaépÞFMbMput b:unµan ? ebIeKdwgfa KmøatBIedImeQImYyeTAedImeQImYyeTotmanRbEvg 2 m . 158> bgðajfacMnYn 3 BMuEmnCacMnYnsniTan. ¬cMnYnsniTan CacMnYnmanTRmg;CaRbPaK ba Edl >>> ¦ . 159> ebI x nig y CacMnnY Bit cUredaHRsaysmIkar x  y  0 . 3 3 3 3 160> KNna A  2 34 . B  2 C  2 E  2 D  2  4 4 4 4 C2 161> KNna A  2 . D2 E  2 2 B  2  B  0.12 C  0.12 D  1.20 162> sresrCaTRmg;RbPaKén A  1.2 . 163> eKmankaermYymanRCug a . KNnaGgát;RTUg nigcm¶ayxøIbMputBIcMNucRbsBVrvagGgát;RTUgeTARCugkaer. 164> eKmanRtIekaN ABC EkgRtg;kMBUl B ehIymanRbEvgRCug AB  1. A 1 2 2 D CacMNucmYyenAelIRCug BC  Edl AD  CD  2 . KNna AC . C B D 165> edaHRsaysmIkar  2  3  2  2  3  2  2  3  x  2011  0 .   166> edaHRsaysmIkar x  2 x  4x  2 x  3  x  2 x  7 . 167> ]bmafasmIkar ax  bx  c  0 manb¤s x nig x . tag S  x  x Edl n CacMnYnKt;FmµCati. RsaybBa¢ak;fa aS  bS  cS  0 .  2y x  2y x  168> eK[ x 306 . KNna . 294 y 169> KNna A  x  2  2x  2x  8  x  8 cMeBaH x  2011 . 170> eK[ a , b nig c CabIcMnYnxusBIsUnü Edl a  b  c  1 nig 1a  b1  1c  0 . RsaybMPøWfa a  b  c  1 .

150> eK[ a  b  c  0 nig

2

2

3

2

1 1 1   0 a b c

3

2

9

2012

2011

2012

2011

2

2

22

22

2

2

2 2

2

1

n 1

n

2

2

2

2

2 2

2

2

2

2

2

2

2

2

n

n 1

2

n 2

n 1

2

2

2

2

2

2

2012

2

 653 

-

171> rkBIrcMnYnBitEdlmanplbUkesµI 13 ehIyplbUkcRmasrbs;vaesµInwg 13 . 40 172> eK[smIkar x  1x  2x  3x  4  k .

k> edaHRsaysmIkar cMeBaH k  3 . x> kMNt;témø k edIm,I[smIkarmanb¤s . 173> eRbóbeFobBIrcMnYn ³ 200 nig 300 . 174> eRbóbeFobcMnYn 31 nig 17 . 175> ebI a Cab¤sénsmIkar x  1 ehIy a  1 . cUrKNna 1  a  a  a    a . 176> KNnaplbUk S  3  3  3  ... 3 . ¬BMuedaHRsaytamrUbmnþsVIútFrNImaRt¦. 177> KNna A  1  21 1  31 1  41   ...  1  n1  .       300

200

14

11

2011

2

2

3

2

2

2

2

nig y  0 . 1  2  3  ...  2009  2010  2011  2010  2009  ...  3  2  1 . 

E

180> edaHRsayRbB½n§smIkar 181> bgðajfa 182> eK[BhuFa

2010

n

178> kMNt;témø m énRbB½n§smIkar 23xx  4yym7 edIm,I[vamanb¤s 179> KNna

3

a  b  c  3 b  a  d  4   a  c  d  5 b  c  d  6

x0

.

ehIy 4  4  4  4 . f x   x  4 x  1 Edl n CacMnYnKt;FmµCati ¬ n  ¦. kMNt;témø n edIm,I[viFIEckén BhuFaxaelI nigBhuFa x  3 mansMNl;esµI 46 . x 183> edaHRsaysmIkar ³ 1 . x 7 3 7 4 7 7 n

3

4

2

2

x

2

x

2 2

x 1 1 x

184> kMNt;RKb;cMnYnKt; n EdleFVI[ B  4  4  4 CakaerR)akdénmYycMnYnKt; . 185> edaHRsaysmIkar x xx  1  x xx  1 . 27

4

2

1016

n

2

2

186> edaHRsayRbB½n§smIkar ³ k>

 x  y  z  6   xy  yz  zx  12 2 2 2 x  y  z 3 

x>

1 1 1 x  y  z 3  1 1 1  3    xy yz zx  1 1  xyz 

.

187> eK[ 4  4  23 . KNna 2  2 . 188> rkcMnYnlT§PaBTaMgGs; kñúgkarbegáItelxTUrs½BÞ Edlmank,alRbB½n§ ³ k> 011 x> 097 . a

a

a

a

 654 

-

189> edayeRbIelxTaMgbYnman ³ 1 , 2 , 4 nig 9 . etIeKGacbegáIt)anelxbYnxÞg; b:unµanrebobxusKña? 190> ]bmafasmIkar x  px  1  0 manb¤s a , b nigsmIkar x  qx  2  0 manb¤s b , c . 2

2

RsaybBa¢ak;fa b  ab  c  pq  6 . 191> RsaybMPøWfa ebIeKman a  b  c  abc nig 1a  b1  1c  2 enaHeyIg)an a1  b1  c1  2 . 192> rkBIrcMnYnedaydwgfa plbUk plKuN nigplEckrvagcMnYnTaMgBIr esµIKña . 193> KNnaplKuN P  1 x1 x 1 x ... 1 x  . 194> KNnaplbUk S  1 1 2  1  21  3  1  2 1 3  4  ... 1  2  3 1... 2011 . 195> KNnaplbUk S  x 1 x  x  13x  2  x  15x  6  x  71x  12  x  91x  20 cMeBaH x  95 . 196> ebI abc  1 bgðajfa ab aa  1  bc bb  1  ca cc  1  1  a1 ab  1  b1 bc  1  c1 ca . 197> rktémø x ebI ³ xxxx  1  x  1 Edl x CacMnYnKt;FmµCati . 198> sRmYlkenSam A  log 2  log 3  log 4  log 5  log 6  log 7 . 199> KNnaplbUk S  log1 x  log1 x  log1 x  ... log1 x Edl k CacMnnY Kt;FmµCati . 2

2

2

2

2

2n

4

2

2

2

2

x2

3

4

a2

a

200> edaHRsayRbB½n§smIkar ³

5

6

7

a3

8

ak

 x1  x2  x3    x2011  0  2 2 x1  x22  x32    x2011 0   3 3 3 3  x1  x2  x3    x2011  0 .........................................................  2011 2011 2011 2011   x1  x2  x3    x2011  0 

201> edaHRsayRbB½n§smIkartamedETmINg; ³  3

x  3 y  2

  2  3 x  3 y  1

.

.

202> eK[BIcMnYnBit x nig y mansBaØadUcKña. bgðajfa ³ k> x  y  2 xy x> xy  xy  2 . 203> sRmYlkenSam ³ E   a  b   4 ab nig F  a b  b a Edl a  0 , b  0 . 2

2

2

a b

ab

rYcKNna ³ E  F nig E F . 204> cMeBaH x  100 KNnatémøénkenSam ³ A  x 100x  x 100x  x 100x . 205> KNnatémøénkenSam A  22  30  20  27  8 . 206> eK[ a nig b CaBIrcMnYnKt;tKña . edaydwgfa a  b  321 cUrKNnatémøén a nig b . 207> dUcemþcEdlehAfamMuTl;kBM Ul ? bgðajfamMuTl;kMBUlCamMub:unKña . 208> rkcMnYnKt;viCm¢ an n edIm,I[ x  x  6 esµInwg n Edl x CacMnYnKt; . 209> eRbóbeFobkenSam ³ aa bb nig a  b . a  b n1

n

3

n3

n 4

n5

3

2

2

2

2

n 2

2

2

2

2

2

2

 655 

-

210> eKmansmIkar m  1x

. k> kMNt;témø m edIm,I[ x  1 Cab¤sénsmIkarxagelI rYcKNnab¤smYyeTot . x> kMNt;témø m edIm,I[smIkarmanb¤sDub rYcKNnab¤sDubTaMgenaH . 211> rkBIrcMnYn x nig y edaysÁal;plbUk nigplKuN ³ x  y  25 . xy  12 2

 m  3x  3  m  0

2

2



212> edaHRsayRbB½n§smIkar

x  y  x  y  8  2 2  x  y  xy  7 2

2

213> dUcemþcEdlehAfa)atmFüménRtIekaN ? bgðajfa)atmFüménRtIekaN esµInwgBak;kNþal)atmYyén

RtIekaNenaH . 214> etImancMnYnKt; n b:unµanxøHEdlepÞógpÞat; 72  12n  54 ? 24 B E 215> RtIekaN ABC RtUv)ankat;ecjBIRkdasragCactuekaNEkg 12 dUcrUbxagsþaM . etIRkdasEdlenAsl;manb:unµanPaK ? A 1 1 C 10 D 216> Tajrk x  2012  ? ebIdwgfa x  2011  2011 . A C 217> r)arEdkmYymanRbEvg 25m RtUv)anEp¥kcugxagelI eTAelI 25 m CBa¢aMgQrmYy Edlcm¶ayBICBa¢aMeTAcugr)arxageRkamman RbEvg 20 m . ebIeKbgçitr)aecjBICBa¢aMgEfm 4 m eTot O D 4m B 20 m etIcugr)ar)anFøak;cuHcMnYnb:unµan m ?¬sUmemIlrUbxagsþaM ¦ 218> RtIekaN ABC mYyEkgRtg; A ehIymanbrimaRt 60 cm nigmanépÞRkLa 120 cm . cUeKNna rgVas;RCugnImYy²énRtIekaN ABC . 219> bgðajfaRtIekaNEdlmanrgVas;mMuTaMgbI  , 2 nig 3 CaRtIekaNEkg . 220> ebIeKdwgfa f x f x  1  9 nig f 3  81 . cUrrk f 9 . 221> suxeFVIdMeNIredaymeFüa)aybIRbePTKW rfynþ)an 83 ehIym:UtU)an 53 éncm¶aypøÚvTaMgGs;. k> rkRbPaKtagcm¶aypøÚvEdlsuxRtUvedIr . x> rkcm¶aypøÚvTaMgGs;ebIsuxedIr)an 2 km . 222> k> sresr 45m CaPaKryén 1km . x> sresr 1kg CaPaKryén 800 g . 223> Ggát; MN manrgVas; 18 cm . I CacMNucmYyenAelI MN ehIy MI  NI . A nig B CacMNuckNþal erogKñaén MI nig NI . KNna AB . 224> RsaybBa¢ak;fa plbUkmMukñúgBIrénRtIekaN esµImMueRkAmYyénRtIekaN EdlminCab;mMuTaMgBIrenaH . 2

225> KNnatémøénkenSam

  A   4  5 3  5 48  10 7  4 3  4  

 656 

2011 2012

. -

226> edaHRsayRbB½n§smIkar ³

2 x  2 y  2 z  7   x 7 y z 2  2  2  4  x  y  z  3 

. 2011

. cUrKNna  2ba  . 228> eKdwgfa log 2  0.3010.... cUrrkcMnYnxÞg;énEpñkKt;viC¢manén A  2 . 229> edaHRsaysmIkar 3 x2  5  2 x3  7  x  1 . 230> eRbóbeFobcMnYn ab nig PGCD a, b PPCM a, b cMeBaH a  90 , b  280 . 231> epÞógpÞat;ÉklkçN³PaB ³ 1  sin x  cos x   21  sin x 1  cos x  . 232> edaHRsayRbB½n§smIkar ³ xyx yz 4 6z  13 .  233> eKmannimitþsBaØaelakarIt ³ Logx , log x , lg x , ln x , log x , log x . etInimitþsBaØaNaxøHCa elakarItTsSPaK ¬elakarIteKal 10¦ ehIyelakarItNaxøHCaelakarItenEB ¬elakarIteKal e ¦ ? 234> RtIekaNmYymanrgVas;RCug 7 , 8 nig 11 . rkRkLaépÞrgVg;carwkkñúgRtIekaNenH . 235> eKmanbIcMnYn a , b , c epÞógpÞat; a  b  c  1 , a  b  c  1 nig a  b  c  1 . KNnatémøelxénkenSam P  a  b  c . 236> bgðajfa ³ a  b  c  d  1  a  b  c  d . 237> Gayu«BukticCagplbUkGayukUnTaMgbI 3qñaM. ebIdwgfa ³ Gayu«Buk nigkUnTaMgbIsmamaRtnwgcMnYn ³ 15 , 7 , 5 , 4 . rkGayumñak;² . 225  238> eRbóbeFobBIrcMnYn ³  259  nig  625  .     227> a nig b CaBIrcMnYnKt;viC¢manEdl a 

b  15  216

2011

2

2

10

2

2010

2

2

2

2

3

3

3

2012

2

60

239> eK[smamaRt

2011

2

e

50

ab a  b   cd c  d 2 2

RsaybMPøWfaeK)an ³ . 240> rkBIrcMnYnKt;viC¢mantKña edaydwgfapldkkaeréncMnYnTaMgBIresµInwg 321 . 241> ekµgelgXøIbInak;KW A , B nig C manXøIsmamaRtnwg 3 , 4 , 5 . eRkayeBlQb;elgXøIGkñ TaMgbIman smamaRt 15 , 16 , 17 . etIekµgNaQñH ekµgNacaj; ? 242> edaHRsaysmIkar 3x  6x  9x  12x  1  12  13  14 . a c  b d

243> edaHRsayRbB½n§smIkar ³ 244> eRbóbeFobcMnYn 2

2

22

 x  xy  y  1   y  yz  z  4  z  zx  x  9 

manelx 2 cMnYn 1001dg nig  657 

3 3

33

manelx 3 cMnYn 1000dg . -

245> edaHRsaysmIkar ³ x  3  x  4  x  4  x  5  x  5  x  3  x . 246> bursmñak;eFVIdMeNIrBIraCFanIPñMeBjeTAkan;extþsVayerog. eRkayqøgsaLagGñkelOgKat;eFVIdMeNIrbnþ

dl;Rtg;cMNucmYy Kat;)anecalEPñkeXIjbegÁalR)ab;cm¶aydak;fa {sVayRCM 17 km } nigbegÁalbnÞab; dak;fa {sVayerog 25 km }. sMNYrsYfa etIcm¶ayBI sVayRCM eTAsVayerogmanRbEvgb:unµan km ? 247> cabmYyhVÚgehIrTMelIpáaQUkénRsHmYy. ebIcabmYyTMelIpáaQUkmYy enaHmancabmYyKµanpáaQUkTM . EtebIcabBIrTMpáaQUkmYy enaHmanpáaQUkmYyKµancabTM. cUrrkcMnYncab nigcMnYnpáaQUk . 248> stVExVkTMelIEmkxVav )ak;EmkR)avgab;bIrs;BIr cuHebIstV 120 gab;b:unµan ? rs;b:unµan ? 249> davI manGayutageday x ebIKitKU[xÞic x CaBhuKuNén8 edaydwgfa x FMCag10 nigtUcCag 20 . etIsBVéf¶ davIRsImanGayub:unµan ? 250> ksikmñak;mancMNIsRmab;pÁt;pÁg;eKarbs;Kat; 40 k,al)an 35 éf¶. ebIKat;TijeKa 10 k,albEnßmeTot etIkat;GacpÁt;pÁg;cMNIdEdl[eKa)anb:unµanéf¶ ? 251> eK[bIcMnYnBit a , a nig a Edl a  sin a , a  cos a  sin a nig a  cos a  cos a . bgðajfa a  a  a  1 . 252> KNnaplKuN P  1  x  x 1  x  x 1  x  x  1  x  x  . 253> ebI a  0 , b  0 nig c  0 bgðajfa a  3b  c  a 1 b  b 1 c  c 1 a . 254> KNnaplbUk S  11!2  2!3  3!  n  n! Edl n! nn 1n  2 3 2 1 .  1  255> KNnaplbUk    n  n  1 n  n  1 . 1

2 1

3

2

2 2

1

1

2

1

3

2

1

2

2 3

2

2

4

4

2n 1

2n

8

n

n

9999 n 1

256> sRmYlkenSam ³



A

4

a  b  c  3abc a  b 2  c 2  ab  bc  ca 3

3

3

.

2

257> RsaybBa¢ak;fa ebIeKman 258> eKman



4

a c  b d

enaHeK)an ³

a4  b4  a b     4 c d4 cd  4

.

6 2  52  11 , 56 2  45 2  1111 , 556 2  445 2  111111 , 5556 2  4445 2  11111111 , ...

BIkarbgðaj]TahrN_xagelIcUrrkrUbmnþTUeTA nigRsaybBa¢ak;rUbmnþenaHpg. 259> KNnaplbUk ³ S  cos 1  cos 2  cos 3    cos 89 . 260> KNnaplbUk ³ S  sin 0  sin 1  sin 2    sin 90 . 261> cUrkMNt;témø a nig b edIm,I[cMnYn abba CaKUbR)akdénmYycMnYnKt; . 262> k> kMNt;témøelxénGBaØat a , b , c nig d éncMnYn abcd edaydwgfa abcd 9  dcba . x> bBa¢ak;fa abcd nig dcba suT§EtCakaerR)akdénmYycMnYnKt;. 263> BIrcMnYnEdlCakaerR)akd edaydwgfaplKuNva elIsplbUkvacMnYn 4844 . 2 o

2

o

2

o

2

o

2

2

o

2

o

2

o

o

 658 

-

.

264> RtIekaNEkgmYymanépÞRkLa 24 cm nigmanbrimaRt 24 cm . KNnargVas;RCugnImYy²rbs;RtIekaN. 265> manBIrcMnYnKt;tKña EdlcMnYnTImYyCacMnYnbzm nigcMnYnFMbnÞab;CakaerR)akd . cUrrkcMnYnTaMgBIenaH . 266> eKmanrgVg;b:un²KñaehIyRtUv)an 2

eKerobdUcrUbxagsþaM Edlman 2m km Rsay[eXIjfa RtIekaNcarwkknøHrgVg;CaRtIekaNEkgCanic© . 268> BhuekaNmYymanplbUkmMukñúgminelIsBI 2011 . etIBhuekaNenHGacmancMnYnRCugeRcInbMputb:unµan ? 269> cUrRsayfa rgVas;RCugnImYy²rbs;RtIekaNRtUvEttUcCagknøHbrimaRtrbs;vaCanic© . 270> bursmñak;man)arImUledayéd 10 edIm. Kat;Ck;)arIedayrkSaknÞúy)arI ebICk;Gs;bIedIm enaHKat;Gac ykbnÞúy)arIEdlsl;mUl)anmYyedImfµvI ij . etIKat;Ck;b:unµandgeTIbGs;)arITaMg 10 edImKµansl; ? 271> edaHRsaysmIkar k> 3  4  5 x> 3  4  5  6 . 272> RsaybBa¢ak; BIsmPaB  y  z   z  x   x  y    y  z  2 x   z  x  2 y   x  y  2 z  enaHeK)an x  y  z . 273> cUrKNna S  ab  cd edaydwgfa a  b  c  d  2011 nig ac  bd  0 . 274> k> RsaybBa¢ak;fa sin12a  cot a  cot 2a . x> cUrKNnaplbUk S  sin1 a  1 a  1 a  1 a    1 a . o

x

x

x

2

x

2

2

2

2

2

x

2

x

x

2

2

2

n

sin

sin 2 sin 3 sin n 2 2 2 2 x cot 1 2 1  cos x cot x           1 1 1 1       1   1  Pn  1   1  cos x   cos x  cos x  cos x       2  22  2n    yzt ztx txy xyz x y z t     14625    x, y, z t x y z t 2 3 4 6

275> k> RsaybBa¢ak;fa

.

x> cUrKNnaplKuN 276> eK[bYncMnYn

.

nig viC¢man edaydwgfa nig . KNna x , y , z nig t . 277> eKmanBhuFa P  x  x  1 nig Q  2  x  x . k> kMNt;témø x edIm,I[ P mantémøGb,brma. x> kMNt;témø x edIm,I[ Q mantémøGtibrma. 278> rkcMnYnKt;viCm¢ an n tUcbMput Edl n mansMNl; 1 , 2 , 3 , 4 , 5 eBlEcknwg 2 , 3, 4 , 5 , 6 erogKña . 279> rkcMnYnKt; n tUcbMput Edl n Eckdac;nwg 7 EtebIEcknwg 2 , 3 , 4 , 5 , 6 [sMMNl;esµI 1 Canic© . 280> RsaybBa¢ak;fakenSam E  cos x  sin x  3sin x cos x mantémøefr RKb;témørbs; x . 2

2

6

6

2

 659 

2

-

281> edaHRsayRbB½n§smIkar ³ x

3

 y3  9

 xy  2

.

282> edaHRsaysmIkar 3  3 3  3   4  3 . 283> sresr N CaplKuNktþadWeRkTI1 Edl N  3a  1  4a  6a  9 . 284> RsaybBa¢ak;fa cMnnY N  44a  1  100 Eckdac;nwg 32 . 285> eK[ a  b  1. cUrKNnatémøelxénkenSam P  2a  b  3a  b  1 . 286> rkBIrcMnYnKt;viC¢man a nig b edaydwgfa a  b  24 . 287> kaerBIrmanpldkRkLaépÞesµI 1152 m nigmanpldkRbEvgRCugesµI 16 m . KNnaRCugkaernImYy² . 288> KNnakenSam A  x  11x  2  2  x23  x   1  x 3x  3 . 2011

2010

2009

2008

x

2

2

2

3

2

3

2

2

2

2

289> rkmYycMnYn edaydwgfa bIdgéncMnYnenH nigkaeréncMnYndEdlenH CacMnYnpÞúyKña . 290> eKmancMnYn N  12345678910111213...998999EdlcMnYnenHsresrBIelx 1 dl;elx 999 .

etIelxb:unµanenARtg;TItaMgtYTI 2011 rab;BIxageqVgéd ? 291> eK[GnuKmn_ f kMNt; x     1 , 0 eday x2 x  1 f x   f  1x   x  1 . cUrKNna plbUk   S  f 1  f 2  f 3    f 2011  . 292> RbGb;mYymanragCaRbelBIEb:tEkg manvimaRt 180mm , 600mm , 90 mm . rkcMnYnKUbticbMputEdl GacerobbMeBjkñgú RbGb;enH. 293> edaHRsayRbB½n§smIkar 26xx2yy43xyxy .  294> rkBIrcMnYnKt; a nig b Edl a  b . ebIeKdwgfa plbUkrbs;vaCaBhuKuNén 15 ehIypldkkaerrbs; vaesµInwg 45 . 295> x, y , z CacMnYnsniTanxusBIsUnü. ebI A  yz  zy , B  xz  xz , C  xy  xy . bgðajfa témøén A  B  C  ABC minGaRs½ynwg x , y , z . 296> yuvCnbInak;KW A , B , C eFVIkarrt;RbNaMgKñacm¶ay 100 m . eBlrt;RbNaMgeKsegáteXIjfa ³ xN³eBl A rt;dl;TI B enAxVH 10 m eTot nigxN³eBl B rt;dl;TI C enAxVH 10 m eTot . eKsnµt; faGñkTaMgbIrt;kñúgel,Ónefr. sYrfa xN³eBlEdl A rt;dl;TI etI C enAcm¶ayb:unµanEm:Rt BI A ? 2

2

2

297> edaHRsayRbB½n§smIkar ³

 x  y  z  xyz   x  y  z  xyz  x  y  z  xyz 

.

298> eKman a , b , c CabIcnM YnxusKña. KNnaplbUk S  a  baa  c   b  c bb  a   c  a c c  b .  660 

-

299> rkRKb;bNþaKUéncMnYnKt;viC¢man x , y  epÞógpÞat;smIkar x  x  13  y . 300> eKmancMnYn A  2  5 Edl n CacMnYnKt;viC¢man. etIcMnYn A bBa©b;edayelxsUnü ¬0¦b:unµan ? 301> eK[bIcMnYnviCm¢ an a , b , c . edaHRsaysmIkar xbc a  xac b  xab c  2 1a  b1  1c  . 2

n

2

2 n 1



302> rkb¤sKUbén



  Z  8 ,   4

. 303> eKmanKUbcMnnY 7 manTMhMb:un²Kña² ehIypÁMúP¢ab;Kña)andUcrUbsUlItxagsþaM ³ edaydwgfasUlItenHmanmaD 448cm cUrrképÞRkLaTaMgGs;rbs;slU ItenH. 304> eKmanRtIekaN ABC mYy nigman AM  Caemdüan . bgðaj[eXIjfa 2 AM  AB  AC . 305> GñkebIkbrmñak;ecjBITIRkug A eTATIRkug B edayel,ÓnefrCaragral;éf¶. Kat;cab;GarmµN_eXIjfa ³ ebIKat;bEnßmel,Ón 3 km/ h enaHKat;eTAdl;eKaledA muneBlkMNt; 1em:ag. EtebIKat;bnßyel,Ón 2 km/ h enaHKat;eTAdl;eKaledA eRkayeBlkMNt; 1 em:agEdr. KNna ry³eBlFmµta el,ÓnFmµta nigcm¶ayBITIRkug A eTATIRkug B . 306> mYycMnYnmanplKuNxøÜnÉgesµInwgplbUkxøÜnÉg. KNnamYycMnYnenaH . 307> kñúgkic©RbCMumYymanmnusS 10 nak; )ancUlrYm ehIyGñkTaMgenaH)ancab;édsVaKmn_KñaeTAvijeTAmk. ebIdwgfaGñkTaMgGs;)ancab;édKña RKb;²Kña. cUrrkcMnYnénkarcab;édKñaTaMgGs;. 308> RsaybBa¢ak;facMnYn 2  3 Eckdac;nwg 35 .  2b 309> sRmYlRbPaKsniTan ³ E  aa  35ab . ab  6b 310> RtIekaNmYymanbrimaRt 24 cm . ebIRbEvgRCugTaMgbIsmamaRterogKñaKW 3 : 4 : 5 cUrKNnargVas; RCugnImYy²rbs;va. 311> cMnYnKt;mYymanelxBIrxÞg; EdlmanplbUkelxtamxÞg;esµInwg 9 . ebIeKdUrxÞg;rayeTACaxÞg;db;vji enaHeK)ancMnnY fµIeRcInCagcMnYncas; 63 . KNnacMnnY Kt;enaH. 312> brimaRténRbelLÚRkam ABCD manrgVas;esµI 48 cm . rgVas;km rktémø x EdleFVI[kenSam P  x 1x  2x  3x  6 mantémøtUcbMput ? rkémøtUcbMputenaH. 314> mnusSmYyRkumeLIgCiHLan. ebImñak;GgÁúyekAGImYy enaHenAsl;mnusS 4 nak;KµankEnøgGgÁúy. EtebI mnusSBIrnak; GgÁúyekAGImYy enaHenAsl;ekAGI 4 KµanmnusSGgÁúy. rkcMnYnmnusS nigcMnYnekAGI. 315> plbUkénBIrcMnYnesµInwg 1. bgðajfaplKuNvatUcCag b¤esµInwg 14 . 316> kaermYymanRkLaépÞ 100 cm carwkkñúgknøHrgVg;mYy. rkRkLaépÞénkaerEdlcarwkkñúgrgVg;TaMgmUl. 3

9

9

2

2

2

2

2

 661 

-

317> kMNt;témøéncMnYnBit a nig b edaydwgfa a

2

 x y z     2 3 4  xy  yz  zx  26

318> edaHRsayRbB½n§smIkar ³

.

 b2  0

.

319> KNnatémøKt;kenSamelx ³ E  2  5  2  5 . 320> BIrcMnYnmanplbUkesµI12 nigmanplKuNesµI 4 . KNnaplbUkcRmascMnYnTaMgBIrtamBIrrebobepSgKña. 321> ebI x  3x  8 CaktþamYyénkenSam x  rx  s cUrKNnark r nig s . 322> KNna A  2  4  6 ... 2n . 323> eKman S  1  21  2 1  2 1  2  ...  1  2  . cUrKNna S  1 . 2012 324> edaymineRbIm:asIunKitelx cUrKNnarktémøén A  1234568  1234567 . 12345679 325> rkcMnYnKt;viCm¢ an n edIm,I[ 4  n CacMnYnbzm . 326> rkelxxagcugénplKuN 7  2013  7  2013 . 327> KNnarkelxxagcugén A Edl A  2012 . 328> rkRKb;cMnYnKt;viC¢man n EdleFVI[ 2  1 Eckdac;nwg 7 . 329> bgðajfa 12  2 Eckdac;ngw 10 . 330> eKmancMnYn A Edl A  n  n . bgðajfa cMeBaHRKb;cMnnY Kt;viC¢man n enaH A Eckdac;nwg 30 . 331> eK[ f CaGnuKmn_BhuFakMNt;eday f x   x  3x . cUrKNna f x cMeBaH 3

3

2

4

2

4

2

8

1024

1024

2

4

2012

2010

2000

2012

2013

n

2012

2008

5

3

. 332> rkBIrcMnYnKt;viC¢man a nig b EdlmanplbUkesµI 92 nig a 1 CaBhuKuNén b . 333> cMeBaHcMnYnKt;viC¢man n / eK[ P  n  1n  2n  3 ...  n  n nig P  1 3  5  ...  2n  1 . bgðajfa P Eckdac;ngw P nigrkplEckrbs;vapg . 334> eK[ 2a3  326  5b9 Edl 2a3 nig 5b9 CacMnYnmanelxbIxÞg;. ebI 5b9 Eckdac;nwg 9 KNna a  b . 335> ]bmafa a  a  1 cUrKNnatémøelxénkenSam A  a  2a  4a  3a  3 . 2 2 336> KNnakenSam A eday[lT§plCaplKuNbIktþa Edl A  . 12  8  3  6 x3

3 2 3

3 2

2

4

3

2

200 337> KNnatémøelxén S  23  64  96  ......  300 . 338> RtIekaNEkgmYymanGIub:UetnusesµI 13 cm nigplbUkRCugBIreTotesµI 17 cm . rkrgVas;RCugmMuEkgTaMgBIr. 339> RsaybBa¢ak;fa ³ 3  2 . 340> bgðajfa A  6 Edl A  6  6  6  ...  6  24  24  24  ... 24 . 2

2

2

2

2

2

2

2

2

3

3

 662 

3

3

3

-

341> edaHRsaysmIkar ³

x  4 x  3 x  2 x 1    0 2008 2009 2010 2011

. 342> rkbIcMnYnKt;vCi ¢manxusKña x , y nig z EdlepÞógpÞat;RbB½n§smIkar  yx zy106 .  343> edaHRsaysmIkar ³ x  1  x  1 . d  344> eKmanbnÞat;BrI RsbKñaKW d  l  . x l  KNnamMu ³ x énrUbxagsþaM . 345> eKmanRtIekaNsm½gSBIr KW ABC nig DEF EdlmanrgVas;RCug esµI 3 cm dUcKña. RtIekaNTaMgBIrpÁúMKñadUcrUbxagsþaM )anRtIekaNsm½gS tUc²cMnYn 6 EdlmanrgVas;RCugesµI 1 cm dUcKña. KNnaRkLaépÞénrUbxagsþaM . 346> eKmancMnYn 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 . cUrykelxTaMgenHeTAbMeBjkñúgRbGb; kaerxagsþaM edIm,I[plbUkCYredk esµIplbUkCYrQr esµIplbUkGgÁt;RTUg esµIngw 15 . 347> RtIekaNmYymanrgVas;RCug a , b nig c EdlepÞógpÞat; 24a  18b  12c . k> KNnargVas;RCugénRtIekaN ebIeKdwgfa b  c  10 cm . x> KNnargVas;km kñúgfñak;eronmYyeKerobsisSCaRkum. ebIerobsisS 8 nak;kñúgmYyRkum enAsl;sisS 4 nak;eTot. EtebI erobsisS 9 nak;kñúgmYyRkum enaHenAxVHsisS 2 nak;eTot. rkcMnYnsisSkñúgfñak;eronenaH . 349> rkmYycMnYnebIdwgfa cMnYnenaHminFMCagBIr ehIyk¾mintUcCagBIrEdr. 350> rkmYycMnYn EdlmanplbUkesµIplKuNénxønÜ Ég. 351> mFüménBIrcMnYnesµI 2012 nigmFüménbIcMnYnk¾esµInwg 2012 Edr. cUrrkcMnYnTI 3 . 352> x CacMnYnKt;viCm¢ an manelxBIrxÞg;. cUrKNna x ebIdwgfa 44 Eckdac;nwg x sl;sMNl; 10 . 353> edaHRsaysmIkar HE  SHE . 354> kMNt;témø a nig b edIm,I[kenSam ax  bx  54x  27 GacsresrCaKUbéneTVFamYy)an . rYckMNt;eTVFaenaH . 355> RtIekaN ABC EkgRtg; A manGIub:Uetnus BC  17 cm nig AB  AC  23cm . KNna AB nig AC . m 356> eK[RbB½n§smIkar 23xx  57yy  20 . kMNt;témø m edIm,I[KUcemøIyénRbB½n§smIkarviC¢man . 30 o

110o

A

D

F

B

C

E

2

3



357> KNnakaMrgVg;énrUbxagsþaM ³

2

1

1

1

1 1

1

358> KNnacMnYnKt;FmµCati n EdleFVI[cMnYn n 13 nigcMnYn n  76 CakaerR)akd .  663 

-

5x

359> KNnatémømMu x KitCadWeRk énrUbxagsþaM ³

3x

7x 4x

360> edaHRsayRbB½n§smIkar EdlmansmIkarnImYy²KW

6x 2

2x 2y2 2z 2      y 1 ,  z 2 ,  x 3 1  x2 1  y2 1 z2

.

361> RsaybBa¢ak;[eXIjfa plbUkmMukñúgTaMgbIénRtIekaNesµInwg 180 . 362> cUrRsaybBa¢ak;BIRTwsþIbTBItaK½r EdlfakñúgRtIekaNEkg a  b  c man c CaGIub:Uetnus. 363> cUrrkcMnYnmYyEdlmanelxbYnxÞg;KW abca edaydwgfa abca  5c  1 . 364> eKmanBIrcMnYn a  b  0 . bgðajfa RKb;cMnYnKt;FmµCati n enaHeK)an a  b . 9900  ...  365> KNnaplKuN P  22  36  12 . 4 100 366> dak;kenSam P  x  y    y  z   z  x  CaplKuNktþa . 367> eK[ a b  0 EdlepÞógpÞat;lkçxNÐ 3a  3b  10ab . KNnatémøénkenSam P  aa  bb . o

2

2

2

2

n

3

3

n

3

2

2

368> eK[kenSam A  xx  13 . kMNt;témø x viC¢man edIm,I[ A CacMnYnKt;viC¢man . 369> bgðajfa ebI a  b  c  0 ehIy a  0 , b  0 , c  0 enaHeK)an a  b  c  3abc . 370> edaHRsaysmIkar x  2012   x  0 . 371> KNnatémøénkenSam A  x  x  x  2x 1 cMeBaH x  1 2 1 . 3

2012

4

3

3

2012

3

2012

2

2 1 1



2 1 1

372> sYnc,armYymanragCactuekaNEkg EdlmanépÞRkLa 720 m . ebIeKEnßmbeNþay 6m nigbnßyTTwg 2

enaHépÞRkLarbs;sYn minmankarpøas;bþÚreT . KNnavimaRténsYnc,arenaH. 373> eK[BIrcMnYnEdltUc b¤FMCagKña 3 Ékta. ebIdwgfaplbUkkaeréncMnYnTaMgBIresµI 89 cUrrkcMnYnTaMgBIr. 374> KNnatémø x , y Edl y  0 BIsmIkar ³ x  4x  y  6 y 13  0 . 375> k> eRbóbeFob 3  3 nig 62  3  . x> eRbóbeFob 14 48 nig 7  4 3  7  4 3 . 376> edaHRsaysmIkar x  2  x  3  1 . 377> rkcMnYnEdlmanelxBIrxÞg; AB EdlepÞógpÞat; AB  BA  1980 . 378> ebI ab  4 , ac  5 , bc  20 . KNna a , b , c . 379> KNna A  2025  1 2025  2 2025  3  ...  2025  50  . 380> etIcMnYn P  1 2  3...100 bBa©b;edayelxsUnücMnYnb:unµanxÞg; ? 4m

2

4

4

4

4

2

2

2

2

 664 

2

2

-

381> etIcMnYn 2012! manelxsUnüenAxagcugb:unµan ? 382> KNna N  4  15  4  15  2 3  5 . 383> kñúgfg;mYymanXøIBN’s nigXøIBN’exµAcMnYn 12 RKab; . rkcMnYnXøI s edIm,I[RbU)ab énXøIexµAesµI 13 . 384> eK[ ABC Edlmanemdüan AM , BN nig CP .

k> RsaybMPøWfa AM  BN  CP  AB  BC  AC . x> RsaybMPøWfa AM  BN  CP  AB  BC2  AC . 385> eK[bIcMnYnKt;ruWLaTIbtKña a , b , c Edl a  b  c . k> KNnaplbUk S  a  b  c CaGnuKmn_én b . x> Tajrktémøén a , b , c edaydwgfa S  333 . 386> kukmYyehIrCYbRksamYyhVÚgk¾ERsksYrfa {sYsþImitþTaMg 100 }. emxül;énhVÚgRksa)aneqøIytbvijfa {eTcMnYnBYkeyIgminRKb; 100 eT} . cMnYnBYkeyIgbUkcMnnY BYkeyIg bEnßmBak;kNþaléncMnYnBYkeyIg ehIyEfm 14 énBYkeyIg RBmTaMgmitþÉeToteTIbRKb; 100 . cUrrkcMnYnRksakñúghVÚgTaMgGs; . 2 2 2   x  y  z  xy  yz  xz  2011 2011 2011   32012 x  y  z

387> edaHRsayRbB½n§smIkar 388> brimaRténRtIekaN

.

mYymanrgVas;esµI 80 cm . ebIRCugTaMgbImansmamaRterogKña 5 , 7 , 4 . cUrKNnargVas;RCugnImYy² . bc ac 389> eK[ 1a  b1  1c  0 . KNnatémøénkenSam P  ab .   c a b ABC

2

 x  3  2 y 1  2

390> edaHRsayRbB½n§smIkar 

2 x  3  y  1  4

2

2

.

391> eKman a  1 , b  1 nig a  b . cUreRbóbeFob ba  11 , ba nig ba 11 . 392> eRbobeFob A  5 2  7  5 2  7 nig B  5110 2  5110 393> edaHRsaysmIkar 1 x x  2 x x  3 x x  ... 2013x  x  0 . 3

3

394> k> dak;CaplKuNktþanUvsmPaB

2

.

. x> bgðajfabIcMnYnBitminsUnü a , b , c ehIymanBIrcMnYnpÞúyKñamYyy:agtickñgú cMeNam a , b , c enaH eK)anTMnak;TMng 1a  b1  1c  a  1b  c . 395> edaHRsaysmIkar 3  3  30 . 396> sRmYlRbPaK A  x3x 14xx 1x eday x  0 . 2 x

1 1 1 1    a b c abc

2 x

2

 665 

-

397> edaHRsayRbB½n§smIkar

x  y 1  xyz  2  yz 5    xyz 6 x  z 2    xyz 3

.

398> RtIekaNEkgmYymanrgVas;RCug CabIcnM YnKUtKña . KNnabrimaRt nigRkLaépÞrbs;RtIekaNenH. 399> sRmYlkenSam F  xx 11 . 2

400> KNnacm¶ayBIcMNuc A6 , 6 eTAbnÞat; D : y   x  4 kñúgtRmúyGrtUNrem. 401> 402> dak;kenSam x  1x  3x  5x  7  24 CaplKuNktþa . 403> eKmanbIcMnYn a , b , c epÞógpÞat;TMnak;TMng a  b  c  1 nig a  b  c  1 . 2

2

2

3

3

3

RsaybBa¢ak;[eXIjfa ³ a  b  c  1 . 1 404> eK[ ax  by  cz  0 nig a  b  c  2005 . KNna A  bc y  z  ax acxby z cz abx  y . 405> cUrkMNt;témø x nig y edIm,I[cMnYn N  3x82 y Eckdac;nwg 3pg nigEckdac;nwg 11pg . 406> eKmancMnYn A  2 . cUrrkelx ³ k> mYyxÞg;xagcug x> BIrxÞg;xagcug K> bIxÞg;xagcug . 407> KNnaplbUk S  101  102  103  ... 10n . 2

3

2

2

2

2

2

2

2004

n

2

3

408> edaHRsayRbB½n§smIkar ³  3x  y  

x y

n

x y

9 324  18x 2  12 xy  2 y 2

.

409> eK[ a CacMnYnKt;FmµCati . bgðajfa n  , a  1  an  1  1 CaBhuKuNén a . 410> dak;kenSamxagsþaMCaplKuNktþadWeRkTI! ³  a  4b   2  a  2b  x  a  b  0 . 411> RsaybBa¢ak;fa 4a  4a  5a  4a  1 0 , a CacMnYnBit . 412> eK[smIkar x  a  bx  b  cx  c  aa  b  c  abcx . edaHRsaysmIkarebI a  2, b  3, c  4 . 413> eK[ x , y , z CabIcMnYnviC¢manminsUnü . cUrbgðajfa x1  y1  z1  x  y9  z . n 1

2

4

3

2

2

3

3

4

4

2

2

414> enAkñúgtRmuyGrtUNemeK[bIcMNuc

2

2

2

2

2

. bnÞat; D  nig L kat;tam C . k> sresrsmIkabnÞat; AB x> rksmIkarbnÞat; D Rsbnwg AB K> rkbnÞat; L Ekgnwg AB . 415> edaHRsaysmIkar x x  21x  x x12x6 35  x x 4x2 3  x x10x5 24 . 416> edaHRsaysmIkar 24 x  112 x  18x  16x  1  330 . 417> edaHRsaysmIkar x  3x  4  2x  5x  3  3x  2x 1 . 2

2

2

3

A1, 2, B2 , 3, C 3, 4

2

2

2

3

 666 

2

3

-

99 1 418> bgðajfa 151  12  34  56  ... 100 .  10 419> dak;CaplKuNktþanUvsmIkar 16x  20x  5x  1  0 ebIeKdwgfa  1 Cab¤sénsmIkarenH . bc  ca 420> ebI a  0 , b  0 , c  0 Edl a  b  c . cUrRsaybMPøWfa 1a  ab 3abc . 421> rkbIcMnYnKt;rL Wu aTIb a , b , c edaydwgfa cMeBaHRKb;témø x eK)an ³ x  ax 10   1  x  bx  c . 5

422> edaHRsayRbB½n§smIkar

3

 x1  x2  x3  ... x2000  1  x  x  x  ... x 4 2000  2  1 3  x1  x2  x4  ... x2000  3 .......................................   x1  x2  x3  ... x1999  2000

EdlmancMnYn 2000 smIkar .

423> edaHRsaysmIkar x  1x  2x  3x  4  3 . 424> eKmanctuekaNBñay ABCDmYyman)at AB  80 cm , CD  40 cm . KNnaépÞRkLaénctuekaN

BñayenH ebIdgw faRCug AD  68 cm nig AC  84 cm . 425> fñak;TI 9C mansisSbIRbePTKW BUEk mFüm exSay. enAedImqñaMcMnYnsisSsmamaRtnwg 3 , 4 , 7 luHdl; cugqñaMcMnYnsisSsmamaRtnwg 2 , 5 , 7. ebIdwgfacugqñaMsisSexSayfycuH 10 nak; cUrrkcMnYnsisSsrub. 426> eK[ ax  by  cz  k Edl k CacMnYnKt;FmµCati. bgðajfa ax  by  cz  a  b  cx  y  z . 427> k> rkbIcMnYnKt;esstKña ebIplbUkcMnYnTaMgbIesµInwg 909 . x> rkbYncMnYnKt;KUtKña ebIdwgfaplbUkcMnYnTaMgbYnesµnI wg 1028 . 428> edaHRsaysmIkar 0.17  2. 3  x  0. 3 . 429> xügmYyenAkñúgGNþÚglU manCeRmA 7m.eBlyb;xügenHvareLIgelI)an 3m EtenAeBléf¶eRkamGMNac énkemþAvaFøak;cuH 1m vij. ]bmafa xügBüayamvareLIgrhUt etIb:unµanéf¶eTIbxügecjrYcBIGNþgÚ . 430> enAem:ag 6:30 mn narImYyRkumcab;epþImsÞgÚ RsUvBIPøWmçag eTAPøWmçageTot Edlmancm¶ay 100m eday el,Ón 30m/h ehIybursmYyRkumeTotcab;epþImsÞÚgBIPøWmçagedayel,Ón 20m/h . k>etIRkumTaMgBIrsÞÚgCYbKñaenAem:agb:unµan ? x> etImYyRkum²sÞÚg)anRbEvgb:unµan m ? 431> KNnakenSam F  x  2  3 2x  5  x  2  3 2x  5 . 432> eKmankaer ABCD nigcMNuc K enAelIGgát;RTUg AC . bgðajfa KA  KC  2KD . 433> KNnakenSam x  y1 ebIdwgfa  x  1y   1296 nig xy  4 . 2

2

2

2

4

4

4

434> edaHRsayRbB½n§smIkar





ab  8 3 3  a  b 3

.

 667 

-

435> eK[RtIekaNsm)at COB Edlman)at OB nigkm ABC CaRtIekaNEkgRtg;kMBUl A manbrimaRtesµI 12 cm nigmanRkLaépÞesµI 6 cm . KNnargVas; 2

2

2

2

2

RCugnImYy² énRtIekaNEkg ABC enH . 437> rkcMnYnKt;EdlenAcenøaH 40 nig 50 edaydwgfa ebIeKbþÚrlMdab;elx enaHeKnwg)anCYbcMnYnfµImYyeTot EdlesµInwg 32 éncMnYnenaH . 23 438> tamcMNuc O kñúgRtIekaNsm½gS ABC eKKUsGgát;EkgeTAnwgRCugTaMgbIénRtIekaNenaH. bgðajfaplbUkcm¶ayBIcMNuc O eTARCugTaMgbIesµInwgrgVas;km bM)at;r:aDIkal;BIPaKEbg A  . 440> edaHRsayRbB½n§smIkar 441> eK[RtIekaN

3 5  2 2 5  x  y  3   x  z  2  xy  yz  zx  2 

.

manrgVas;RCug a , b , c nigRtIekaN ABC manrgVas;RCug a , b , c . ]bmafa ABC dUcnwg ABC bgðajfa aa  bb  cc  a  b  ca  b  c . 442> ABC CaRtIekaNEkgRtg; A Edlman BC  2a nig B  60 . kMNt;témø a edIm,I[témøbrimaRt esµInwgtémøépÞRkLa . 443> enAmanlMhat;bnþCaeRcInTot>>>. ABC

o

 668 

-

1> rkRKb;KUéncMnYnKt;viC¢manén a , b eyIgman ³ eyIg)an ³

-ebI A  2 enaHelxcugén 3 -ebI A  3 enaHelxcugén 3 naM[ 3  3

4 k A

4 k A

a 2  b2  a  b  8 4a 2  4a  1  4b 2  4b  1  34

32013  345031

2a  12  2b  12  34

eday 34  36  6 ehIy 2a 1 nig 2b 1CacMnYness enaH 34 CaplbUkkaercMnYnesstUcCag 6 . cMnYnesstUcCag 6man 1, 3, 5 manEt 3  5  34 b¤ 5  3  34 eyIg)an ³  2a 1  3 nig 2b 1  5 enaH a  2 , b  3 b¤  2a  1  5 nig 2b  1  3 enaH a  3 , b  2 dUcenH KUcMnYnepÞógpÞat;KW ³ aa  32 ,, bb  23 . 2

2

2

2

E   x  y  x  2 y  x  3 y  x  4 y   y 4  x 2  4 xy  xy  4 y 2 x 2  3 xy  2 xy  6 y 2  y 4 2

 5 xy  5 y 2  y 2 x 2  5 xy  5 y 2  y 2  y 4

2

 5 xy  5 y 2  5 xy  5 y



 

2

 5 xy  6 y  y



3 3

, 3 9 2

4 k A

4 k A

4 k A

4 k A

32 2

P

 CakaerR)akd . 2

2013

, 3  27 3

17  12 2

3 2 2



2  2 2 1



9  12 2  8

17  12 2 

2  2 2 1 9  12 2  8

2 2  2 2  12





3 2  12 2  2 2

2014

 2  1 3  2 2  2



2

, 3  81 4

35  243 , 36  729 , 37  2187 , 3  6561 , ...

eyIgTaj)anTUeTA sV½yKuNén 3 ³ eyIgman 3 -ebI A  0 enaHelxcugén 3 KW ³ 1 -ebI A 1enaHelxcugén 3 KW ³ 3

4503 2

4



2012

4503 0

2012

2 2

E  x 2  5xy  5 y 2

2011

4k  A

 y4  y4

3> rkelxenAxÞg;rayéncMnYn A ³ eyIgman A  3  7  3  7  BinitüelxcugsV½yKuNén 3 ³ 1



 5 xy  4 y

2

dUcenH

x

2

2

7 5  16807 , 7 6  ...9 , 7 7  ...3 , 78  ...1 , ...

4> KNnakenSam P ³ eyIgmankenSam

tag y  1000 eyIg)an ³ 

, 7 2  49 , 7 3  343 , 7 4  2401



E  x  1000 x  2000 x  3000 x  4000   1000 4

2

71  7

2014

2> RsaybBa¢ak;fa E CakaerR)akd eyIgman ³

2

BinitüelxcugsV½yKuNén 7 ³



2

  x  y  x  4 y  x  2 y  x  3 y   y 4



eyIgTaj)anTUeTA sV½yKuNén 7 ³ eyIgman 7 , k  N -ebI A  0 enaHelxxagcugén 3 KW ³ 1 -ebI A 1enaHelxxagcugén 3 KW ³ 7 -ebI A  2 enaHelxxagcugén 3 KW ³ 9 -ebI A  3 enaHelxxagcugén 3 KW ³ 3 naM[ 7  7 manelxcug 1 7 7 manelxcug 9 eyIg)an ³ elxcug A =elxcug 7  elxcug1  elxcug 3  elxcug 9 = elxcug 7  elxcug 7 = elxcug 4 dUcenH cMnYn A manelx 4 enAxagcug .



  x  x  x  x

45023

2011

4a 2  4b 2  4a  4b  32

KW ³ 9 KW ³ 7 manelxcug 7 manelxcug 3

4k  A



,k  N



2 1 32 2







2



3 2  12 2  2 2

 2  1 3  2 2  2



2

2 1 3 2 2

  2  13  2 2   2 2 

2 1 3  2 2  32

4 k A



2 2  2 2  12



2

 3 2  432 2 3 2  43 2 2  2

4 k A

dUcenH kenSam P  2 .  669





2

5> KNnatémø x edIm,I[ eyIgman ³

F

mantémøGb,brma

tamlMnaMxagelIeKGacbMEbk)an dUcxageRkam ³ 1 1 1   1 2 1 2 1 1 1   23 2 3 1 1 1   3 4 3 4

F   x  1 x  2  x  3 x  6    x  1 x  6  x  2  x  3

  x  x



 x 2  6 x  x  6 x 2  3x  2 x  6



2

 5x  6 x  5x  6

2

 5 x  36



2





bUkGgÁnwgGgÁ

>>>>>>>>>>>>>>>>>>>>>>>

2

eday x  5x  0 enaH x  5x naM[ F mantémøGb,brmaKW F  36 eyIg)an x  5x  36  36 x  5x  0 2

2

2

2

 36  36

2

2

b¤ cMeBaH n CacMnYnKt;viC¢manehIyFMCag! eK)an n  n 1 b¤ n n 1  1

2

2

x  5x  0 xx  5  0 2

naM[ x  0 , x  5 dUcenH témøKNna)anKW

6> KNnatémøén eyIgman ³

x  0 , x  5

x2  y2

.

naM[

³

dUcenH

x  y  30

x 3  y 3  3xyx  y   27000

eday x  y  8100 nig x  y  30 eyIg)an ³ 8100  3xy  30  27000 3

90 xy  27000  8100 18900 xy   210 90 x 3  y 3   x  y x 2  xy  y 2 



8100  30 x  210  y

x

2

2

 210  y

2

  270

2

dkGgÁnwgGgÁ



1

1

2

2

2  8n  56q1  40  7n  56q2  21 n  56q1  q2   19

ebItag q CacMnYnKt;FmµCati Edl q  q  q eyIg)an n  56q  19 dUcenH témøsMNl;Edl n Ecknwg 56 KW 19 . x> rkcMnYn n ³ eday 5616  n  5626 naM[ 5616  56q  19  5626 1

x 2  y 2  480

x 2  y 2  480

56

1

x 2  y 2  270  210

dUcenH témøKNna)anKW ³

.

smµtikmµ ³ n Ecknwg 7 [sMNl; 5 ebItag q  CaplEck enaHeK)an n  7q  5 n Ecknwg 8 [sMNl; 3 ebItag q  CaplEck enaHeK)an n  8q  3 eyIg)anRbB½n§smIkar nn  87qq  53  87

x 3  3x 2 y  3xy 2  y 3  27000

Et

1 1 1 1    ...  1 1 2 2  3 3  4 n  n  1 1 1 1 1    ...  1 1 2 2  3 3  4 n  n  1

8> k> rksMNl;ebI n Ecknwg

x  y 3  303

3

1 1 1   n  n  1 n n  1 1 1 1 1 1 1    ...    1 2 2  3 3  4 n  n  1 1 n  1 1 1 1 1 n    ...   1 2 2  3 3  4 n  n  1 n  1

.

7> RsaybMPøWfa ³ 11 2  21 3  31 4  ...  n  n1  1  1 Binitü ³ 1n  n 1 1  nnn11n  nn1 1

5597  56q  5607 99.946  q  100.125

 670



2

eday q CacMnYnKt;FmµCati enaH q  100 eyIg)an n  56100 19  5619 dUcenH cMnYn n Edlrk)anKW ³ n  5619 .

10> KNnatémøelxénkenSamelx A eyIgman ³ A  182  33125  182  33125 tamrUbmnþ a  b  a  3a b  3ab  b  a  b  3aba  b  naM[ ³ 3

3

3

3

3

9> bgðajfa A  a1  a1  a1  ...  a1 CacMnYnKt; 1

eyIgman ³ a 1  an

2

3

2

n

naM[

2

 1  1 1  1    1  1   n    n  1  1 1  1    1  1   n    n 2

 1  1 1   1    1  1   n    n

2

A3  364  33 1822  331252  A A3  364  33 33124  33125  A

2

A3  364  3 A

2

A3  3 A  364  0

edayemIleXIjb¤sgay A  7 eyIg)an ³



A3  3 A  364  0 A3  7 A 2  7 A 2  49 A  52 A  364  0 A 2  A  7   7 A A  7   52 A  7   0

 A  7A2  7 A  52  0   A  7  0

2

Taj)an  A 

2

 7 A  52  0

naM[  A  7  0

 A7

eRBaHKµanb¤s edaysar   0 dUcenH témøelxénkenSam A  7 .  A2  7 A  52  0



11> KNna A  x  eyIgman ³ 2 xy  y  4 x 2011

  



1 1  5 1 a1 4 1 1  13  5 a2 4 1 1  25  13 a3 4

y 2011 2

 2x 1

y 2 x  1  4 x  2 x  1



2

4x 2  2x 1 y 2x 1 2 x2 x  1  1 y 2x 1 1 y  2x  2x 1



>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>



3

3

2n  2n  1 2n  2n  1  n2 n2  4 n 2 n  2n  2n  1 2n 2  2n  1      4  n2 n2  1  2n 2  2n  1  2n 2  2n  1 4

 eyIg)an ³

3

 3 3 182  33125  3 182  33125   A  

2 2   1 1  1 1  1  12  2  1       1  12  2  1        n  n   n  n      2 2 1 1  1 1  12  2  1      12  2  1      n  n   n  n   2

3

A3  182  33125  182  33125 

1

2



2

2

A3   3 182  33125  3 182  33125   

20

 1  1  1  1    1  1    n  n

2



1 1  841  761 a20 4 1 1 1 1 1    ...   841  1 a1 a2 a3 a 20 4 1  29  1  7 4





smµtikmµ x , y CacMnYnKt; enHmann½yfa 1 1 CacM n Y n Kt; l u H RtaEt CacMnYnKt; y  2x  2x 1 2x 1

dUcenH KNna)an A  7 CacMnYnKt; .  671



ehIy 2 x1 1 CacMnYnKt;luHRtaEt 2x 1  1 naM[ x  1Taj)an y  2 x  2 x1 1  2 1 

eyIg)an ³ A  x  y dUcenH KNna)an A  x 2011

12> KNna

f 12 

2011

 13x

f x   x

5 7 2 AD AB AD  AB   5 7 12 1

1  2 1  1 2 1  1

2011

2011

smµtikmµ smamaRtkm
 12011  12011  2

.

 y 2011  2

³ eyIgman ³ 2010

 13x

2009

 13x

2008



 ...  13x  13x  1 2

 x 2011  12 x 2010  x 2010  12 x 2009   ...  12 x 2  x 2  12 x  x  1

 x 2010  x  12  x 2009  x  12   x 2008  x  12  x 2007  x  12   ...  x x  12   x  1

 x  12( x 2010  x 2009  x 2008  x 2007   ...  x)  x  1

cMeBaH

x  12

CMnYscUl eyIg)an ³

f 12  12  12(122010  122009  122008  122007   ... 12)  12  1 f 12   0  11  11

dUcenH eRkayBIKNna f 12   11 .

13> KNnargVas;RCugénRbelLÚRkam ABCD A

B

h1

eyIgmanrUbmnþRkLaépÞRbelLÚRkam S  AB  h b¤ S  AD  h Taj)an AB  h  AD  h )ansmamaRt hh  AD AB 1

ABCD

1

2

2

dUcenH rgVas;RCugRbelLÚRkamKW 10cm nig 14cm .

2

AB 

smIkaremdüaT½rénGgát; AB CasmIkarbnÞat;Edl kat;tamcMNuckNþalGgát; ABehIyEkgnwgGgát; AB. eyIgman ³ A2 , 3 nig B4 , 4 naM[kUGredaencMNuckNþalénGgát; ABKW ³  x  xB y A  y B   2  4 3  4   7  I A , ,   I   I  3,  2   2 2   2  2

-bnÞat;  AB kat;tam A2 , 3 enaH A  AB  naM[kUGredaencMNuc A epÞógpÞat;smIkar³ 3  2a  b GacsresrCa 2a  b  3 1 -bnÞat;  AB kat;tam B4 , 4 enaH B   AB  naM[kUGredaencMNuc B epÞógpÞat;smIkar³ 2 4  4a  b GacsresrCa 4a  b  4 yksmIkar 2  1 eyIg)an ³ 4a  b  4   2a  b  3 2a  1

C

1

AB  2  AB  14cm 7

h2

D

ABCD

5 naM[ AD  smmUl AB 7 EtRbelLÚRkammanbrimaRt 48cm naM[ 2 AB  AD   48 enaH AB  AD  24 AB AD  AB 24 eyIg)an AD    2 5 7 12 12 TMnak;TMngsmamaRt AD  2  AD  10cm 5

14> rksmIkaremdüaT½rénGgát;

 x 2009  12 x 2008  x 2008 



2 1

naM[ a  12 -smIkaremdüaT½rRtUvrkmanrag y  ax  b eday y  ax  b   AB  enaH a  a  1 b¤ 12  a  1  a  2 ehIy emdüaT½rkat;cMNuckNþal I enaH I   y  ax  b  672



eyIg)an ³ 72   2  3  b

 b 

17> KNna E  xx  yy

7 19 6 2 2

naM[smIkaremdüaT½rEdlRtUvrkGacsresr³ y  2x  192 dUcenH smIkaremdüaT½rénGgát; ABKW³ y  2x  192

15> rkRbU)abcab;)anXøI@ minEmnBN’exov

x y E x y

cMeBaH smmUl E . eyIgman ³ 2 x  2 y  5xy naM[ 2 x  2 y  5xy

RBwtiþkarN_cab;min)anXøIBN’exov mann½yfa ³ )anXøIRkhmTaMg@ b¤ elOgTaMg@ b¤ Rkhm!elOg! -RbU)abcab;)anXøIRkhmTaMg@KW P ¬k>k¦= 122  111  661 -RbU)abcab;)anXøIelOgTaMg@KW P ¬l>l¦= -RbU)abcab;)anXøIRkhm!elOg!KW ³ 2 4 4 2 4 P ¬k!>l!¦= P ¬k>l¦÷ P ¬l>k¦=          12 11   12 11  33

4 3 1   12 11 11

2

2

2

2



2



2 x 2  y 2  5 xy 5 x 2  y 2  xy 2



-Efm 2 xy elIGgÁTaMgBIrénsmIkar  eyIg)an x  2xy  y  52 xy  2xy smmUl x  y   92 xy -Efm  2 xy elIGgÁTaMgBIrénsmIkar  eyIg)an x  2xy  y  52 xy  2xy smmUl x  y   12 xy 2

2

2

2

naM[ RbU)abcab;XøI@minEmnBN’exovKW ³ P

2  x  y  x  y 2

2

2

¬minEmnexov¦= P ¬k>k¦÷ P ¬l>l¦÷ P ¬k!>l!¦ 1 1 4   66 11 33 1  6  8 15 5    66 66 22 

x  y 2 E2  x  y 2

eyIg)an ³

9 xy  2 9 1 xy 2

dUcenH RbU)abcab;min)anXøIBN’exovKW P  225 .

Taj)an E  9  3 eRBaH x  y  0 enaH E  0 dUcenH eRkayBIKNna E  3 .

16> KNnakenSam

18> sRmYlkenSam

A

³ eyIgman

6  12  18  ... 962  3 A 12  24  36  ... 1922 4 2  6  12  18  ...  96 3   2 2  6  2 12  2 18  ... 2  96 4 6  12  18  ... 962  3  26  12  18  ... 962 4 2  6  12  18  ...  96 3  2  2 2 6  12  18  ...  96 4 

1 3  1 4 4

³ eyIgman

E

x  y x  y 

E  2x 2  y 2  2x x  y  x  y     

x  y   2 x x  y   x  x  y  x  y   2 x x  y   x  x  y   x  y   x  x  y  x  y   x  x  y   x 2

2

2

2

2

2 2

2

2

2

2

2

2

2

2

2

2

2

2

2

dUcenH eRkayBIsRmYlrYc E  x .

dUcenH eRkayBIKNna A  1 .  673



2

2

2

2

19> KNnaplKuN iii   c  a   2 ca k> A  1  cot1 1  cot 2 1  cot 3  1  cot 44  edayKuNGgÁnwgGgÁén i  ii iii eyIg)an ³ a a  b  b  c  c  a   2 ab  2 bc  2 ca tamrUbmnþ cos  cot a eyIg)an sin a o

o

o

o

 cos1o  cos 2 o  cos3o   cos 44o       1   A  1  1  1     o  o  o  o   sin 1  sin 2  sin 3   sin 44   sin 1o  cos1o A   sin 1o 

 sin 2 o  cos 2 o  sin 2 o 

 sin 3o  cos3o  sin 3o 

edaydwgfa sin a  cos a   2 sin 44 A   o  sin 1

o

 2 sin 43   sin 2o 

o



  sin 44 o  cos 44 o      sin 44 o  

2 sin 45 o  a

 2 sin 42   sin 3o 

o



  

a  b b  c c  a   8 ab  bc  ca a  b b  c c  a   8abc dUcenH eyIgeXIjfa a  bb  cc  a  8abc

21> bgðajfa a  b  c  ab  bc  ca ³ eday a , b , c CacMnYnBitviC¢man eyIg)an ³ 2

  2 sin 1        sin 44o     o

44  sin 44 o  sin 43o  sin 42 o   sin 1o         A  2      o  o  o  o   sin 1  sin 2  sin 3   sin 44 

Emn .

2

2

 a  b   0  a 2  2ab  b 2  0  a 2  b 2  2ab i  2

 b  c   0  b 2  2ab  c 2  0  b 2  c 2  2bc ii 

eRkayBIsRmYl eyIg)an A  2  4 194 304 dUcenH lT§plénplKuNKW A  2  4 194 304 .  c  a  0  c  2ab  a  0  c  a  2ca iii x> B   3  tan1  3  tan 2  3  tan 3   3  tan 29  edaybUkGgÁngw GgÁén i   ii  iii eyIg)an ³ sin a a  b  b  c  c  a  2ab  2bc  2ca tamrUbmnþ cos  tan a eyIg)an a 2

22

2

2

2

2

2

22

o

o

o

o

2

 sin 1o B   3  cos1o 

 sin 2 o  3  cos 2 o 

  sin 29 o    3  cos 29 o  





3 cos a  sin a  2 cos 30 o  a



dUcenH eXIjfa a

ii 

¬Efm 43 ¦

2 3 y  2  48  4 3 3 2 52   x  3 y  2   3 3 

2  3 x  3 y  2   52 3  3x  23 y  2  52

2

 b  c   2 bc

Emn .

x3 y  2  

20> cUrbgðajfa ³ a  bb  cc  a  8abc eday a , b , c CacMnYnBitviC¢man eyIg)an ³   a  b  0 dUcKñaenHEdr eyIg)an ³

 b 2  c 2  ab  bc  ca

2 x  2 y  16  3 xy 3 xy  2 x  2 y  16 4 4 3xy  2 x  2 y   16  3 3

  

29

i 

2

22> rkb¤sKt;rbs;smIkar eyIgman 2x  y   16  3xy

29

ab

2

2



eRkayBIsRmYl eyIg)an B  2  536 870 912 dUcenH lT§plénplKuNKW B  2  536 870 912 .

a  b   2

2

a 2  b 2  c 2  ab  bc  ca

 2 cos 29 o  2 cos 28 o  2 cos 27 o   2 cos1o          B   o o o o   cos1  cos 2  cos 3   cos 29   cos 29 o  cos 28 o  cos 27 o   cos1o       B  2 29     o  o  o  o  cos1  cos 2  cos 3   cos 29

a2  2  a  b  b2  0

2

2 a 2  b 2  c 2   2ab  bc  ca 

  

 3 cos1o  sin 1o  3 cos 2 o  sin 2 o   3 cos 29 o  sin 29 o       B   o o     cos1 cos 2 cos 29 o     

edaydwgfa

2

edaycg;rkEtb¤sKt;én x nig y EdlepÞógpÞat; ehIy  674



1 52  52  2  26  4  13 



 52  1  52  26  2 13  4 

-cMeBaH 33yx22521 -cMeBaH

  3x  2  2  3 y  2  26  3x  2  4  3 y  2  13

24> k> KNna f x  f  y  eyIgmanTMnak;TMng f x   4 4 2 naM[ f  y   4 4 2 eyIg)an f x  f  y   4 4 2  4 4 2

 3x  3  x 1     3 y  54  y  18  3x  4 minykeRBaHminKt;¦   3 y  28  3x  6 x  2    3 y  15 y  5

x

¬

x

y

y

-cMeBaH dUcenH KUb£sKt;EdlrkeXIjrYmman³  x  18  x  5  x  1 x  2 b¤ . , ,   y 1 y2 y  18 y  5 





x

y

x

y









4x 4 y  2  4 y 4x  2 4x  2 4 y  2 4 x y  2  4 x  4 x y  2  4 y  x y 4  2  4 x  2  4 y  22 







23> RsaybBa¢ak;fasmIkarEdl[manb¤Canic© edaydwgfa x  y  1 enaHeyIg)an eyIgman x  ax  b  x  bx  c  x  cx  a  0 f x   f  y   4  2  4  4  2  4 4  24  24  2 edayBnøatsmIkarxagelI eyIg)an ³ 8 24  24 x



x 2  bx  ax  ab  x 2  cx  bx  bc  x 2  ax  cx  ac  0

dUcenH

3x 2  2ax  2bx  2cx  ab  bc  ac  0



y

x

y

x

y

8  2  4x  2  4y

f x   f  y   1

2

1

tamlkçxNÐEdl[ .

3x 2  2a  b  c x  ab  bc  ac   0

x> TajrkplbUk S ³ eyIgman eXIjfaeRkayBIbRgYmrYcvaCasmIkardWeRkTI2  1   2   3   2010  edIm,I[smIkardWeRkTI2manb¤sCanic© luHRtaEt   0 S  f  2011   f  2011   f  2011   ...  f  2011  edayyl;fa f x  f  y   1 kalNa x  y  1 eyIg)an   b  ac Edl b  b2 ehIyeXIjfa    a  c  c   3ab  bc  ac  1 2010  1   2010    1 enaH f   a  b  c  2ab  bc  ac   3ab  bc  ac   f  1 2011 2011  2011   2011  2

2

2

2

2

 a 2  b 2  c 2  ab  bc  ac  1  2a 2  2b 2  2c 2  2ab  2bc  2ac 2 1  a 2  2ab  b 2  b 2  2bc  c 2  c 2  2ac  a 2 2 1 2 2 2  a  b   b  c   c  a  2 a,b,c









eday

2 2009  1 2011 2011

 CacMnYnBit enaHeyIg)an ³



enaH

 2  f   2011 

 2009 f  2011

  1 

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 1005 1006  1 2011 2011

enaH

 1005   1006  f  f   1  2011   2011 

edaybUkGgÁngw GgÁ  1   2   2010  f  f   ...  f    1  1  ...  1  2011   2011   2011 

 a  b   0 2

 b  c   0

man !00% tY

2

 c  a   0 2 a  b   b  c 2  c  a 2  0 2

naM[ 12 a  b  b  c  c  a  0 Emn dUcenH smIkarmanb¤sCanic© . 2

2

 1   2   2010  f  f   ...  f    1  1005  2011   2011   2011 

2

dUcenH eyIgTaj)anplbUk S  1005 .

 675



25> KNnalImIt lim x 27> bgðajfa tag y  x naM[ ln y  ln x smmUl ln y  x ln x a  ba  b a  b  a  b   0 eyIgGacbMElg)an ln y  ln1x ¬lkçxNÐ x  0 ¦ Binitü a  b  a  b a  b  x

x0

x

x

2

2

8

8

eyIg)an

4

4

4



8

8

4

4





 a2  b2 a2  b2 a4  b4

x

ln x lim ln y  lim x 0 x 0 1 x

4







 a  b a  b  a  b a  b 4

¬ragminkMNt;¦

EtbRmab; ³ ; a b  1 eyIg)an a  b  a  ba

2

2

4



  naM[ -eyIgGacedaHRsaytamrebobTI! ¬edaHedaytag¦³ a  b a  b a  b   a  b   0 tag u  1x naM[ x  u1 ebI x  0 enaH u   a  ba  b a  b   a  ba  b a  b   0 00 ¬)anCah‘andak; x  0 eRBaH x  0 xitCitBIxagsþa¦M dUcenH a  ba  b a  b  a  b   0 . eyIg)an ³ 1 ln 1  ln x 28> KNna A  1  12   1  13   1  14   ...  1  2011  u  lim ln u   lim ln u  0 lim  lim  8

8

2

2

4

4

2

2

4

4

2

2

2

 b2 a4  b4

8

8



2

2

4

4



4

4

8

8

1

1 x

x 0

u 

u 

u

u 

u

u

1   1  1  1  A  1    1    1    ... 1    2  3  4  2011  2  1  3  1  4  1  2011  1       ...    2   3   4   2011  1 2 3 2010 1     ...  2 3 4 2011 2011 1 A 2011

¬eRBaHtamrUbmnþ 1a  a / log b  x log b / lim lnuu  0 ¦ naM[ lim ln y  0  ln lim y  0 lim y  e  lim x  1 . dUcenH eRkayBIKNna - eyIgGacedaHRsaytamrebobTI@ ¬LÚBItal;¦³ 1

x

a

a

x0

x0

0

x

x0

cMeBaH

u 

x 0

1 ln x lim ln y  lim  lim x  lim  x   0 x 0 x 0 1 x 0 x 0 1  2 x x

¬eFVIedrIevTaMgPaKyk nigPaKEbg¦

naM[

lim ln y  0 x0

lim y  e 0

29> edaHRsaysmIkar ³ 4x  5x eyIgman ³ 4 x  5x  1  0 4

4

x0 x

dUcenH eRkayBIKNnaeXIjfa

lim x x x0

. 1 .

2

A  2011  1(20112010  20112009  20112008 



A  2011 2011  12011  1  2011 2011  1  1  2011 2011

dUcenH KNna)an

A  20112011

.

2

plKuNktþaesµI 0 luHRtaktþanImYy²esµI 0 ³ eyIg)an ³  x 1  0  x  1

 ...  20112  2011  1)  1



  1  0

x  1x  12 x  12 x  1  0

A  2010 2011 2010  2011 2009  2011 2008  ...  2011 2  2012  1



2

   x  14 x

26> KNna A ³ eyIgman 

1  0

4x 2 x 2 1  x 2 1  0

lim x  1 x 0

2

4x 4  4x 2  x 2 1  0

 ln lim y  0 

x0

 

.

 x 1  0



x  1

 2x 1  0



x

 2x 1  0



x

1 2 1 2

dUcenH smIkarmanb¤sbYnKW x   1,  12 , 12 ,1 .

 676



30> bgðajfa ab 1a  1  bc 1b  1  ca 1c  1  1 eyIg)an ³ BinitüGgÁTImyY ³ 

1 1  ab  a  1 ab  a  1 1 1 a a     bc  b  1 bc  b  1 a abc  ab  a a  eRBaH abc  1 1  ab  a 1 1 ab ab     ca  c  1 ca  c  1 ab a  abc  abc  ab ab  eRBaH abc  1 a  1  ab 

eyIg)an ³

dUcenH

1 1 1   ab  a  1 bc  b  1 ca  c  1 1 a ab    1  a  ab 1  a  ab 1  a  ab 1  a  ab  1 1  a  ab

1 1 1   1 ab  a  1 bc  b  1 ca  c  1

BitEmn .

1 1 1   2 1 1 2 1 2 1 1 1   3 22 3 2 3 1 1 1   4 3 3 4 3 4 ………………………. 1 1 1   100 99  99 100 99 100

1 2 1 1 2



1

 ... 

3 22 3

1 100 99  99 100



1 1



1 100

1 1 1 1 9   ...   1  10 10 2 1 1 2 3 2  2 3 100 99  99 100

dUcenH S  2 1 1 1 2  3 2 1 2 3  ...  100 99 1 99 100  109 . 32> bgðajfa 2002 eyIgman ³ 20022003  20021979



Eckdac;nwg 6

 20021979

2003



 20021979 200224  1





 20021979 2002  1 200223  200222  ... 2002  1

31> KNna S

1 1 1 1    ...  2 1 1 2 3 2  2 3 4 3  3 4 100 99  99 100



 2001 2002  2002  ... 2002  1

 2  2002

 3  667 2002  2002  ... 2002  1

 6  2002

 667 2002  2002  ... 2002  1

1978

1978



23



22

23

22

23



tamlT§pl cMnYn 2002  2002 CaBhuKuNén 6 dUcenH cMnYn 2002  2002 Eckdac;nwg 6 .

Binitü ³

1979

2003

1 n  1 n  n n  1 1  n  1n n  1  n



n  1n 



2





n 1  n n 1  n n 1  n



n 1  n  1n

1979

33> bgðajfa a  b  c  13 eyIgman a  b  c  1 elIkCakaer eyIg)an 2

2

a 2  b 2  c 2  2ab  2bc  2ca  1



n 1  n n 1  n   n  1n n  1  n  n  1n 



22

2003





 2  2002

1978

a 2  b 2  c 2  1  2ab  2bc  2ca

RKb;cMnYnBit a , b , c enaHeyIg)anvismPaB ³ a 2  b 2  2ab    b 2  c 2  2bc  c 2  a 2  2ca 

n 1 1   n  1n n n  1

2a 2  2b 2  c 2  2ab  2bc  2ca  677



ii 

i 

edayyk i   ii enaHeyIg)an ³  a 2  b 2  c 2  1  2ab  2bc  2ca  2 2a  2b 2  2c 2  2ab  2bc  2ca 3a 2  3b 2  3c 2  1

Taj)an

x y   1  1  xy   log    x y  1   1  xy 

i  ii 

1 3a  b  c   1  a  b  c  3 2

2

dUcenH eXIjfa a

2

2

2

 b2  c2 

1 3

2

2

R)akdEmn .

34> bgðajfa log b  log c  log d .... log y  log log b tamrUbmnþbþÚreKal log b  log eyIg)an ³ a a

b

c

x

y

a 1

a

log a b  log b c  log c d .... log x y  log y a  1 log b log c log d log y log a   ...  1 log a log b log c log x log y 11

dUcenH

log a b  log b c  log c d .... log x y  log y  x y   f x   f  y   f   1  xy  1 x  f  x   log   1 x  1 y   f  y   log 1 y 

35> bgðajfa eyIgman ³ naM[)an ³ eyIg)an ³

dUcenH eXIjfa

 x y   f   1  xy 

 x y   f x   f  y   f   1  xy 

36> edaHRsaysmIkar

Emn .

x

x

 7  48    7  48   14    

eXIjfa ³  7  48  7  48   49  48  1 Taj)an  7  48    1    7  48 

1

 7  48   

eyIg)ansmIkarfµI ¬CMnYs

7  48

eday

1 7  48

¦

x

x   1     7  48   14  7  48     

tag t   7  48  a 1 . smIkareTACa 1t  t  14 smmUl t 14t  1  0 man    7  1  48 naM[ t    71 48  7  48   7  48  x

2

2

2

1

t2 

1 y  1 x   f x   f  y   log   log 1 x  1 y   1  x  1  y    log    1  x  1  y 

 1  x  y  xy    log   1  x  y  xy   1  xy   x  y     log   1  xy    x  y  

  7   48 1  7  48  1 7  48



 7  48

1

  7  48   

cMeBaH

t1   7  48   

enaH  Taj)an

2

x

7  48    7  48    

cMeBaH

naM[)an ³

enaH  7  48    7  48  Taj)an x  2 dUcenH smIkarmanb¤s x  2  x  2 .

 678

t 2   7  48   

2

x



2

x2

edayEckTaMgPaKyk nigPaKEbgnwg 1  xy 

 1  xy   x  y      1  xy    f x   f  y   log  1  xy   x  y    1  xy   



2

2

37> bgðajfa ³

39> edaHRsaysmIkar ³ 5  50  x Binitü 5 bMBak;elakarItenEBr eK)an log x

log a b  log b a  2log a b  log ab b  log b a  1  log a b

log x

Binitü ³

log a b  log b a  2log a b  log ab b   log b a  1  log b log a  log b log b  log a       2   1  log a log b  log a log ab  log b  log 2 a  2 log a log b  log 2 b  log a  1    1   log a log b   log ab   log a  log b 2   log a 1    1    log a log b log a  log b      log a  log b 2  log a  log b  log a     1    log a log b log a  log b      log a  log b 2   log b    1     log a log b  log a  log b   log a  log b    1  1  log a b  1  log a b   log a  

ehIy

5log x

bMBak;elakarItenEBr eK)an

ln x log 5  log 5  ln x

eXIjfa log x  ln 5  log 5  ln x naM[ 5  x CMnYs x eday 5 eyIg)ansmIkar 5  50  5 log x

log 5

log x

log x

log x

2  5log x  50

 5log x  25

5log x  25

 5log x  5 2

Taj)an log x  2  x  10  100 . dUcenH smIkarmanb¤sKW x  100 . 2

log a b  log b a  2log a b  log ab b  log b a  1  log a b cosa 1  cosa 4 cot a 38> bgðajfa 11  cos   a 1  cosa sin a Binitü RBmTaMgKNnaGgÁTImYy eyIg)an ³

1  cosa 1  cosa  1  cosa 1  cosa 2 2  1  cosa   1  cosa   1  cosa 1  cosa  1  cosa  1  cosa 1  cosa  1  cosa   1  cosa 1  cosa  2 cosa  2 4 cosa 4 cosa 4 cot a      2 2 1  cos a sin a sin a sin a sin a 1  cosa 1  cosa 4 cot a   1  cosa 1  cosa sin a

ln 5 log x  log x  ln 5

log 5

dUcenH eRkayBIbgðajrYceXIjfa

dUcenH

log 5

BitEmn .

40> KNnaRbU)abEdle)aH)anelxess b¤ elxFMCag 5 -RKab;LúkLak;manmux 6 naM[cMnYnkrNIGacesµI 6 -elxessrYmman ³ 1 , 3 , 5 man 3 krNI naM[RbU)abe)aH)anelxessKW P ¬ess¦  63 -elxFMCag 5 KWmanEtelx 6 man 1 krNI naM[RbU)abe)aH)anelxFMCag 5 KW P ¬ elxFMCag 5 ¦  16 eyIg)an ³ RbU)abEdle)aH)anelxess b¤ elxFMCag 5 KW P ¬ess¦ b¤ P ¬ elxFMCag 5 ¦  63  16  23

dUcenH RbU)abe)aH)anelxess b¤ elxFMCag5esµInwg 23 .

41> edaHRsaysmIkar eyIgman x  4x  16x  ... 4 x  3  x 1 elIkGgÁTaMgBIrCakaer nigKNnaCabnþbnÞab; eyIg)an ³

 679

n



  

x  4 x  16 x  ...  4 n x  3  x  2 x  1 4 x  16 x  ...  4 n x  3  2 x  1 4 x  16 x  ...  4 n x  3  4 x  4 x  1



16 x  ...  4 n x  3  4 x  1 16 x  ...  4 n x  3  16 x  8 x  1 ...  4 n x  3  8 x  1 ......................................................





f 1  f 3  f 5  ...  f 999997  f 999999 



1 3 6 10  0 2 1   100  50 2

4n x  3  2n x  1

dUcenH f 1  f 3  f 5  ...  f 999997   f 999999   50 .

4n x  3  4n x  2  2n x  1 2  2  2n x

43> edaHRsayRbB½n§smIkar

2n x  1

 5log y x  log x y   26 a/   xy  64

2 2n x  1 1 4n

x

  

1 3  3  f 1  2 2  0   f 3  1 3 4  3 2  2  1    f 5  3 6  3 4 2  ............................   f 999999  1 3 1000000  3 999998 2   

x  4 x  16 x  ...  4 n x  3  x  1

i  ii 

¬GñkKYcaMrUbmnþbþÚreKal log x  log1 y ¦ -tam i  ³ 5log x  log y   26 y

dUcenH smIkarmanb¤s

x

.

1 x n 4

y

1 26  log x y  log x y 5

42> KNnaplbUk

5 log 2x y  26 log x y  5  0

f 1  f 3  f 5  ...  f 999997   f 999999 

f n    3

n 2  2n  1  3 n 2  1  3 n 2  2n  1 1

n  1

2

 n 1  2

3

3

3

3

2

3



1 2



3

n 1  3 n 1

naM[eyIg)an ³

3



3

2

eyIg)ansmIkarfµIKW ³  26t  5  0 ¬tamDIsRKImINg;  ¦ log x y  t

man    13  25  169  25  144 naM[ t   135 12  15 / t    135  12  5 2

n  1

3

3

5t 2

2

 n  1  n  1  n  1  n  1 n  1  n  1  1  n  1  n  1  n 1 n 1 

3

tag

1 3

x

1

3

n  12  

1

1

cMeBaH naM[ cMeBaH t  5 naM[ log y  5  y  x -tam ii : xy  64 krNI y  x enaH x  x  64  x  2  x  2 naM[ y  x  y  2   y  2 krNI y  x enaH x  x  64  x  2  x  2 1 log x y   y  x 5 5

1 t 5

5

x

1 5

1 5

1 5

5

 680



6 5

6

1 5 5

5

6

6

5

naM[ y  x  y  2  y  32 dUcenH RbB½n§smIkarmanKUcemøIyBIrKW ³ x  32 , y  2 b¤ x  2 , y  32  . 5

³



naM[









.

¬bMBak; elIGgÁTaMgBIr¦ 44> bgðajfa 1  a1 1  a2 1  a3 ...  1  an   2 n

eday a CacMnYnviC¢man enaHeyIg)an ³ 1  a1  2 a1  1  a2  2 a2   1  a3  2 a3 ...................  1  a  2 a n n  1  a1 1  a2 1  a3 ... 1  an   2 n a1a2 a3 ...an

x ln 4  y ln 5  2ln 4  5

x ln 4  y ln 5  2 ln 4  2 ln 5 i    5x  6 y  1 ln 900  1  ln 5 x  6 y  ln    900  ln 5 x  ln 6 y  ln 1  ln 900

³

¬bMBak; elIGgÁTaMgBIr¦





smµtikmµ plKuN a  a  a  ...  a  1 enaHeyIg)an 1  a 1  a 1  a ... 1  a   2 dUcenH 1  a 1  a 1  a ... 1  a   2 .

x ln 5  y ln 6  0  ln 30 2

1

x ln 5  y ln 6  2ln 5  6

1

x ln 5  y ln 6  2 ln 5  2 ln 6 ii 

3

n

n

2

3

n

edaybUkGgÁngw GgÁ eyIg)an ³

D  ln 4 ln 6  ln 2 5 Dx   ln 4  2 ln 5ln 6   2 ln 5  2 ln 6ln 5

 7 x 3  3x 2 y  21xy 2  26 y 3  342  3 2 2 3 9 x  21x y  33xy  28 y  344 16 x 3  24 x 2 y  12 xy 2  2 y 3  686

 2 ln 4 ln 6  2 ln 5 ln 6  2 ln 2 5  2 ln 5 ln 6  2 ln 4 ln 6  2 ln 2 5



 2 ln 4 ln 6  ln 2 5 D y  ln 4 2 ln 5  2 ln 6  ln 5 2 ln 4  2 ln 5

8 x 3  12 x 2 y  6 xy 2  y 3  343

2 x 3  3  2 x 2  y  3  2 x   y 2  y 3  7 3 2 x  y 3  7 3

 2 ln 4 ln 5  2 ln 4 ln 6  2 ln 5 ln 4  2 ln 2 5  2 ln 4 ln 6  2 ln 2 5



2

n

 7 x 3  3x 2 y  21xy 2  26 y 3  342 a/  3 2 2 3 9 x  21x y  33xy  28 y  344

edaHRsaytamedETmINg; ³

 2 ln 4 ln 6  ln 2 5

3

45> edaHRsayRbB½n§smIkar

 x ln 4  y ln 5  2 ln 4  2 ln 5   x ln 5  y ln 6  2 ln 5  2 ln 6



2

n

1

tam i  nig ii eyIg)anRbB½n§smIkar ³





x  2 , y  2

x ln 4  y ln 5  0  ln 20 2

tam



dUcenH RbB½n§smIkarmanKUcemøIyKW ³

1  x y   4  5  400 b/  1 5 x  6 y    900   4 x  5 y  1 ln 400  1  ln 4 x  5 y   ln    400  ln 4 x  ln 5 y  ln 1  ln 400

tam



 Dx  2 ln 4 ln 6  ln 2 5 x    2  D ln 4 ln 6  ln 2 5   2  y  D y   2 ln 4 ln 6  ln 5  2  D ln 4 ln 6  ln 2 5 

5

2x  y  7

edaydkGgÁnwgGgÁ eyIg)an ³  681



i 

 7 x 3  3 x 2 y  21xy 2  26 y 3  342  3 2 2 3 9 x  21x y  33xy  28 y  344  2 x 3  18x 2 y  54 xy 2  54 y 3  2 x 3  9 x 2 y  27 xy 2  27 y 3  1 x 3  3  x 2  3 y   3  x  3 y   3 y   1 2

3

x  3 y 3  13

ii 

x  3y  1

tamry³

i  nig ii 

eyIg)anRbB½n§smIkarfµIKW³

46> rkcMnYnmanelxR)aMxÞg;enaH -cMnYntamxÞg;nImYy²RtUvEt FMCag0 ¬eRBaHxÞg;edImKW x ebI x  0 vaBuMEmnCaelxR)aMxÞg;eT vaKWCaelxbYnxÞg; ¦ nigtUcCag b¤ esµI 9 ¬eRBaH ebIFMCag9 vaCaelxeRcInxÞg; naM[cMnYnxÞg;elIsBI5¦ . eyIgmancMnYn ³ x , x 1 , x  2 , 3x , x  3 naM[ 0  x  9 0  x 1  9  0  x  2  9  0  3x  9  0  x  3  9

 2x  y  7    2 x  6 y  2 5y  5  y  1 x  1 3y  1 3  4

2 x  y  7   x  3y  1

smmUl

naM[ dUcenH RbB½n§smIkarmanKUcemøIy x  4  y  1 . 4 x  3 y 1  27 y  171 b/  x x 1 2 y  172 8  2  3 2 3  2 x  3  3 y  3 y  171   x 3 x y 2   2  2  3  3  172

   

tamry³lkçxNÐTaMg5xagelI lkçxNÐrYmKW mann½yfa ³ x  1 , 2 , 3

eyIgGacsresrCa

   

erob[tamlMdab;

2 

x 3

        2  3 

2 3  3  2 x  3 y  3 y  171  x 3 2   3  2 x  3 y  172 2 2 2 3  3  2 x  3 y  3  2 x  3 y  3 y  343

 

y 3

x

7

cMeBaH x  3 cMnYnenaHKW 34596  186 ¬CakaerR)akd¦ 2

dUcenH cMnnY manelxR)aMxÞg;enaHKW 34596 . 3

2 3  7 x

y

i 

edaydkGgÁnwgGgÁ ³ 3 

y 3

              3  2    1 y 3

y

x 3

3

edayyk i   ii eyIg)an ³  2 3  7  y x 3  2  1 2  3y  2  3 x

3 3

cMeBaH y  1 enaH

2 1





3 2



3  2 1



4



4

3

 2025   y 1

S

2 3  7 y



2 1  1

1











3 1

2 1



1 3 2 1 4

3

2 1

 3 2 

4

3

2024

1 1 2



 2025  1 2 3



2024  1 

 ... 

1 2025  2024

1 2024  2025

 2025  2024

 2025  1  45  1  44

2x  7  3 2 x  22



>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

y

y

1 1 1 1    ...  1 2 2 3 3 4 2024  2025

Binitü rYcbUkGgÁnigGgÁ énkenSamxageRkam

3 y  2 x  1 ii 

x

47> KNnaplbUk S ³ eyIgman S

 3  2 3y  3  171  x 3 x y 2   3 2  3  172 2 3 x y 2 x 2 y  3 2  3  3 2  3  2 x  1 x 2

0 x3

cMeBaH x  1 cMnYnenaHKW 12334 minyk ¬eRBaHminCakaerR)akd¦ cMeBaH x  2 cMnYnenaHKW 23465 minyk ¬eRBaHminCakaerR)akd¦

edaybUkGgÁngw GgÁ ³    

smmUl

0  x  9 0  x  8  0  x  7 0  x  3  0  x  6

 x2

dUcenH RbB½n§smIkarmanKUcemøIy x  2 nig y  1 .

dUcenH plbUkKNna)an S  44 .

 682



48> RsaybBa¢ak;fa ³ f n  3  7 Eckdac;nwg 8 eyIgman f n  3  7 cMeBaH n  0 : f 0  3  7  1  7  8 Eckdac;nwg 8 n  1 : f 1  3  7  9  7  16 Eckdac;nwg 8 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> ]bmafa vaBitdl; n  k : f k   3  7 Eckdac;nwg 8 eyIgnwgRsaybBa¢ak;fa n  k  1 k¾Eckdac;nwg 8 Edr cMeBaH n  k  1 : f k  1  3    7 2n

2n

0

2

50> RsaybMPøWfa n3  n2  n6 CacMnYnKt;viC¢man tag A  n3  n2  n6 2

2

eyIg)an

3

2n  3n 2  n 3 6 n 2  3n  n 2  6 nn  1n  2   6

A



2k

3



ebI A CacMnYnKt; luHRtaEt nn  1n  2 Eckdac;nwg 6 3 7 mann½yfa nn  1n  2 Eckdac;nwg 2 pg nig 3 pg  93  7 -ebI n CacMnYnKt; enaH n , n 1, n  2 CabIcMnYnKt;tKña  8  3  3  7  eday 8 3 Eckdac;nwg 8 ¬eRBaH 8 3 CaBhuKuNén 8 ¦ -bIcMnYnKt;tKñay:agehas; k¾mancMnYnKUmYyEdr naM[ nn  1n  2 Eckdac;nwg 2 niig 3  7 Eckdac;nwg 8 ¬]bmafaBit xagelI ¦ -bIcMnYnKt;tKñay:agehas; k¾mancMnYnmYyCaBhuKuN naM[ f k  1  8  3  3  7 Eckdac;nwg 8 dUcenH f n  3  7 Eckdac;nwg 8 RKb; n CacMnYnKt; . én 3 Edr naM[ nn  1n  2 Eckdac;nwg 2 enaHeyIg)an nn  1n  2 Eckdac;nwg 6 eyIgGacbkRsaytamviFImüa:geTot 9  1 8 ¬mann½yfa 9 Eckdac;nwg 8 [sMNl; 1 ¦ dUcenH RKb;cMnYnKt;viC¢man n enaH n3  n2  n6 9  1 8 ¬GacelIkCasVy ½ KuN)an RKb; n CacMnYnKt;¦ k¾CacMnYnKt;viC¢manEdr . 3  1 8 ¬eRBaH 9  3 ehIy 1  1 ¦ 3  7  1  7 8 smmUl 3  7  8 8 51> KNna S  11 2  21 3  31 4  ... 20101 2011 Et 8  0 8 naM[ 3  7  0 8 Edr 1 1 n 1 n 1 dUcenH f n  3  7 Eckdac;nwg 8 RKb; n CacMnYnKt; . Binitü ³ n  n  1  nn  1  nn  1 2 k 1 2k 2

2k

2k

2k

2k

2k

2k

2k

2k

2n

2

n

3

n

2n

2

n

2n

2n

2n

2n

tamlMnaMxagelIeKGacbMEbk)an dUcxageRkam ³

49> KNna g 3 ³ 1 1 1   1 2 1 2 eyIgman f x  2x  1 1 1 1   [ f x  3 smmUl 2x  1  3  x  1 23 2 3 bUkGgÁnwgGgÁ 31 4  13  14 ehIyman g f x  x  3x  1 g 3  1  3 1  1 ¬eRBaH f x   3 nig x  1 ¦ naM[ >>>>>>>>>>>>>>>>>>>>>>> 2

2

g 3  5

1 1 1   2010  2011 2010 2011 1 1 1 1 1 1    ...   1 2 2  3 3  4 2010  2011 1 2011

dUcenH eRkayBIKNna g 3  5 .  683





1 1 1 1 2010    ...  1 2 2  3 3  4 2010  2011 2011

dUcenH eRkayBIKNnaplbUk S  2010 . 2011

52> KNna x  x 1 eyIgman x  x 1  0 Taj)an 2011

2011

2

x

1  1 x

enaH

1 1  1  1    x   x     1 1  x 2  2  2  1  x 2  2  1 x  x x x  1 1 1 1  1    x   x 2  2    1 1  x 3  3  x   1  x 3  3  2 x  x x  x x  1 1 1  1  3 1  4 2 4   x   x  3    1  2  x  4  x  2  2  x  4  1 x  x x x  x  1 1 1 1  1    x   x 4  4    1 1  x 5  5  x 3  3  1  x 5  5  1 x  x  x x x  1 1 1  1  5 1  6 4 6   x   x  5    1 1  x  6  x  4  1  x  6  2 x  x  x x x 

-yl;fa ³ cd CacMnYnKt; enaHRtUvEtmanktþamYy kñúg cMeNamktþa n 10  nig n  10  EdlRtUvEtEckdac;nwg 101 eRBaH 101CacMnYnbzm . enaHeyIgTaj)an ³ n  10  101b¤ n  10  101 naM[ n  111 b¤ n  91 -cMeBaH n  111 minyk eRBaH n Caelx4xÞg; enaH n  100 2

-cMeBaH n  91 enaH n  8281 yk dUcenH cMnYnenaHKW abcd  n  8281 . 2

2

54> bgðajfa n! 3 cMeBaH n  7 eyIgman n! 3 -cMeBaH n  7 enaH 7! 5040  3  2187 ³ Bit -cMeBaH n  8 enaH 8! 40320  3  6561 ³ Bit n

n

7

8

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> tamlMnaMenH eyIgGacTaj)antYTUeTAKW ³ -]bmafavaBitrhUtdl; n  k enaH k! 3 ³ Bit 1  1 ebI n  3k Edl k CacMnYnKt;FmµCati -eyIgnwgRsaybB¢aak;fa vaenAEtBitcMeBaH n  k 1 x   x  2 ebI n  3k eyIg)an k  1 ! 3 eday 2011  3  670  1 manTRmg;xusBI 3k k

n

n

k 1

naM[

x 2011 

1 x

2011

dUcenH eRkayBIKNna eXIjfa x

2011



1 x

2011

 1

53> rkcMnYn abcd enaH tambRmab;RbFan cMnYn abcd CakaerR)akd eyIg)an abcd  n Edl n CacMnYnKt; eyIgsresr)an ab00  cd  n enaHTaj)an 100 ab  cd  n 1 bRmab;bEnßm ab  cd  1 b¤ ab  1  cd yk 2 CMnYskñúg 1 ³ 100  100cd  cd  n 2

k

k

k 1

2



eday enaHeyIg)an k  1  k !  3  3 KWCakarBit dUcenH eXIjfa n! 3 cMeBaHRKb;cMnYnBitviC¢man n  7 . -eRBaHebI k! 3 nig k  1 3 naM[ k  1k! 3  3 b¤ k  1 ! 3 . 55> bgðaj[eXIjfa f CaGnuKmn_xYb GnuKmn_ f manEdnkMNt; D  0 ,   cMeBaH RKb; x  D enaH x  2a  D eRBaH a  0 eyIgman ³ f x  a  12  f x  f x naM[ f x  2a  f x  a  a n

2

100 1  cd  cd  n 2

.

k

2



k  1  k !  3  3k k! 3k ehIy k  1  7  3

 1

2

2

101cd  n 2  100 n  10n  10 cd  101

 684

f x  a   f x  a 



1  2



1 1    2 2



2

1 2  f x   f x       2

2  f x   f x   

2

1 1 2  1 2 2     f x   f x      f x   f x   f x   f x   2 2 4   

 2  3 42n  8  2ad i   42n  9  3bd ii 

cgCaRbB½n§

21n  4  ad  14n  3  bd

1 1 1 2 2 2    f x   f x    f x   f x   f x   f x  2 2 4 1 1 2    f x   f x  2 4 1  1    f x    2  2 1 1   f x   2 2  f x 

edayyk ii  i  eyIg)an ³

2

 42n  9  3bd  42n  8  2ad 1  3b  2a d

eday a nig b CacMnYnKt; enaH 3b  2a k¾CacMnYnKt;Edr eRBaH cMeBaH x  0 ehIy d CatYEckrYmFMbMput RtUvEtCacMnYnKt; eyIg)an f x  2a  f x cMeBaH RKb; x  0 ,   -yl;fa ³ plKuNBIrcMnnY Kt;esµI ! manEtmYykrNIKt; dUcenH GnuKmn_ f CaGnuKmn_xYbenAelI 0 ,   . KWcMnYnKt;nImyY ²esµIKña ehIyesµInwg ! . Taj)an d  1 56> bgðaj[eXIjfa 0 ! 1 21n  4 dUcenH F  14 CaRbPaKsRmYlmin)an . n3 eyIgman ³ n! n  n 1 n  2 ...  3 2 1 vaBitcMeBaH n CacMnYnKt;viCm¢ an 58> rkcMnYnKt;FmµCatitUcbMput mann½yfa n  1 , 2 , 3 , ...  -tambRmab; ³ eyIgBMudwgcMnYnxÞg; éncMnnY enaHeT eyIgGacsrsr)andUcTRmg;xageRkam ³ Etvamanelx 6 enAxÞg;Ékta ¬xÞg;ray¦ n !  n  n  1 ! -eyIgGactagcMnYnenaHeday ³ a a a ...a 6 EdlTIenH eRBaHedaysar n  1 ! n  1 n  2 ...  3  2 1 0  a , a , a ,... a  9 nig a a a ...a CacMnYnKt; eyIgTaj)an n  1 ! nn! -eyIg)ancMnnY fµI 6a a a ...a -tambRmab;eyIg)anTMnak;TMng ³ KNnatémøCaelx cMeBaH n  1 4  a a a ...a 6  6a a a ...a naM[ 1  1 ! 11!  0 ! 11  1 4a a a ...a 0  6  6000...0  a a a ...a dUcenH eXIjfa 0 ! 1 BitR)akdEmn . 4a a a ...a  10  6  6  10  a a a ...a eRBaH 1 ! 1 edIm,I[gayRsYlkñúgkarsresr tag a a a ...a  A eyIg)an ³ 410 A  6  6 10  A 21n  4 57> bgðajfa F  14 CaRbPaKsRmY l mi n )an 40 A  24  6 10  A n3 39 A  6 10  24 tag d CatYEckrYmFMbMputén 21n  4 nig 14n  3 2 10  8 210  4 A  eyIg)an 21n  4  ad Edl a CacMnYnKt;viC¢man 13 13 -eday A CacMnYnKt; ehIy 2 Eckmindac;nwg 13 enaH 14n  3  bd Edl b CacMnYnKt;viC¢man manEt 10  4 Eckdac;nwg 13 1 f x   2

1 2 3

1

2

3

n

1 2 3

1 2 3

1 2 3

1 2 3

n

n

n

n

1 2 3

n

n

1 2 3

n

n

1 2 3

n

1 2 3

1 2 3

n

n

n

n

n

 685



n

n

n

-eyIgnwg[témø n bnþbnÞab;tUcbMputedIm,I[1310  4 ¬mann½yfa 13 CatYEckén 10  4 ¦ -cMeBaH n  1 : 10  4  6 Eckmindac;nwg 13 n  2 : 100  4  96 Eckmindac;nwg 13 n  3 : 1000  4  996 Eckmindac;nwg 13 w 13 n  4 : 10000  4  9996 Eckmindac;ng n  5 : 100000  4  99996 Eckdac;nwg 13 n

n

60> rk 11 cMnYnenaH EdlminGviC¢man tag11cMnYnenaHeday ³ x , x , x , ... , x tambRmab;RbFan eyIg)an ³ 1

-cMeBaH n  5 eyIg)an A  21013 4  15384 dUcenH cMnYnenaHKW 153846 .

59> etIbursNa CaKUnwgnarINa ? -eXIjfamanbursbInak;clU sþIdNþwgnarIbInak;. burs EdlcUlsþIdNþwgdMbUg manCeRmIsbI burscUlsþIbnÞab; manCeRmIsBIr nigburscugeRkaymanCeRmIsEtmYyKt; -tameKalkarN_plKuN ³ cMnYnCeRmIsTaMgGs;KW 3  2 1  3! 6 CeRmIs EdlCeRmIsTaMgenaHrYmman³ 1 A

CaKUnwg1 / B CaKUnwg 2 / C CaKUnwg 3 ¬xuslkçxNÐ K¦ 2  A CaKUnwg 1 / B CaKUnwg 3 / C CaKUnwg 2 ¬xuslkçxNÐ k¦ 3 A CaKUnwg 2 / B CaKUnwg 1 / C CaKUnwg 3 ¬xuslkçxNÐ K¦ 4  A CaKUnwg 2 / B CaKUnwg 3 / C CaKUnwg 1 ¬xuslkçxNÐ K¦ 5 A CaKUnwg 3 / B CaKUnwg 1 / C CaKUnwg 2 ¬xuslkçxNÐ x¦ 6  A CaKUnwg 3 / B CaKUnwg 2 / C CaKUnwg 1 -eXIjfaedIm,IeKarBtamlkçxNÐmanEtmYyCeRmIsmYyKt;KW³

CaKUnwg 3 / B CaKUnwg 2 / C CaKUnwg1 dUcenH KUsVamIPriyafµI EdleKarBtamlkçxNÐKW ³ A

11

0

1

2

x2  x1  x3  x4  ...  x11 

2

x3  x1  x2  x4  ..  x11 

3

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

>>>

x11  x1  x2  x3  ..  x10 

11

2

2

2

-edaydkGgÁnigGgÁén 1 - 2 eyIg)an ³ x1  x2  x2  x3  x4  ...  x11   x1  x3  x4  ...  x11  2

tamrUbmnþ

2

a 2  b 2  a  b a  b 

enaH

x1  x2  x2  x3  x4  ...  x11   x1  x3  x4  ...  x11 

x2  x3  x4  ...  x11   x1  x3  x4  ...  x11 

 x2  x1 x1  x2  2x3  2x4  ...  2x11 

2

 x1  x2 x1  x2  2x3  2x4  ...  2x11 

2

x1  x2   x1  x2 x1  x2  2x3  2x4  ...  2x11 2  0 x1  x2 1  x1  x2  2x3  2x4  ...  2x11 2  0

naM[ x  x   0  x  x ehIy 1 x  x  2x  2x  ...  2x   0 edayyk 1 - 3 / 1 - 4 / …/ 1 - 11 tam lMnaMxaelIenaHeyIg)an ³ x  x  x  ...  x naM[ x  x  x  x  ...  x  1

2

1

2

2

1

2

3

4

11

1

2

3

11

2

1

1

1

1

1

x1  10 x1 

2

x1  100 x12

x1 1  100 x1   0

1 Taj)an x  0 , 1  100x  0  x  100 dUcenH cMnYnTaMg 11 EdlrkeXIjKW x  x  x  ...  x  0 b¤ 1 . x  x  x  ...  x  100 1

burs A CaKUnwgnarI 3 burs B CaKUnwgnarI 2 burs C CaKUnwgnarI1 .

3

x1  x2  x3  x4  ...  x11 

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 5

2

 686



1

1

2

3

11

1

2

3

11

1

61> KNna A  a  1  b  1  a  1 abc  0 eK[ a , b , c epÞógpÞat; ab   bc  ca  0 cMeBaH a  b  c  0 2010

2011

2012

a  b  c 2  0 ab  bc  ca  0

 n 1

2010





 

 



n2 n2  n 1  n n2  n 1  n2  n 1 2 n 2 n  1

n



 n 1 2 2 n n  1

n 1

2

2

n 2  n  1 2010 nn  1  1 2010  1      1  nn  1 nn  1 n 1 nn  1 n 1 n 1  2010

a 2  b 2  c 2  2ab  bc  ca   0

eday

2010

enaHeyIg)an

2010 1 1  1  2010      n 1 n 1 nn  1 n 1  n

2010

2010

 1   n 1

a 2  b2  c 2  0

1  1 eyI g )an S  2010      -yl;fa ³ plbUkkaerénmYycMnYnBitesµI 0 mann½yfa  n n  1 1  1  2010     cMnYnBitTaMgenaHmantémøesµI²Kña ehIyesµInwg 0  1 2011  1 2011  1 -naM[ a  b  c  0  2011   2011 2011 eK)an ³ A  a  1  b  1  a  1 2011 12011 1  2010  2012  2010 n 1

2

2010

 0  1

2010

2011

 0  1

2011

2012

 0  1

2012

 1   1  1  1

1 1 1 1 1 1  2  1  2  2  ...  1   2 2 1 2 2 3 2010 2011 2

EdlmancMnYntYsrub 2010 tY eKGacsresrCa S   1  n1  2010

2

n 1

S

2010



1

n 1



2010







2010





n n  1



 n 1

n 2 n  1



2010

 n 1

2

2

n  2n  3n  2n  1

 x 2011

1

1 

2012

2011

2013

 1  x

4

2012

  1  x  1x  1  x  1x  1  x  1x  1  x  1x

 1  x 2013  1  0

  ...  x  1  ...  x  1  ...  x  1  ...  x  1

2009

 x 2008

2010

 x 2009

2011

 x 2010

2012

 x 2011

edIm,I[gaysRmYlkñgú karsresr eyIgtag X  x  x  ...  x  1 enaHeyIg)an 2009

2008

x 2010  1  x  1X 

n4  n3  n2  n3  n2  n  n2  n  1

x 2013

2

 687

  1  x  1x  1  x  1x

x 2011  1  x  1 x 2010  X x 2012

2

n 2 n  1

1 

a n  1  a  1 a n1  a n2  ...  a  1

 x 2010

2

2

n 2 n  1

 1  x

2010

tamrUbmnþ³

n 4  2n 3  n 2  n 2  2n  1  n 2 3

2011

 x 2013



2

2

4

1

 x 2012

2

 

2

n 1

2010

x

1 n  12

n n  2n  1  n  2n  1  n 2

n 1



1 1 1 2  n n  12

2010

2

n 2 n  1

  n  n  1    1  2011  emIllMhat;TI51 .

2010

63> edaHRsaysmIkar ³ k> x  x  x  x

n 2 n  1  n  1  n 2

n 1

2010

2012 dUcenH eRkayBIKNnaplbUk S  2010 . 2011

1 1  2 n n  12 2

2011

n 1

62> KNna eXIjfa S CaplbUkmantYTUeTAKW

2011

 mUlehtu

dUcenH eRkayBIKNnaeXIjfa A  1 . S  1

2



 

2011

 x 2010  X

2012

 x 2011  x 2010  X



x

2010

 1  x 2011  1  x 2012  1  x 2013  1 

x  1x

naM[ x  1x  2 x Taj)an ³  x  1  0 2012

x

2012

 2x

 2x

2011

 3x 2010  4 X  0

2011

 3x

2010



manEt cMnYnKt; x  5 EtmYyKt;EdlnaM[ 4  x Eckdac;nwg( ¬ eRBaH 0  x  9 ¦ -epÞógpÞat; ³ 2 x9 y  2  9

 4X 

2012

x

 x 1

2011

 3x

2010

2592  25  9 2 2592  32  81

 4X  0

eRBaH x CacMnYnKt; dUcenH smIkarmanb¤s x  1 . x>

2592  2592

dUcenH smIkarmancemøIy x  5 , y  2 . ¬kMueXIjEvgfaBi)ak eKRKan;EtsRmay[eyIgyl;BI mUlehturbs;va)anc,as;las;b:ueNÑaH ¦

x 2010  x 2011  x 2012  x 2013  0





x 2010 1  x  x 2  x 3  0

Taj)an ³ 

y

x 2010  0  x  0

65> rkRKb;cMnYnKt;FmµCati N  a a a ...a  1  x  x  x  0 ¬eRBaH x CacMnYnKt;¦ 21 eyIgman 12aa aa aa ......aa 21  12 Edl dUcenH smIkarmanb¤s x  0 . N  a a a ...a mancMnYn n tY naM[eyIg)an ³ 64> edaHRsaysmIkar ³ 2 x9 y  2  9  2a a a ...a 1  2 10  10a a a ...a   1  2 10  10 N  1 -lkçxNÐ 0  x  9 , 0  y  9 nig x , y CacMnYnKt; 1a a a ...a 2  110  10a a a ...a   2 -Binitü 2 CacMnYnKU enaH 2  9 CacMnYnKUEdr  10  10 N  2 naM[ 2 x9 y CacMnYnKU mann½yfa y CacMnYnKU b¤ 0 1 eyIg)an 2 10  10 N  1  21 naM[ 10  10 N  2 12 -Binitü ebI y  4 enaH 9  6561  2 x9 y naM[ 2110  10 N  2  122 10  10 N  1 y CacMnYnKt;tUcCag4 mann½yfa y  0 ,1, 2 , 3  2 2110  210N  42  24 10  120N  12 210N  120N  24 10  2110  12  42 -tam 1 nig 2 Taj)an y  0 b¤ y  2 90 N  3 10  30 -cMeBaH y  0 enaH 2 x90  2  1  2 x90  2 30 10  30 N Et 2 CacMnYnminmanelx 0 enAxagcugCadac;xat 90 naM[ 2x90  2 CakrNIminBit RKb; x CacMnYnKt; 10  1 N 3 -cMeBaH y  2 enaH 2 x92  2  9  2 x92  81  2 Binitü 10  100...000 naM[ 10 1  99...999 edaycMnYn 81 2 CaBhuKuNén( enaH 2x92 CaBhuKuN n dgelx 0 n dgelx ( én( Edr mann½yfa 2x92 Eckdac;nwg( . 10  1 99 ... 999 N   33 ... 333 eyI g )an -ehIy 2x92 Eckdac;nwg( luHRtaplbUkelxtamxÞg; 3 3 n dgelx # KW 2  x  9  2  13  x  1 3  x  4  x Eckdac;nwg( enHmann½yfa N   3 , 33 , 333 , 3333 , ...  1 2 3

2

3

1 2 3

1 2 3

1 2 3

x

n

n

n

n 1

y

1 2 3

n

1 2 3

n

n 1

n 1

x

x

1 2 3

y

n

1 2 3

n

n 1

n 1

n 1

4

n 1

n 1

n 1

n 1

n 1

x

n 1

n 1

x

n

x

n

x

x

2

x

n

n

x

n

 688



n

231 21  11 21 Bit epÞógpÞat; ³ ebI N  3 , 132   12  11 12 dUcenH RKb;cMnYnKt;rk)anKW N  33...333 .

68> bgðajfa ³ x 1 1  x 1 1  x 2 1  x 4 1  x 8 1 Binitü ³  x 11  x 1 1   x 2 1  x 4 1 2

2

n dgelx #

1 1 1 1    ...  1 2  3 2  3  4 3  4  5 nn  1n  2



Binitü ³ nn1 1  n  11n  2  nnn12nn2 



2 nn  1n  2

1 1 1 1     1  2  3 2 1  2 2  3  1 1 1 1     2  3  4 2  2  3 3  4  1 1 1 1     3  4  5 2  3  4 4  5 



dUcenH

 1 1 1   2 1  2 n  1n  2





n  3n 4 n 2  3n  2 2

dUcenH eRkayBIKNnaeXIjfa



n 2  3n S 4 n 2  3n  2



67> sRmYlkenSam ³ 2  3  2  3 tag E  2  3   2  3   3 2011

2011

2012

 .

 3



2011

n 1 1   n  1! n! n  1!

2011

3

3

2

dUcenH sRmYl)an 2  3  2  3 2011

2011

 32

.

 689

1 1 1   2! 1! 2! 2 1 1   3! 2! 3! 3 1 1   4! 3! 4!

>>>>>>>>>>>>>>>>>>>>>>>>>

2011

 2

1 1 2 4 8   2  4  8 x 1 x 1 x 1 x 1 x 1

.

n  1  1 n  1! n  1! n  1  1  1  1  n  1 n! n  1! n! n  1!

2012

2011

4



 3   2  3   2  3  3  2  3  2  3   2  3   3  4  3  2  3   3  2

4x  4  4x  4 8  8 8 x 1 x 1 4

¬eRBaH n  1! n  1 n! ]Ta> 5! 5 4! ¦ eXIjfa eKGacbMEbk n n 1!  n1!  n 1 1! eyIgGacbMEbktYnImYy² rYcbUkGgÁnigGgÁ dUcxageRkam³

1  n 2  3n  2  2  S   2  2 n 2  3n  2 





    

69> KNnaplbUk S  21!  32!  43!  ...  n n 1! Binitü ³ n n 1!  nn11!1

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>  1 1 1 1    nn  1n  2 2  nn  1 n  1n  2

S

    



2x2  2  2x2  2 4  4 4 x 1 x 1 4 4 4 x4 1  4 x4 1  4  4  x 1 x 1 x4 1 x4 1

Taj)an tamlMnaMenH eyIgGacsresr)andUcxageRkam ³

S

4



 1 1 1 1    nn  1n  2 2  nn  1 n  1n  2



8

  x  1   x  1  2 4   2    4   x  1x  1  x  1 x  1 2 2 4  2  2  4 x 1 x 1 x 1 2 x2 1  2 x2 1 4   4 2 2 x 1 x 1 x 1

66> KNnaplbUk ³ S

4

1 2 3 n 1 1    ...   n  1! 1! n  1! 2! 3! 4! 1 S  1 n  1!



dUcenH

n  1!1 1  n  1! n  1!

S  1

.

1!  1 6!  0

2!  2 7!  0

4!  4 9!  0

3!  6 8!  0

5!  0

>>>>>>>> 70> kMNt;elxcugén   1  2  3  ... 2010  2011 eyIgBinitüeXIjfa elxxagcugéncMnYnTaMgLay Edl ¬yl;dwg³ eKsresr 13   9 mann½y elxxagcug FMCag $ suT§EtCaelxsUnüdUc²Kña TaMGs; naM[ ³ én 13  169 manelx 9 enAxagcug .¦   1!2!3!... 2010!2011!   1!  2!  3!  ... 2010!  2011! Binitü 2

2

2

2

2

2

2

 1  2  6  4  0  0  ... 0  0  0 3

1   11   21   ...  2001   1 2   12   22   ...  2002   4 3   13   23   ...  2003   9 4   14   24   ...  2004   6 5   15   25   ...  2005   5 6   16   26   ...  2006   6 7   17   27   ...  2007   9 8   18   28   ...  2008   4 9   19   29   ...  2009   1 10   20   30   ...  2010   0 2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

dUcenH elxxagcugén  KW   3 . 72> KNnatémø A  a  ab eyIgman a  a 1b  b 1 1  -KuN  nwg a  a 1 enaHeyIg)an ³ 2012

2

a 

naM[

2



a

2





 

 a2 1 b  b2 1  a  a2 1



2

1

dUcenH elxxagcugén  KW   6 .

b2 1

2

2

2

2

2

2

2

 a  a2 1  b  b2 1

2

man 201 éndb;²tY   12  22  32  ... 20102  20112   201 45  20112   5  1  6



 vijmþg enaHeyIg)an ³ a  a 1b  b 1b  b 1 b  b 1 a  a  1b  b  1  b  b  1

-KuN  nwg b 

2

2



a 2 1 a  a 2 1 b  b2 1  a  a 2 1  b  b2 1  a  a2 1

  1  2  3  ...  2010  2011 2

2

2

edayplbUkelxcug² éndb;²tYCabnþbnÞab;esµI²Kña KW 1  4  9  6  5  6  9  4 1  0  45 ehIy 2

2011

2

-tam 1 nig 2 cgCaRbB½n§ bUkGgÁ nigsRmYl eyIg)an ³   b  b  1  a  a  1 2

2

 a  a 2  1  b  b 2  1 a b  a b  2a  2b a  b

-naM[

A  a 2012  ab 2011

71> kMNt;elxcugén   1!2!3!... 2010!2011! a  a a   a  a a  ¬GñkKYKitfa mYycMnYnEdlKuNnwg !0 b¤ )anBIplKuN a  a   1  a a   1  a a a 0 én @ nig% suT§swgEtpþl; cMnYnEdlmanelx0 xagcug¦ rUbmnþ hVak;tEU rül n! n  n 1 n  2...  3 2 1 dUcenH eRkayBIKNna )anplmk A  0 . eyIg)an ³ 2011

2012

2011

2012 2012

 690



2012

2011

2012

2011

2012

2012

73> edaHRsaysmIkar ³ eyIgman 2011  x -tag A  2011 naM[ log A  log 2011 log 2012 x

b¤ x

log 2012 2011

i 

B  x log2012 2011

eyIg)an³

log 2012 B  log 2012 x log 2012 2011

log 2012 B  log 2012 2011  log 2012 x ii 

naM[

edaypÞwm i  nig ii eyIg)an log A  log B smmUl A  B -smIkareTACa 2011  2011  4022 2012

x  12  0  x  1  0  x  1  2  y  1  0  y  1  0  y  1  2 z  1  0  z  1  0  z  1

  1

2010

  1

2011

 1   1  1  1

  1

2012

dUcenH eRkayBIKNnaeXIjfa

log 2012 x

2  2011



A  x 2010  y 2011  x 2012

2012

log 2012 x

 

manEtmYykrNIKt; EdlepÞógpÞat;smIkarxagelIKW témøénktþanImYy²esµI 0

log 2012 x

2012

log 2012 A  log 2012 x  log 2012 2011

-tag naM[

 

 2x 1  y 2  2 y 1  z 2  2z 1  0

x  12   y  12  z  12  0 eday x  12  0 ,  y  12  0 , z  12  0

 4022

log 2012 x

2012

2

A 1

.

 2  2011

log 2012 x

 bc 2cd 76> bgðajfa ad2ab  ad  bc log x 1 a c a b eyIgman b  d naM[ c  d eyIg)an ³ x  2012 dUcenH eRkayBIedaHRsaysmIkarmanb¤s x  2012 . a  ad  ab 1 ehIy b  bc  ab 2 c cd cb d dc ad bc ad  bc ad  bc i     74> Rsayfa a  b  a  b a  b   a  b naM[ ad cd dc cd  dc 2cd ab ab ab  ab 2ab Binitü a  b a  b   a  b ii   

2011log 2012 x  20111 2012

5

3

3

5

2

3

3

2

2

2





 a 5  a 3b 2  a 2 b 3  b 5  a  b

cb

2

3

3

2

2

1

2

 a 5  b 5  a  b1  1  a 5  b5  0  a 5  b5

dUcenH eXIjfa a

5



x 2  2 y  1  0  2  y  2z 1  0  z 2  2x 1  0 

2010

cb  ad

77> sRmYlkenSam 

 b 5  a 3  b 3 a 2  b 2  a  b 

75> KNnakenSam ³ A  x eyIman



cb  ad

tam 1 enaH i   ii eyIg)an ³ ad  bc 2ab ad  bc 2cd   naM [ 2cd cb  ad 2ab cb  ad ad  bc 2cd dUcenH eXIjfa 2ab  ad  bc .

 a 5  b 5  a 2 b 2 a  b  a  b  a 5  b 5  a  b a 2b 2  1

edaysmµtikmµ eK[ ab  1 enaH a b eyIg)an a  b a  b   a  b

ad

.

 a  a  a 2  b 2  b b  A     2    2  b a b a 2011 ab    

1

2 2 1  a  2 2 a b  b   2      a   b  2011ab    2 2  a   a 2  b 2  1 a b  b   2   2       b a  a   b   2011ab   

 y 2011  x 2012

¬bUkGgÁnigGgÁ¦

x 2  2 y 1 y 2  2z 1 z 2  2x 1  0

 691



a  a 2  b 2  ab b     2   2  ba a b  2011ab  b a  2011ab     2   2  2 2  a b  a  b 

1

 a b  2011ab      2 2   b a  a  b   a 2  b 2  2011ab   2    2011 2   ab  a  b 

dUcenH eRkayBIsRmYl

A  2011

.

78> KNna P  xy  yz  zx eyIgman ax  by  cz  m Taj)an x  am , y  bm , z  cm naM[ P  xy  yz  zx

 ambm  bmcm   cm am  abm2  bcm 2  cam 2  ab  bc  ca m 2

eyIgman

a b  c 1 a 2  b 2  c 2  2ab  2bc  2ca  1 a 2  b 2  c 2  2ab  bc  ca   1 a 2  b2  c 2  1

EtsmµtikmµbEnßmKW naM[ 1  2ab  bc  ca  1

2ab  bc  ca   0 ab  bc  ca  0

eyIg)an

kñúgRtIekaNEkgFMman sin   ah  h  a sin a RkLaépÞénRtIekaN=¬)at x km
dUcenH épÞRtIekaNsm)atenHKW S  12 a 80> eRbóbeFobcMnYn k> 6  5 nig 21 ]bmafa ³ 6  5 

dUcenH eXIjfa P  xy  yz  zx  0 .

sin 

.

21

¬elIkCakaer¦

6  2 30  5  21 2 30  10

¬elIkCakaermþgeTot¦ 120  100 BitR)akdEmn naM[kar]bmaKWRtwmRtUv mann½yfa 6  5  21 4  30  100

dUcenH eRkayBIeRbóbeFobKW x> 1  Binitü ³

2011

nig 2

11  72

6  5  21

2011

.

3 2

1  2011 11  72  1  2011 9  2  4  18 2

 1  2011 9  2 9  2  2

P  ab  bc  ca m 2  0  m2  0

2



 1  2011 3  2

eday 1 

2



2

2

2011

3  2   0 



1  22011 3  2  2011 3  2



2

0

3  2   2 3  2 1 79> KNnaRkLaépÞRtIekaNenH CaGnuKmn_én  nig a b¤Gacsresr 1  11  72  2 3  2 eyIgman RtIekaNsm)aT  a edayeFVIcMeNalEkgBImMuBMuEmn  dUcenH lT§pl 1  11  72  2 3  2 . h enaHeyIg)anrUbdUcxagsþaM 2

2011

2011

2011

 692



2011

2011

2011

81> rktémøKt;én x , y nig z eyIgman smIkar

3

 3 ax 2  by 2  cz 2

x  y  z  4  2 x 2  4 y 3 6 z 5  x 2 x 2  y 4 y 3  z 6 z 5  4  0  x  2  2 x  2  1   y  3  4 y  3  4  



  z  5  6 z  5  9  0

 

 

2

2

x  2 1 

 eday         

y 3 2 



z 5 3  0

ax 2  by 2  cz 2  3 a  3 b  3 c

2

2

C

2

B

2

 x  2 1 x  2  1 x  3     y  3  2  y  3  4  y  7  z  5  9  z  14    z  5  3

2

2

 cz 2  3 a  3 b  3 c

ax 2 by 2 cz 2   1 ax 3 by 3 cz 3

eyIg)an

ax 3  by 3  cz 3

ax 2  by 2  cz 2 1 ax 3

Taj)an

ax 2  by 2  cz 2 1 by 3

Taj)an

ax 2  by 2  cz 2 1 cz 3

Taj)an

ax 2  by 2  cz 2 x 2 3 ax  by 2  cz 2 3 b y 3

3

a

c

3

3

ax 2  by 2  cz 2 z

1  2  3 eyIg)an

A

G

O

C

M

CaGrtUsg;énRtIekaN ¬cMNucRbsBVkmm ¬mMuBIrb:unerogKña¦ o

dUcenH témøKt;EdlrkeXIj x , y , z   3 , 7 ,14  . 3



H

¬emIleTArUbdUcsµúKsµaj EtebIRKb;RKg)an KµanGVIBi)ak¡¡¡¦ -]bmafa O Cap©itrgVg;carwkeRkARtIkekaN ABC nig H

2

82> RsaybMPøWfa ax  by eyIgman 1x  1y  1z  1

.

D

 0 y  3  2   0 edIm,I[epÞógpÞat;smIkar z  5  3  0 x  2 1

3

A

2

2

edayyk

dUcenH eXIjfa

83> RsaybBa¢ak;fa H / G nig O CabIcMNucrt;Rtg;Kña

xagelIKwmanEtmYykrNIKt;KW ³  x  2  1  0  x  2 1  0      y  3  2  0   y  3  2  0   z  5  3  0  z  5  3  0 

naM[ eday

1 1 1 a  3 b  3 c       3 ax 2  by 2  cz 2 x y z

¬!¦ ¬@¦ ¬#¦

 693



AHG AH AG vi)ak ³ ~ MOG 4   MO MG AG tam 3 & 4 ³ naM[ MG  2 or AG  2MG enHbBa¢ak[eXIjfa G BiCaTIRbCMuTMgn;rbs; ABC dUcenH H / G nig O CabIcMNucrt;Rtg;KñaR)akdEmn .

naM[ cMnYn 39 Eckdac;ngw 9

84> bgðajfa P  0 eyIgman ³

dUcenH

P  a b  5a  9b  6ab  30a  45 2

2

2

2

2



   a  6a  9 b  5  a  3 b  5 2

 51 39  17  3  17 39  3 39  17 39  3 37  3 2  17 39  3 37  9 39

naM[ cMnYn 51 Eckdac;ngw 9 39

eyIg)anplbUk 39  51 Ecknwg 9   -tamry³  nig   ³ 39  51 Eckdac;nwg 9 5 51

51



man 2

0

2

n





85> bgðajfa 39  51 Eckdac;nwg 45  Binitü 39 elxcugKW 9 39 elxcugKW 1 39 elxcugKW 9 39 elxcugKW 1 2

3

4

ebI n CacMnYnKt;ess ebI n CacMnYnKt;KU

...9  ...1







1

10

2



10

2

2











 10

 10  1 10 1















naM[ cMnYn 39 CacMnYnEdlmanelx 9 enAxagcug . 51

511

2

3

4

 1 108  1  ... 10 2  1



2n

n







 1 10 2  1 n



n 1 1 10 2  1 99 1  1000...00  1 99

n 1

n 1

39

51

n 1

39

39

 39 51  13  3  13 51  351  13 51  3 49  3 2  13 51  3 49  9 51

 694





8

n 1

51



 1 10 4  1 108  1  ... 10 2  1

51 elxcugKW 1 elxcugKW 1 man 2 dgénelx 0 1 51 elxcugKW 1 51 elxcugKW 1  999...99 99 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> man 2 dgénelx ( eXIjfa sV½yKuNén%! CacMnYnEdlmanelx! cugCanic©  10101...01 ¬ man 2  1 xÞg;¦ naM[ cMnYn 51 CacMnYnEdlmanelx 1enAxagcug . -eyIg)anplbUk 39  51 CacMnYnmanelx 0 cuug dUcenH A  10101...01 ¬ man 2  1xÞg;¦ . naM[ plbUk 39  51 CacMnYnEckdac;nwg%  ]TahrN_³ 10110001  1010101 Bit . -mü:ageTot 

n

4

2





 1 10 2  1 10 4  1 10 8  1  ...  10 2  1

10  1

1



n

1  ...........................................................

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> n

10  1 10 1

2



39

1



 102  1 104  1 108  1  ... 102  1

2

51

 1 dgénelx 0

man 2 dgénelx 0

2

2

n

 100  110000  1100000000  1  ...  1000 ... 00  1

RKb; a CacMnYnBit b  5  0 RKb; b CacMnYnBit naM[plKuN a  3 b  5  0 Canic© dUcenH eRkayBIbgðajeXIjfa P  0 Canic© .

Binitü

Eckdac;nwg 45 .

2

eday a  3

manTRmg; 9

3951  5139

39

A  101 10001 100000001 ...1000...001

2

2

39

86> KNna A ³ eyIgman

 a 2 b 2  6ab 2  9b 2  5a 2  30a  45

 b 2 a 2  6a  9  5 a 2  6a  9

51

n

87> KNnatémø n ³ eyIgman

-cMeBaH A  0 eyIg)an³ C  A  0  0 ehIy B  A

3 9 15 6n  3 300    ...  2011 2011 2011 2011 2011 3  9  15  ... 6n  3 300  2011 2011 3  9  15  ... 6n  3  300

2

naM[

1  3  5  ... 2n  1  100

2

n 2  10 2

naM[

n  10

k>

eyIg)an³

x2  2x   y  2  y  2 y  z  z 2  2z  x 

x>

x2  2x 1  1 y    y2  2 y 1  1 z  z 2  2z 1  1 x 

 x  1  1  y x  2x 1  1 y   2 2  y  2 y  1  1  z   y  1  1  z  z 2  2z 1  1 x   z  12  1  x   1  x 2  1  y   2 1  y   1  z   1  z 2  1  x  

edaytag A  1  x eyIg)an³

, B  1 y , C  1 z

-tam 1 : A  C -tam 2 : C  B -tam 3 : B  A naM[ A  A  2

 A4  B

2

 A8  A



A A7  1  0

enaH

A0

b¤ A

7

 14  1

A  1 x 1  1  x x  0     B  1  y  1  1  y   y  0 C  1  z 1  1  z z  0    A, B, C x, y, z

CMnYsrk

1 1 1 1  a  b  c   12  1 1 1 7      c b a 12 1  1  1  5  a c b 12 

x  0  y  0 z  0 



x  1  y 1 z 1 

.

1 2

edaHRsayedaybUkGgÁ

3

1 1 1 7 2 6 2 12      b 4 b b 12 12 b 12 6 1 & 3 1 1 1 5 2 4 2 12       a 6 a a 12 12 a 12 4 1 & 3 1 1 7 5 2 12 2 12       c 2 c c 12 12 c 12 12

-edaybUkGgÁnwgGgÁénsmIkar

eyIg)an ³

-edaybUkGgÁnwgGgÁénsmIkar

eyIg)an ³

x  4 x  3 x  2 x 1    4 2007 2008 2009 2010 x4 x 3 x2 x 1 1  1  1  1  0 2007 2008 2009 2010  x4   x3   x2   x 1   1    1    1    1  0  2007 2008 2009 2010        

A8  A  0





89> edaHRsaysmIkar eyIgmansmIkar

2

8

x  1  y 1 z 1 

dUcenH RbB½n§smIkarmanKUcemøIy a, b, c  6,4,2 .

1 2 3

 A2  C  2 C  B B2  A 

 04  0

-edaybUkGgÁnwgGgÁénsmIkar 1 & 2 eyIg)an ³

2

2

4

dUcenH KUcemøIyénRbB½n§KW

88> edaHRsayRbB½n§smIkar ³ x2  2x  y  2 y  2y  z  z 2  2z  x 

2

-ykKUcemøIyéntémø

2

4

 A  1 x 0  1  x    B  1  y  0  1  y C  1  z 0  1  z  

-cMeBaH A 1 eyIg)an³ C  A  1  1 ehIy B  A

31  3  5  ... 2n  1  3 100

GñkRtUvcaMfa 1  3  5  ...  2n  1  n dUcenH témøKNna)anKW n  10 .

2

 1  0  A7  1  A  1

 x  4  2007   x  3  2008   x  2  2009   x  1  2010      0  2007   2008   2009   2010   x  2011   x  2011   x  2011   x  2011      0  2007   2008   2009   2010 

 695



x  2011 

1 1 1 1     0 2007 2008 2009 2010  

naM[ ehIy

x  2011  0  x  2011

dUcenH 4

1 1 1   1     0  2007 2008 2009 2010 

tag n   n2   

8

4

4

4

8

2 1 

8

8

4

 8

n 2  24 8  2

 8

 24 8  2

8

2

4

2

4



  

8

1 2

2 1

 

2



 2 4 8   n

2  1  



2  1  

n  2 4 8  

2  1  

 2

4

8

2 x  x  x  x 1



 

8

naM[

4

4 4



8 4

2

8

8

eRBaH n  0 BMuEmn  eT

8 4

8





x 1 x  x 1 x 1





x 1 x  x 1

n

1  9x

8







 

x 1 

x 2



x  x 1

x  x 1 x  2 x  x 1 x 1

x  x 1 x  x 1 1  ,0  x  1 x 1 x 1

man n tYénelx !  10 n  9 x  1

¬sUmKit¦

man n tYénelx ! man n tYénelx !  222...220  2

man n  1 tYénelx @ man n tYénelx @

2 1  2 

4

.

-eyIg)an A  888 ...88  8  111 ...11  8x ehIy B  222...222

4

8

 222...22 10  2  2 x 10  2  20x  2

2 1

man n tYénelx @

2 1

2 1 



x 1

Taj)an ³ 10

2 1

2 1 



x 1 x  x 1

man n tYénelx !

edaypÞwmtémørbs; n eyIg)an ³ 4

2 1

92> RsaybB¢aak;[eXIjfa A  B  C  7 CakaerR)akd -tag x  111...11 naM[ 999...99  9x

Tajrk vij eyIg)an³ n 2  2 4 8  

8

1 2

dUcenH eRkayBIsRmYl B  x 1 1 .

2

 24 8  2 2 2  2  1 2 1

4

  2 x  x x  x  1  x    x  1x  x  1

2

2 1

 24 8  2

2 1 





enaH

2  1  

2  1  

2 1

2 x x 1   x 2    1   B      x  1   x  x  1   x x 1 2 x x 1   x 2    1        x  x 1 3 x  1 x  1      2 xx 1   x 2    1        x  1   x  x  1   x 1 x  x 1

2  1  

2  1  

  



 2 1  

2  1  4 8  

 24 8  2

4

2 1 , n  0

8

4

2  1    4 8   

 2  4 8  

2 1

2 1 

2 1 

8

  4 8  

4

8

8

91> sRmYlkenSam

dUcenH smIkarmanb¤sEtmYyKt;KW x  2011 . 90> RsaybB¢aak;fa

4

2 1

nig C  444 ...444

 444 ..44  10 n  444 ..44

man 2n tYénelx $ man n tYénelx $ man n tYénelx $

2 1

1  2 2 1

 4 x9 x  1  4 x  36 x 2  4 x  4 x  36 x 2  8 x

 696



naM[

A B C 7



 b  a  c  b 2  ab  bc 5



 8 x  20 x  2  36 x 2  8 x  7

 c  a  b  c 2  ac  bc 6

edayyk 5  6  7 : eyIg)an

 36 x 2  36 x  9  6 x   2  6 x  3  3 2

2

 6 x  3  666...66  3  666...69 2

2

2

man n tYénelx ^ man n  1 tYénelx ^

dUcenH A  B  C  7 CakaerR)akd . 93> rkPaKryénkm
a 2  b 2  c 2  2ab  bc  ac 

 

-tamry³  &   eyIg)an ³

ab  bc  ac  a 2  b 2  c 2  2ab  bc  ac 

dUcenH ab  bc  ac  a

2

 b 2  c 2  2ab  bc  ac

95> KNna E ³ eyIgman

2011 2011 2011 RkLaépÞRtIekaN E   b a c b a c a b c b -tag x CaPaKryénkm
1 S  bh 2

2

2

2

2

2

2

2

2

2

1  1.11  x 

 1  1.1  1.1x

1.1  1 0.1 x   0.09091  9.09 % 1.1 1.1

dUcenH km
94> Rsayfa ab  bc  ac  a  b  c -RKb; a , b nig c CacMnYnBiteyIg)an³ 2

2

2

 a 2  b 2  2ab 1

 b  c   0

 b 2  c 2  2bc 2 

 a  c   0

 a 2  c 2  2ac 3

2

2

a  b

2

2

E

2

2

2

2

-müa:geTot a , b nig c CargVas;RCugénRtIekaN eyIg)an ³



  c 

2



2

2

a  b  c

 a 2  2ab  b 2  c 2

2

3

2011 2011 2011  2  2 2 2 2 2 b a c b a c a  b2  c2 2

eRBaH a  b  c  0 nig abc  0 dUcenH eRkayBIKNnaeXIjfa E  0  697

2

2

2011 2011 2011    2bc 2ac  2ab 2011 2011 2011    2bc 2ac 2ab  2011a  2011b  2011c  2abc  abc  2011 0  2abc 



2

2

E

2a 2  b 2  c 2   2ab  bc  ac

 a  b  c  a 2  ab  ac 4

2

2

2

2

naM[ a  b  c  2ab -tam 1 , 2& 3 eyIg)an

edayyk 1  2  3 : eyIg)an

a 2  b 2  c 2  ab  bc  ac

2

2

 abc  0

 2ab  bc  ac 

 a  b   0 2

.

1 or 9.09% 11

2

.

man    a    3a   a  3a  4a        naM[ x    a   4a  a  2a  3a yk 1 BinitüGgÁTI! ³ ¬edayeRbIrUbmnþ a  ba  b  a  b ¦   a   4a x  a  2a   a minyk 1 2010  2012 2011  12011  12011  12011  1 -eyIg)anrgVas;RCugénRtIekaNKW 3a , 4a , 5a  2011 12011 12011  12011  12011  12011  1  2011  12011  12011  12011  12011  1 rgVas;RCugEvgCageK KWtUcCag b¤esµI !0 mann½yfa 96> bgðajfa

2

2

2

2

2

2

2010  2012 2011 2  1 2011 4  1 2011 8  1 2011 16  1  2011 32  1 2

2

2

2

4

8

2

2

2

16

4

4

8

16

8

16

     2011  12011  12011  1  2011  12011  1  2011  1



 20114  1 20114  1 20118  1 201116  1 8

8

16

5a  10  a  2

16

16

32

dUcenH eRkayBIkarbgðaj eXIjfa 







 



2010  2012 2011 2  1 2011 4  1 2011 8  1 2011 16  1  2011 32  1

ehIy a CacMnYnKt;viCm¢ an enaH a  1 nig a  2  cMeBaH a  1 enaHRtIekaNmanrgVas;RCug 3, 4 , 5  cMeBaH a  2 enaHRtIekaNmanrgVas;RCug 6, 8 , 10 dUcenH rgVas;RCugénRtIekaNEkgtUcCag b¤esµI!0 KW³ 3, 4, 5 nig 6, 8, 10 . 99> KNna A  B CaGnuKmn_nwg C BinitülkçN³RCugrbs;RtIekaN -tamBItaK½r eXIjfa³ 3  4  5 mann½yfavaCaRtIekaNEkg -ehIyvaCaRtIekaNCarwkkñúgrgVg;enaHeyIgTajfa RbEvgRCugEvgCageKmanrgVas;esµI 5 CaGgát;[p©it -eyIgKUsrUb)abdUcxageRkam³ rgVg;enHman kaM R  52

97> bMPøWfa 2AM  AB  AC A -yk N kNþal AC  N 1 naM[ AN  AC 2 C -bRmab; AM  Caemdüan B M naM[ M kNþal BC  Taj)an MN Ca)atmFüménRtIekaN ABC 2 ehIy MN  AB 2 -tamc,ab;vismPaBkñúgRtIekaN AMN eK)an ³ AM  MN  AN 3 C A 5 4 -edayyk 1 & 2 CMnYykñúg 3 AC 3   2 AM  AB  AC eyIg)an AM  AB B 2 2 dUcenH eXIjfa 2AM  AB  AC R)akdEmn . -RkLaépÞRtIekaN S  1  3  4  6 ÉktaépÞ 2 -RkLaépÞrgVg; S  R     52   254 ÉktaépÞ 98> rkRKb;rgVas;RCugénRtIekaNEkg   -eday a CacMnYnKt;viC¢man -RkLaépÞEpñk C KW C  R2  S2  258 ÉktaépÞ enaHeyIg)anrgVas;RCug x  x  a  x  2a naM[ A  B  S  S  C  -edayvaCaRtIekaNEkg tamBItaK½r 25  25  25   6  6 C 6  eyIg)an x  x  a   x  2a  4 8  8  x  x  2ax  a  x  4ax  4a dUcenH A  B  C  6 . 2

2

2



2

2

2



2

2

2

2

2

2

2

2

x 2  2ax  3a 2  0  698



100 KNnaRbEvg)atmFümenAcenøaHGgát;RTUg x 4S   1  1  2  2  3  ... 1000  1000  1999 2001  1 3 3 5 5 -tag P nig Q CacMNuc A 6 cm B 1 2  2 3  999 1000  1000 4S  1          ...     RbsBVrvagGgát;RTUg nig M P x Q N 3 3  5 5  1999 1999  2001 C )atmFüm eyIg)an ³ D 10 cm man 999 tYénKUplbUk - MP Ca)atmFümén DAB eRBaH MP kat;tamcMNuc 4S  1  1  1  1  ... 1  1000 2001 cMNuckNþal AD ehIyRsbnwg AB ¬)atmFümctu>Bñay¦ manelx! cMnYn 999 tY 6 cm naM[ MP  AB   3 cm 1000 2001000  1000 2002000 2 2 4S  1000    2001 2001 2001 - MQ Ca)atmFümén ACD eRBaH MQ kat;tamcMNuc 4  500500 500500 cMNuckNþal AD ehIyRsbnwg CD ¬)atmFümctu>Bñay¦  S  4  2001  2001 10 cm naM[ MQ  CD   5 cm dUcenH plbUkKNna)anKW S  500500 . 2 2 2001 -eyIg)an x  PQ  MQ  MP  5cm  3cm  2 cm 102 RsaybBa¢ak;fa ³ dUcenH RbEvgcenøaHGgát;RTUgKW x  2 cm . 101 KNnaplbUk S  11 3  32 5  53 7  ...  19991000 2001 6  6  6  ... 6  30  30  30  ... 30  9 eyIgBinitüemIlGgÁTI! dUcbgðajxageRkam ³ -Binitü ragTUeTAéntYnImYy²rbs; S -cMeBaH 6  6  6  ... 6  6  6  6  ... 9 n 4n  2n  12n  1 42n  12n  1 Et 6  6  6  ... 9  3 ¬beBa©jBIr:aDIkal;¦ 2n  n  2n  n  42n  12n  1 naM[)an ³ 6  6  6  ... 6  3 (i)     n 2n  1  n 2n  1  -cMeBaH 42n  12n  1 1  n2n  1 n2n  1  Et 30  30  30  ...  36  6 ¬beBa©jBIr:aDIkal;¦    4  2n  12n  1 2n  12n  1  naM[)an ³ 1 n n     4  2n  1 2n  1  -edaybUkGgÁnigGgÁ ³ (i)  (ii) eyIg)an ³  eyIg[témø n  1, 2, 3,...,1000 eyIg)an ³ (i)  6  6  6  ...  6  3  1 1 1 1   ebI n  1³    30  30  30  ...  30  6 (ii) 1  3 4 1 3   2 1 2 2 ebI n  2 ³ 6  6  6  ...  6  30  30  30  ...  30  9     35 4  3 5  dUcenH eyIgGacRsaybBa¢ak;)anfa ³ ebI n  3 ³  53 7  14  15  17  2

2

2

2

2

2

2

2

30  30  30  ...  30  30  30  30  ...  36

30  30  30  ...  30  6

(ii)

2

2

2

>>>>>>>>>>>>>>>>>>>>>

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

ebI n  1000³

1000 2 1 1000 1000     1999  2001 4 1999 2001 

6  6  6  ...  6  30  30  30  ...  30  9

1 1 1 2 2 3 1000 1000  S        ...    4 1 3 3 5 5 1999 2001 

bBa¢ak; ³ karedaHRsayxagelIKWman n r:aDIkal;dUcKña. ¬GñkGacsegçbkaredaHRsay[xøICagenHk¾)an¦

 699



4 S  1  t t  2   1

103 k> cUrKNnaplbUk

 t 2  2t  1

S  1 2  3  2  3  4  3  4  5  ...  nn  1n  2

eyIgBinitütYnImYy²én S manragCa Et k k  1k  2

k k  1k  2

1  k k  1k  2    4 4 1  k k  1k  2 4  k  k  4 1  k k  1k  2 k  3  k  1 4 1  k  3k k  1k  2   k  1k k  1k  2  4 1  k k  1k  2 k  3  k  1k k  1k  2  4

edaytémø k  1, 2 , 3, ... , n eyIg)an ³ 1  1  2  3  4 1  2  3  4  0 1  2  3  2  3  4  1 2  3  4  5  1  2  3  4  4  1   3  4  5  3  4  5  6  2  3  4  5 4  ...................................................  1 nn  1n  2   nn  1n  2 n  3  4   n  1nn  1n  2 1  2  3  2  3  4  3  4  5  ... nn  1n  2  

 t  1

2

b¤Gacsresr)an³ 4S 1  n  3n1 dUcenH 4S 1 CakaerR)akd . 104 RsaybBa¢ak;fa ³

x1  x2  x3  ...  x9 x1  x2  x3  ...  x12  7 x3  x 6  x9 x4  x8  x12

eyIgman ³ 0  x  x  x  ...  x naM[ x  x  x  x  x  x  3x 1

1

x> RsaybBa¢ak;fa 4S 1 CakaerR)akd eyIgman S  14 nn  1n  2n  3 naM[ 4S  1  4  14 nn  1n  2n  3  1  nn  3n  1n  2  1

ebItag







 n 2  3n n 2  3n  2  1 t  n 2  3n

eyIggayRsYlKuN enaH

2

2

3

3

12

3

3

3

3

x4  x5  x6  x6  x6  x6  3x6

x7  x8  x9  x9  x9  x9  3x9

1 2 3

edayyk 1 + 2 + 3 eyIg)an ³  x1  x 2  x3  3 x3    x 4  x5  x 6  3 x 6  x  x  x  3x 9  7 8 9

x1  x 2  x3  ...  x9  3x3  x6  x9 

b¤sresr)an ³ x  xx  xx  ...x  x ehIy x  x  x  x  x  x  x 1

1

2

3

2

3

9

3

6

9

4

4

4

4

3

i 

 x4  4x4 4 

x5  x6  x7  x8  x8  x8  x8  x8  4x8 5 x9  x10  x11  x12  x12  x12  x12  x12  4x12 6 

edayyk 4 + 5 + 6 eyIg)an ³  x1  x 2  x3  x 4  4 x 4    x 5  x 6  x 7  x8  4 x8 x  x  x  x  4x 12  9 10 11 12

1 nn  1n  2 n  3 4

dUcenH eRkayBIKNna S  14 nn  1n  2n  3

2

2

x1  x 2  x3  ...  x12  4x 4  x8  x12  x1  x2  x3  ...  x12 4 x 4  x8  x12

ii  b¤sresr)an ³ CalT§plRKan;Etyk i   ii CakareRsc

dUcenH

 x1  x 2  x3  ...  x9 3  x3  x 6  x9    x1  x 2  x3  ...  x12  4  x 4  x8  x12 

x1  x2  x3  ...  x9 x1  x2  x3  ...  x12  7 x3  x 6  x9 x4  x8  x12

 700



105 rktémøFMbMputénplKuN xy x  3 xy  y  60 eyIgman GacEfmfy x  2xy  y  5xy  60

A  111...11222...22

2

2

 111...1110 2011  2111...11

2

2

 111...11 10 2011  2



x  y 2  5 xy  60 2 60   x  y  xy 

Edlman elx#cMnYn @0!! tY A  111 ... 11222 ... 22  333 ... 33 333 ... 33  1

EdlmancMnYntYénelx! /@nigelx# esµIKñaKW 2011tY .

F 1

M 2 D

1 2 N



dUcenH

106 rkplbUkrgVas;mMu A, B , C , D , E nig F EfmcMNuc M nig N Rtg;RbsBVdUcrUb ³ A





5 x  y 2 xy  12  5 2  x  y 0  0 5

C



1 999...99 10 2011  2 9 1  999...99 10 2011  1  3 9 1  999...99999...99  3 9 1 1  999...99  999...99  3 3 3  333...33333...33  1 

eday x  y  naM[ xy  12  0  12 CatémøFMbMput cMeBaH x  y dUcenH témøplKuNFMbMputénplKuN xy  12 . 2



108 rktémøtUcbMputénkenSam H ³ ebI x , x Cab¤smIkar 2011 x  t  2011 x  2011  0 tamrUbmnþ plbUkplKuNb¤s eyIg)an ³

B

E

2

1

2

BinitüplbUkmMukñúgén ³ -RtIekaN ANF ³ A  N  F  180 ¬!¦ b t  2011 x x   a 2011 -RtIekaN BMC ³ B  M  C  180 ¬@¦ c  2011 xx    1 -ctuekaN DMNE ³ D  M  N  E  360 ¬#¦ a 2011 edaybUk (1)+(2)+(3) eyIg)anplbUkmMu ³ eyIgman ³ H  x  x   4 x 2 x o

1

1

o

2

1

o

2

1 2

2

2

2

A  B  C  D  E  F  M 1  M 2  N1  N 2  720

EtmMu M  M  180 , N  N  180 naM[ A  B  C  D  E  F  180  180  720 b¤ A  B  C  D  E  F  360 dUcenH plbUkmMu A  B  C  D  E  F  360 . o

1

2

o

1

2

o

o

1

o

H   x 2  x1 

2

o

o

o

107 RsaybBa¢ak;fa A CaplKuNénBIrcMnYnKt;tKña eyIgman A  111...11222...22 man @0!!tYdUcKña ¬BinitüedayykcitþTukdak;BImYycMNuceTAmYycMNuc¦



 x  x 2 x 2  x1    4 1  x1 x 2   2

1 1   x1 x2 2

  

2

2   1 1      x  2 x1 x 2  x 1  4    2 x1 x 2  





 701

2

1 2 2  1   x 2  x1   4 x 2  x1     2 x1 x 2 2   1 1   2     x 2  x1  1  4    2 x1 x 2   2 2

2 1

  x1  x 2 

eyIgGacbMEbk A CaTRmg;gaydUcxageRkam ³

1



2



2   1 1      4 x1 x 2 1  4    2 x1 x 2  



  

2

edayCMnYstémøénplbUknig plKuN eyIg)an ³

eday xx  1 CaBhuFadWeRkTI@ enaH sMNl;CaBhuFa dWeRkTI! manragCa rx  ax  b . -]bmafa qx  CaplEckén px nwg xx  1 eyIg)an ³ px  xx  1 qx   ax  b -cMeBaH p0  1 nig p1  2 eyIg)anRbB½n§smIkar³

2  t  2011  2   1 1     H     4  1  1  4     2  1    2011   

 t  2011  2      4 10  2011  

 p0  1 00  1qx   a  0  b  1    p1  2  11  1qx   a 1  b  2 b 1  b  1   a  b  2 a  1 r x   ax  b  x  1

 t  2011   10   40  2011  2

2011 eday  t 2011  



2

0

naM[

 t  2011 10   40  40  2011  2

dUcenH témøtUcbMputén H  40 cMeBaH t  2011 . 109 KNnatémøelxén A  3 eyIgman ³ A  3 5 3 5 3...

5 3 5 3...

enaHsMNl;KW

dUcenH sMNl;énviFIEckKW rx  x  1 . 111 RsaybBa¢ak; 5 eyIgman 5  5 2011

2011

 52012  52013

2012

 52013



 5 2011 1  5  5 2

A 2  3 5 3 5 3...

Eckdac;nwg 31



 31 5 2011

A  9  5 3 5 3 5 3... 4

dUcenH

A  45  3 5 3 5 3... 4

A 4  45 A 4

3

3

3

3

110 rksMNl;énviFIEckrvag

45

p x 

. nig xx  1

¬GñkRtUvcaMfa ³ sMNl;énviFIEck f x nig x  a  KW r  f a Edl f x CaBhuFa nig r  f a CasMNl; .¦

bRmab;

Ecknwg x )ansMNl; 1 mann½yfa p0  1 ehIy px Ecknwg x 1)ansMNl; 2 mann½yfa p1  2 -dWeRkénsMNl;Eck RtUvtUcCagdWeRkéntYEck p x 

Eckdac;nwg 31 .

112 rkelxéntYcugeRkaybg¥s;éncMnYn 2 BinitüsV½yKuNén @ dUcxageRkam ³ 2   2 2   2 2   2 2   4 2   4 2   4 2   8 2   8 2   8 >>> 2   6 2   6 2   6 eXIjfa elxcugsV½yKuNén @ manxYbesµI$vileTAmk ehIy 3  81 naM[ 2   2  2  2  2  2  2  6  2  2 34

Gacsresr A  45 A  0  AA  45   0 naM[)an  A  0 minykeRBaH A  0  A  45  0  A  45 yk dUcenH eRkayBIKNna A 

52011  52012  52013

1

5

9

2

6

10

3

7

11

4

8

12

4

81

80

420

80

dUcenH cMnYn 2 manelx 2 enAxagcugeKbg¥s; . 34

smÁal; ³ eKkMNt;sresr 2   8 mann½yfa elxxagcugén 2  KWelx 8 . 11

11

 702



113 rkelxéntYcugeRkaybg¥s;éncMnYn123456789 -ebItémø x GviCm¢ aneyIg)an 10  x  100 elxxagcugéncMnYn 123456789 KWGaRs½yEt elIsV½yKuNelxxagcugéncMnYnenHb:ueNÑaH mann½yfa dUcenH témøéncMnnY BitbBa¢ak;)anKW ³ . 10  x  100 b¤ 10  x  100 elxxagcug123456789 =elxxagcug 9 -BinitüelxxagcugsV½yKuNénelx ( ³ 116 k>eRbóbeFobcMnYn 1 2000 nig 2001  2  2000  9   9 , 9   1 , 9   9 , 9   1 , ... Binitü ³ 2001  2  2000 9 ebI n ess naM[ 9    1 ebI n KU  1  2000  2  2000   1  2 1  2000  2000  2  2000 eyIg)an 9   9 eRBaH @0!! CacMnYness  1  2000 2011

2011

2011

2011

2

1

2

3

4

2

2

n

2

2

2

2011

2

dUcenH elxxagcugbg¥s;én 123456789 KW 9 . 2011

114 RsaybBa¢ak;facMnYn A CacMnYnKt;viC¢man eyIgman A  13  2  1 2  1 3

3

1 A3 3



1 3



3

1 3



3



3



3

3 3

3

3

3



2 1

3

3

3



2 1

2

2

2

2

2

2



2

2000  2000    2001    2001  2001  2000 2000  2001   2001 2001  2001



2 2  1  2  3  3 2  3  3 2  1  



2 2  1 1  3 2  3 2    2

2

dUcenH eRkayBIKNnaeXIjfa A  2001 . 117 RsaybBa¢ak;fa a  x  y eyIgman ³ x  x y  y  x y  a

2  3 2  3 2 1 3 2  3 2

A 1

2

2000  2000  A  20012  2  2000     2001 2001  

3 2 2  1  3 2  3  3 2  3  3 2  1  

3

2

2

3

2 3

 3 2 1  1

dUcenH

dUcenH 1  2000   2001  2  2000  . 2000  x> KNna A  1  2000   2000   2001  2001  2000  eyIgman ³ A  1  2000   2000   2001  2001  eday 1  2000   2001  2  2000  eyIg)an ³

2

CacMnYnKt;viC¢man .

115 bBa¢ak;témøéncMnYnBit x edayeRbIsBaØavismPaB -bRmab; ³ x CacMnYnBit mann½yfa x GacCacMnYnviC¢man b¤GviC¢man -smµtikmµ ³ x CacMnYnEdlmanEpñkKt;manelxBIrxÞg; mann½yfa 10  x  100 ¬TRmg;enHeFVI[ x CacMnYn EdlmanEpñkKt;manelxBIrxÞg;Canic©¦  703

a

4

3

2

x2  3 x4 y2  3

x6  3 x4 y2 



3

x4

 3 x2  



 

3

3

3

x2  3

3

x2  3

2

2

3

4

y6  3 x2 y4

3

 

y  y y  y y   x  y  y 

2

2

2 3

y2  3 x2 y4



x x

2 3

 3 y2  2

3

3

2

2

3

2

y4

3

2

3

3

3

3

2

2

2

 3 x2  3 x2

 

cMeBaH a   x  y  eyIgGacTaj)anCa ³ a   x b¤ a  x tamrUbmnþ ³ a  a eyIg)an ³ a  x  y 2

3

2

3

3

2 3

2

3

2

 y

2

3

2

 3 y2

3

2

dUcenH cMnYn A CakaerR)akdéncMnYnKt; . 120 sRmYlkenSam E ³ eyIgman ³



3

m n

m

n

3

2 3

E

2 3

dUcenH eyIgRsay)anfa a

2 3

2 3

x y

2 3



.



118 eRbóbeFobcMnYn 2001  2002 nig 2 2002 eyIgdwgfa 2001  2002 EfmGgÁTaMgBIrénvismPaBnwg 2002 eyIg)an ³

p q 1

2

 pq      pq 





 p q    pq  p q  2

p q



 p  2 pq  q  2 pq      pq p q  

2



 1 1     3  q  p q  p 2



1





 1 1       p q



3



2

1

 

2001  2002  2 2002

 

       







2









2

p q

2 p  q  2 pq    2  pq p q p  2 p q 2 pq  1    2 pq pq  p q p  1 2 2    2 2 pq p q pq p q pq

2001  2002  2002  2002

smmUl



1

2



q



2 q

2



2

    dUcenH eRbóbeFo)an 2001  2002  2 2002 . 1  pq 119 RsaybBa¢ak;fa A CakaerR)akdéncMnYnKt; dUcenH sRmYl)an E  pq1 . eyIgman A  111...111 444...44 1 n énelx$

2n énelx!

1 4 A  999...999  999...99  1 9 9 2n énelx(

121 sRmYlkenSam E ³ eyIgman ³ A  3  9  125  27

n énelx(

3



 



1 2n 4 10  1  10 n  1  1 9 9 1 1 4 4  10 2 n   10 n   1 9 9 9 9 1 4 4  10 2 n  10 n  9 9 9 1  10 2 n  4 10 n  4 9

A





tamrUbmnþ ³







2 1 1   2 10 n  2   10 n  1  3  3 3  2

 10 n  1   999...99     1    1 3   3  

 a 3  b 3  3aba  b 

 125   125    3  9   A3   3  9    27   27  

2

 125  125   3  9  A  33  3  9  27  27  

2 2

 125   A  6  33 32   9  27  

 333...33  1  333...34 2 2

n énelx#

3 9

 6  33 

n  1 énelx#  704



125 27

¬RsedoglMhat;elx 10 TMB½r!¦ a  b 3  a 3  3a 2b  3ab 2  b 3

eyIg)an ³



3

125 A 27

pq

pq

pq

naM[)an ³

A3  6  5 A

dUcenH Rsay)anfa

A  5A  6  0 3



A3  A  6 A  6  0

3 3

2 1  3

1 3 2 3 4   9 9 9

123 KNnatémøelxénkenSam S ³ eyIgman ³ S  6  6  6  6  ... , naM[ S  6  6  6  6  6  ...



A A 2  1  6 A  1  0

 A  1A 2  A  6  0

naM[ A 1  0  A  1 ehIy A  A  6  0 eRBaH a 11240  0  dUcenH eRkayBIsRmYlEbbbec©keTs A 1 .

.

S 0

2

2

122 RsaybBa¢ak;fa tag A  2 1

3 3

S 2  6  6  6  6  6  ... S2  6 S

man

1 2 4 2 1  3  3  3 9 9 9

3 3

A3  3 2  1

 

3

A3 

ehIy



2  1 1  3 2  3 22

1 

3

2  3 22







3



1 3 2 3 4   9 9 9 1 2 4 B  3 3 3 9 9 9 1  3 1 3 2  3 4 9 1 3 1 3 2 1 3 2  3 4 3 9 1 2 1 3 13  3 2 3 3 9 1 2 3 B 3 9 1 3 2 27 3 B3   3 2 1  3 1  3 2  3 1  3 2 2  3 2 3 9 1 3 2 3 1   3  33 2  33 4 1  3 2  3 4 B3





















eXIjfa A

3

 B3







  1  5  S   2 1  21    1  5  S2  3  21

eyIg)an

cMeBaH S  2 minyk eRBaH S  0 dUcenH témøelxKNna)anKW S  3 . 124 KNnatémøén ab  bc ³ eyIgman ba  bc  2011 Edl a  0 , b  0 Taj)an ba  2011  b  2011a ehIy bc  2011  c  2011b naM[ ab  bc  2011aa  b2011b  2011a ab b  2011 1

2  13 1  1 3 2  3 4 1 3 2  3 4 3

S2 S 6  0 2   b 2  4ac   1  41 6   25  5 2

dUcenH témøKNna)anKW ab  bc  2011 . 125 edaHRsaysmIkar x  1 x  5 x  7 x  11    4 eyIgman 1991 1987 1999 1981

 A B

 705

x 1 x5 x7 x  11 1 1 1 1  0 1991 1987 1999 1981

x  1  1991 x  5  1987 x  7  1999 x  11  1981    0 1991 1987 1999 1981

x  1992 x  1992 x  1992 x  1992    0 1991 1987 1999 1981 x  1992  1  1  1  1   0  1991 1987 1999 1981 



naM[ x 1992  0  x  1992 dUcenH smIkarmanb¤s x  1992 . 126 edaHRsaysmIkar eyIgmansmIkar x  6 x   2  3 x Taj)an x   2  3 x  6 x  0 x   2  3 x  6 x  0 naM[ x  0  x  0 x   2  3 x  6  0 smIkarenHman S  2  3 , P  2  3  6 eyIg)an 2 nig 3 Cab¤énsmIkar dUcenH smIkarmanb¤sbIKW x   0 , 2 , 3 . 127 edaHRsaysmIkar log log log x  2 eyIgman log log log x  2 eyIg)an log log log x  2 log 2 2000

1998

2000

90 A  100  1000  10000  ... 10 n1  10n  n  9 A  10  100  1000  ... 10  10 81A  10 n1  9n  10 10 n1  9n  10 A 81

b¤Gacsresr ³

1999

1999

1998

2

dUcenH plbUkKW A  10

n 1

1998

1998 2

2

2

3

4

2

3

4

3

4

x

eyIgman ³ x Gacsresr x naM[)an

 xx

x

x 2

x

x  0  x  1 x  x   0   2  



x 1

x x x2 0  x   x 2 2 4 2 2 4 x  x  4 x  x  0  x4  x   0

b¤ naM[ x  0 , x  4 cMeBaH x  0 minyk eRBaH x  0

log 4 x  81log 4 4 x  481

¬rUbmnþelakarIt

x

 x

log 4 x  34

x  481

v x



log 3 log 4 x  4 log 3 3

dUcenH smIkarmanb¤s

x

u x

eyIg)an  x  1  0

log 3 log 4 x  4

.

129 edaHRsaysmIkar k> x  x GñkRtUvcaM rUbmnþ ³  f x      f x    naM[)an ff xx 10ux  vx  0

2

log 2 log 3 log 4 x  log 2 2 2

 9n  10 81

.

log a x  k  x  a k

dUcenH smIkarmanb¤s x  1  x  4 .

¦

128 KNnaplbUk A  111111 ...111...11 x> x   x  ¬lMnaMdUcsMNYr k>¦ eyIgman ³ A  111111 ...111...11 tYcugmanelx eyIg)an ³ x  x   x  x  ! cMnYn n dg eyIgGacsresr ³ x  0 naM [ )an  9 A  9  99  999  ... 999...99 ¬tYcugman n dgelx(¦  x  1x  x   0 9 A  10  1  100  1  1000  1  ... 10  1 eyIg)an  x  1  0  x  1 x x

xx

xx

xx

2

x2

xx

x

n

9 A  10  100  1000  ... 10n  n

edayKuN ¬  ¦nwg !0 eyIg)an ³



90 A  100  1000  10000  ...  10 n1  10 n

eyIgyk ¬   ¦-¬  ¦ eyIg)an ³

 x2  x x  0  x2  x x  x  2

 

dUcenH smIkarmanb¤s x  1 b¤

 706



x2

.

130 KNna a  b  c eyIgman

bRmab; ³ km
a  b 2  2ac  29  2  b  c  2ab  18  c  a 2  2bc  25 

edaybUkGgÁngi GgÁ eyIg)an ³ a 2  b 2  c 2  2ab  2bc  2ac  a  b  c  72

a  b  c 2  a  b  c   72 a  b  c 2  a  b  c   72  0

tag t  a  b  c eyIg)an ³ smIkarfµIgaysresr niggayKit t man   1 288  289  17

sisSsrubkñúgfñak; ³ x  y  28 b¤ 1.68x  1.68y  28 1.68

2

edayyk (2)-(1) eyIg)an ³

 t  72  0

1.68x  1.68 y  47.04  1.68x  1.60 y  46.48 0.56 7 0.08 y  0.56  y  0.08

  1  17 t  2  9 a  b  c  9   a  b  c  8 t   1  17  8  2

dUcenH cMnYnsisSRsIenAkñgú fñak;KW 7 nak; .

dUcenH KNna)an a  b  c   9 , 8 . 131 KNnaplbUk S  1 2  3  ... 2011 eyIgman S  1 2  3  ... 2011 ¬!¦ b¤srsesr S  2011 2010  2009  ...1 ¬@¦ edayyk (1)+(2) eyIg)an ³  S  1  2  3  ... 2011  S  2011 2010  2009  ... 1 2S  2012  2012  2012  ... 2012 2012 2011

Edlmanelx eyIg)an ³

cMnYn

2

1.68 x  1.68 y  47 .04

2

naM[

1

1.68 x  1.60 y  46 .48

dg

2S  2012  2011 2012  2011 S  1006  2011  2023066 2

133 KNnakenSam A eyIgman ³ A  a  b  c    a  b  c   a  b  c   a  b  c  2

edayeRbIrUbmnþ a

2

2

2

 b 2  a  b a  b 

2

eyIg)an ³

A  a  b  c    a  b  c a  b  c    a  b  c    a  b  c   a  b  c a  b  c   a  b  c  A  a  b  c  a  b  c a  b  c  a  b  c 

 a  b  c  a  b  ca  b  c  a  b  c  A  2a 2b  2c   2b  2c 2a  A  2a2b  2c  2b  2c   2a  4b  8ab

dUcenH kenSamEdlKNna)anKW

.

A  8ab

2011 2011   134 bgðajfa b 2011 c a c  a b a b c eyIgman a  b  c  0 naM[ ³ 2

2

2

2

2

2

2

 b  c  a  b  c    a  2

dUcenH plbUkKNna)anKW S  2023066 .

2

 b 2  2bc  c 2  a 2  b 2  c 2  a 2  2bc

132 rkcMnYnsisSRsIenAkñúgfñak; tag x CacMMnYnsisSRbus y CacMMnYnsisSRsI Edl x  0 , y  0

1

 c  a  b  c  a    b  2

2

 c 2  2ca  a 2  b 2  c 2  a 2  b 2  2ca  707



2

2

2

0

136 cUrRsabMPWøfa Binitü ³

 a  b  c  a  b    c  2

2

 a 2  2ab  b 2  c 2  a 2  b 2  c 2  2ab

tamry³ (1) , (2) & (3) eyIg)an ³

3

4



 4 5 2

    

.

135 kMNt;témø a nig b eyIgman ³ x  px  q

4

2

 

 20 6  2 6

2

2

4

2

2

2

3 2 6 2 





3 2 6  2



2

2  3 2   

3 2

2



2

 3 2 3 2 2 3

dUecñH eyIgbMPøW)anfa

 x 4  p 2 x 2  q 2  2 px 3  2qx 2  2 pqx  x 4  2 px 3   p 2  2q x 2  2 pqx  q 2

4

49  20 6  4 49  20 6  2 3

.



 2x 3  ax2  bx  1  x 2  px  q

137 KNna E ³ 2





2



 x 4  2 px 3  p 2  2q x 2  2 pqx  q 2 2 p  2  p 1  p 2  2q  a  p 2  2q  a      2 pq  b  2 pq  b 2  q  1  q  1 2  p  2q  a   2 pq  b

Taj)an ³

smmUl



a  3   b  2

naM[ 1 212 11 ba 2



dUcenH témøkMNt;)anKW



 4 9  5  4 4  8

naM[ 121211ba  p  1 & q  1



 4 3  5 3  5

p 1 & q 1 2

2

E   3  5  3  5    3  5  3  5        3  5  3  5    3  5  3  5        3  5  3  5    3  5  3  5        3  5  3  5  3  5  3  5      3  5  3  5  3  5  3  5       2 3  5  2 3  5    

x 4  2 x 3  ax 2  bx  1

-krNI

2

2

2

2

cMeBaH -krNI

  5 6   5  2 6 

 5 2 6  52 6

2011 2011 2011  2 2 2  2 2 2 0 2 2 b c a c  a b a b c

4

49  20 6  4 49  20 6

 4 5 2  20 6  2 6

2

bRmab; ³ x eyIg)an

49  20 6  4 49  20 6  2 3

 4 25  20 6  24  4 25  20 6  24

2011 2011 2011  2  2 2 2 2 2 2 b c a c  a b a  b2  c2 2011 2011 2011     2bc  2ca  2ab 2011a  2011b  2011c   2abc 2011a  b  c    2abc 0

dUcenH

4

dUcenH KNna)an

a  1   b  2

 a  3 , b  2  a  1 , b  2

.

E  8

.

138 kMNt;témø m nig n eyIgman x 1 3  x m 4  x  3n x  4 RbPaKmann½ykalNa x  3 , x  4 tRmUvPaKEbg rYclubPaKEbgecal eyIg)an ³

 708



eyIg)andwgehIyfa ebI a , b , c enaH

x  4  m  x  3  n x  4  mx  3m  n

a2  0 , b2  0 & c2  0

x  mx  n  3m  4 n  3m  4 x 1 m

2

2

edIm,I[RbPaK x mantémøeRcInrab;minGs; luHRtaEt PaKykesµIsUnü nigPaKEbgesµIsUnü dUcKña -eyIg)an ³ n  3m  4  0 n  3m  4 n  1     1  m  0 m  1 m  1

dUcenH témøkMNt;)anKW

m  n  1

139 kMNt;témø a eyIgmanRbB½n§smIkar ³ 2xxyya3  edaybUkGgÁnigGgÁ ³

-manEtmYykrNIKt;EdleFVI[ a  b  c KWmann½yfa a  0 , b  0 & c  0 naM[ a  0 , b  0 & c  0 eyIg)an ³ D  a  1  b  1  c  1

.

2010

2011

2010

  1

2010

dUcenH KNna)an

 0  1

2011

  1

2011

2

0

2012

 0  1

2012

  1

2012

 111  1

.

D 1

S  1  3  2  4  3  5  ...  2010  2012   12  2 2  32  ...  20102

1 2



1 3  2  4  3  5  ... 2010  2012  2  12  1  3  13  1  4  14  1  ... 2011 12011 1



 

 







 2 2  1  3 2  1  4 2  1  ... 20112  1  2  3  4  ... 2011  2010 2

2

2

2

naM[

S  2 2  3 2  4 2  ...  20112  2010 

tamsmIkar edIm,I[epÞógpÞat; x  y eyIg)an ³ a 3 3  2a3 3

 12  2 2  3 2  ...  20102 

 2 2  32  4 2  ...  20112  2010  12  2 2  32  ...  20102  20112  2010  12  20112  2011  20112011  1  2011 2010  4042110

a  3  2a  3

dUcenH KNna)anKW S  2011 2010  4042110 .

a6

.

a6

140 KNna D  a  1  b  1  c  1 smµtikmµ a  b  c  0 nig ab  bc  ca  0 a  b  c   0 naM[)an 2010

2011

2

a 2  b 2  c 2  2ab  2ac  2bc  0 a  b  c  2ab  ac  bc   0 2

2

 0  1

1 : y  a  x  a  a  3  2a  3 3 3

2

2

141 KNna S ³ eyIgman ³   Binitü

 x y a  2 x  y  3 a3 3x  a  3  x  3

dUcenH témøkMNt;)anKW

2

2

a2  b2  c2  2  0  0 a2  b2  c2  0

2012

142 bgðajfa A Eckdac;nwg 5 ³ eyIgman ³ A  92011  82011  7 2011  62011  52011  12011  22011  32011  42011 A  9 2011  4 2011   8 2011  3 2011   7 2011  2 2011   6 2011  12011   5 2011

tamrUbmnþ ³



a n  b n  a  b  a n1b  a n2 b 2  ...  a 2b n2  ab n1

eyIgeXIjfa ³



 9 2011  4 2011  9  4 9 2010  4  9 2009  4 2  ... 9  4 2010



 5k1 , k1  9

 709



2010

49

2009

 4  ... 9  4 2

 2010





 8 2011  3 2011  8  38 2010  3  8 2009  3 2  ...  8  3 2010 

144 bgðajfa

 5k 2 , k 2  8 2010  3  8 2009  3 2  ...  8  3 2010 

1 sin x  2 n sin x 2n x x x x Pn  cos cos 2 cos 3  ... cos n 2 2 2 2 a a sin a  2 sin cos 2 2 x x x x a  x , , , , ..., n1 2 4 8 2 x x  sin x  2 sin 2 cos 2  sin x  2 sin x cos x  2 4 4  x x x   sin  2 sin cos 8 8  4 ................................  sin x  2 sin x cos x  2 n 1 2n 2n   x x x x x sin x  2 n sin n cos cos cos  ... cos n 2 4 8 2 2

 7 2011  2 2011  7  27 2010  2  7 2009  2 2  ...  7  2 2010 

 5k 3 , k 3  7 2010  2  7 2009  2 2  ...  7  2 2010 

eyIgman tamrUbmnþ ³ eyIg[témø

 6 2011  12011  6  16 2010  1  6 2009  12  ...  6  12010 

 5k 4 , k 4  6 2010  1  6 2009  12  ...  6  12010 

5

 5  5 2010

2011

 5k 5 , k 5  5 2010

eyIg)an ³ A  5k  5k 1

2

 5k 3  5k 4  5k 5

 5k1  k 2  k3  k 4  k5 

eXIjfa A CaBhuKuNén 5 mann½yfa A Eckdac;nwg 5 dUcenH bgðaj)anfa A Eckdac;nwg 5 . 143 k> KNna fog nigKNna gof eyIgman f : x  f x  px  2 g : x  g x   4 x  3

naM[

fog  f g x 

 f 4 x  3

 p4 x  3  2  4 px  3 p  2

ehIy

x sin x  2 sin n Pn 2 1 sin x Pn  n  2 sin x 2n

Taj)an

 g  px  2  4 px  2  3  4 px  8  3  4 px  5

dUcenH bgðaj)anfa

dUcenH KNna)an fog  4 px  3 p  2 ehIy gof  4 px  5 . x> KNna p edIm,I[ fog  gof eyIgman fog  4 px  3 p  2 nig gof  4 px  5 naM[ fog  gof enaH 4 px  3 p  2  4 px  5 3 p  5  2

Pn 

1 sin x  2 n sin x 2n

.

145 edaHRsayRbB½n§smIkarkñúg  x  y  5440 1 eyIgman ³ PGCD x, y   8 2 2

2



-tam 2 ³ PGCD x, y   8 mann½yfa x  8a & y  8b Edl a , b CacMny Y bzmrvagKña ehIy a  b eRBaH x  y  5440  0 -tam 1 ³ x  y  5440 2

2

2

2

x  y x  y   5440 8a  8b 8a  8b   5440

p  1

p  1

Pn

n

gof  g  f x 

dUcenH témøKNna)anKW

Pn 

.

8 2 a  b a  b   5440

 710



 y  3  43  y  46     x  2 1  x3  y 3 1  y4     x  2  43  x  45

a  ba  b  85

eday a , b CacMnYnKt;FmµCati nigedaHRsaykñúg  b¤ 1 85 eyIg)anplKuNktþaén 85  5 17 eday a  b  dUcenH smIkarmanb¤s x  3, y  46  a  b  1  a  b  5 enaHeyIg)an ³ a  b  85 i or a  b  17 ii b¤ x  35 , y  4 .   i 

³

a  b  1  a  b  85 2a  86

147 bMPøWfacMnYn N  4n  3 eyIgman ³ N  4n  3  25

2

 a  43

ii 

³

 4n  3  5 2  4n  3  54n  3  5 2

 4n  24n  8  22n  1 4n  2

 a  11

 82n  1n  2

ehIy b  17  a  17 11  6 -cMeBaH a  43 , b  42  344 naM[ xy  88ab  88  43 42  336  -cMeBaH a  11 , b  6  88 naM[ xy  88ab  88 11 6  48  dUcenH RbB½n§smIkarmanKUcemøIyBIrKW x , y   344 , 336  b¤ x , y   88 , 48  .

eXIjfa N CaBhuKuNén 8 mann½yfa N Eckdac;nwg 8 dUcenH eXIjfa N  4n  3  25 Eckdac;nwg 8 . 2

148 bMPøWfacMnYn a , b , c nig d CatYén smamaRt smµtikmµ a  b c  d   ad  bc 2

2

2

edayedaHRsaykñúgsMNcMu MnYnKt;FmµCati mann½yfa  y  3 nig x  2 CacMnYnKt;FmµCati ehIyplKuNcMnYnFmµCatiesµI 43 manEtBIrkrNIKW 431 eyIg)anktþanImYy²KW ³ 43   1 43 

2

2

a 2 c 2  a 2 d 2  b 2 c 2  b 2 d 2  a 2 d 2  2adbc  b 2 c 2 a 2 c 2  2adbc  b 2 d 2  0

ac  bd 2  0 ac  bd  0

146 edaHRsaysmIkarkñúgsMNMucMnYKt;FmµCati eyIgman ³ xy  3x  2 y  37 xy  3x  2 y  37 xy  3x  2 y  6  37  6 x y  3  2 y  3  43  y  3x  2  43

Eckdac;nwg 8

2

ehIy b  85  a  85  43  42 a  b  5  a  b  17 2a  22

 25

ac  bd a c  b d

dUcenH eyIg)antYénsmmaRt

.

a c  b d

a2 x2  1 a2  b2 x2  y 2

 149 bgðajfa smµtikmµ ³ ax  by  0 naM[ x   bya  x  bay yktémø x  bay CMnYscUl  eyIg)an ³ 2

2

2

2

2

2

2

2

 711



151 bgðajfa eyIgman ³

b2 y 2 a a2  1 a2  b2 b2 y 2 2 y a2 b2 y 2 2 2 a  2 2a 2 2 1 2 2 b y a y a b a2 a2 b2 y 2 a2   1 a2  b2 a2 b2 y 2  a2 y 2 2

2

2

A  2011





a2 b2  1 a2  b2 a2  b2 a2  b2 1 a2  b2

1 1

 2011

5  3

 2011

5  3

 2011

5  32 5 3

 2011

5

 2011

5

 2011

5  5  1  2011 1  2011

dUcenH eXIjfa

Bit

a2 x2  1 a2  b2 x2  y 2

dUcenH eXIjfa

5  3  29  12 5 20 2  12 5  32

2

a2  b2  c2 K 2011

150 KNnatémøén smµtikmµ ³ 1a  b1  1c  0

.





5 1

2

A  2011

CacMnYnKt; .

2

2

x2  4x  4  x2  2x  1 2 x  3 x

3 2

2

2

a 2  b 2  c 2  2ab  2bc  2ac  0

9 64  4

a 2  b 2  c 2  2ab  bc  ac   0

9 2  4

a2  b2  c2  2  0  0 a2  b2  c2  0

eRBaH ab  bc  ac  0 b c eyIg)an ³ K  a 2011 dUcenH témøKNna)anKW

2

5 2  2 5  12

naM[ ab  bc  ac  0 Edl a  0 , b  0 , c  0 epÞógpÞat; smµtikmµbEnßm ³ a  b  c  0  3  3     4    4  2 a  b  c   0 naM[    2

2



152 edaHRsaysmIkar eyIgman ³ x  4x  4  x  2x 1 elIkGgÁTaMgBIrCakaer enaHeyIg)an ³

bc  ac  ab 0 abc

2

5 3

2

a b y  2 1 2 a b b  a2 y2 2

CacMnYnKt;

A

2



0 0 2011

K 0

.

2

 3  3     2    1 2    2

9  3 1 4 9 2 4

1 1  4 4 1 1  2 2

dUenH smIkarmanb¤s

x

¬ebImin[lkçxNÐ RtUvepÞógpÞat;[eK¦  712



3 2

.

153 KNnabIcMnYnKt;tKña 155 rktémøelxén 22 tag n CacnYnTI2 enaHcMnYnTI1KW n 1 nigTI3KW n  1 eyIgman 22  22  22 Edl n CacMnYnKt;viC¢man -tambRmab;RbFaneyIgsresr)an ³ dUcenH témøén 22  22

 2 2011 2012  2 2011 2011 2  1  1 2011 2  1 3 2012

n  1nn  1 2  n  1  n  n  1   



130 21

2011

2012

2011

2012

2011

2012

2011



1 3

.

 2  n  1nn  1  130 2 21  3n     2

156 KNnakenSam H ³ eyIgman H  a  baa  c  b  cbb  a   c  acc  b kenSamenHmanPaKEbgrYm a  ba  cb  c enaH

130  9n 2   nn  1n  1   21  4 

H

a2 b2 c2   a  b a  c  b  c b  a  c  a c  b 



a2 b2 c2   a  b a  c  b  c a  b  a  c b  c 

 14n

 195 n 14  1  195n

n n2 1  2

2

2

14n 2  195n  14  0

man   195 naM[

2012

2

 4  14   14 

 38025  784  38809  197   195  197 1  n1   2 14 14   195  197  n2   14 2 14

2



a 2 b  c   b 2 a  c   c 2 a  b  a  b a  c b  c 



a 2 b  a 2 c  ab 2  b 2 c  ac 2  bc 2 a 2  ac  ab  bc b  c 





a 2 b  a 2 c  ab 2  b 2 c  ac 2  bc 2 a 2 b  a 2 c  abc  ac 2  ab 2  abc  b 2 c  bc 2 a 2 b  a 2 c  ab 2  b 2 c  ac 2  bc 2  2 1 a b  a 2 c  ab 2  b 2 c  ac 2  bc 2

ducenH eRkayBIKNna témø H  1 . 157 rkRkLaépÞFMbMputéncmáar tag a CaRbEvgTTwg nig b CaRbEvgbeNþay b bRmab; ³ kUneQIman 40 edIm KmøaténkUneQI 2 m naM[ cmáarmanbrimaRt P  2 40m Et P  2a  b eyIg)an 2a  b  2  40 m  a  b  40 m -cMeBaHctuekaNEkgEdlmanbrimaRtdUcKña KWctuekaN EkgmanTTwgesµIbeNþaymanépÞFMbMput . enaH a  b  a  a  40  a  20m a

154 KNnatémøelxén xyz smµtikmµ ³ x yz  7 i  nig xy edayyk 1 2 eyIg)an ³ 2

 x 2 yz 3  7 3  2 9  xy  7 x 3 y 3 z 3  712

dUcenH témøén

3

3

 xyz  7 3

xyz  7 4

12

2

7

 79

12 3

 74

.

ii 

2



minyk

-cMeBaH n  14 eyIg)an cMnYnTI1KW n 1  14 1  13 cMnYnTI3KW n 1  14 1  15 dUcenH cMnYnKt;TaMgbItKñaKW 13 , 14 , 15 .

2

 713



naM[ RkLaépÞFMbMputKW ³

160 KNna A , B , C , D nig E ³ 3 2  4  3 8  3 11 A2    4 4 4 4

S Max  ab  aa  a 2  20m  400 m2 2

dUcenH RkLaépÞFMbMputéncmáarKW S 158 bgðajfacMnYn

3

Max

.

 400 m 2

B  2

BMuEmnCacMnYnsniTan

3 23 6 3    4 4 4 2

C  2

¬cMnYnsniTanCacMnYnmanTRmg;CaRbPaK a ehIy a nig b Ca b cMnYnbzmrvagKña ¬bzmrvagKñaKWtYEckrYmFMbMputén a nig b esµI!¦¦

3 2 3 23 6      4 1 4 1 4 4

3  3  3 D  2   2  22 2 4

3 2 3 2

-]bmafa 3 CacMnYnsniTan 3 2 4 3 8 3 8  3 11 E  2       4 4 4 4 4 4 4 naM[ 3 manTRmg;CaRbPaKsRmYlmin)an 161 KNna A , B , C , D nig E ³ -tag 3  ba  3  ba  a  3b A  2  2  2  2  2  2  16 -eXIjfa a CaBhuKuNén 3 enaH a k¾CaBhuKuN B  2   4  4  4  16 én 3 Edr mann½yfa a  3k , k CacMnYnKt; C  2  2  16 -naM[ a  3b  3k   3b  b  3k -eXIjfa b CaBhuKuNén 3 enaH b k¾CaBhuKuN D  2  2  16 E  22  24  8 én 3 Edr mann½yfa b  3 p , p CacMnYnKt; -naM[ 3  ba  33kp  kp GacsRmYl)an mann½yfa 162 sresrCaTRmg;RbPaKén A , B , C ³ A  1.2 mann½yfa A  1.2222222222222... vaBMu)aneKarBtamlkçxNÐcMnYnsniTan enaHvaBMuEmnCa naM[ 10A  12.2222222222222... cMnYnsniTaneT ¬GBa©wgmanEt CacMnYnGsniTan¦ sikSapldk  10 A  12.2222222222... dUcenH cMnYn 3 BMuEmnCacMnYnsniTan .  2

2

2

2

22

4

2

2 2

22

2

2

2

2

2

2

4

2

2 2

4

2

2



¬xagelIenHbkRsaytamsMeNIpÞúy tkáviTüa ¦

159 edaHRsaysmIkar x  y  0 smµtikmµ³ x nig y CacMnYnBit enaH x  0 nig y  0 manEtmYykrNIKt;EdlepÞógpÞat;smIkar x  y  0 KW x  0 & y  0 dUcenH smIkarmanb¤ x  0 & y  0 . ¬lMhat;xagelIRtUvkarcMeNHdwg BMuEmnbec©keTseT¦ 2

A  1.22222222222... 9 A  11

 A

11 9

2

2

2

2

2

mann½yfa B  0.121212121212... naM[ 100B 12.121212121212... sikSapldk

 714

B  0.12

 100B  12.1212121212...  B  0.121212121212...  12 4 B   99B  12 99 33



mann½yfa C  0.1222222222222... naM[ 10C  0.1222222222222... sikSapldk C  0.12

 10C  1.2222222222222...   C  0.12222222222222...  9C  1.1

D  1.20

C

12  10

.

6 5

2

2

dUcenH Ggát;RTUgkaer

d a 2

BD 



BD  2 2  12  3

  2

ÉktaRbEvg .

2

d  a      2 2 a2 a2   2 4





AB2  BD  DC 

2

x

a 2



32



2

 1 3  4 3  4

AC  2 2  3

.

   2  3  2  2  3  2  2  3  x  2011  0      2  3   2  2  3  2  2  3   x  2011  0       2    2  3  2 2   2  3   x  2011  0      2    2  3  2 2   2  3   x  2011  0       2  3  4  2  3  x  2011  0    2  3  2  3  x  2011  0    2  3 2  3  x  2011    4  3 2  x  2011     x  2011



2

2 a 2 a       2  2  

a2 a  4 2

dUcenH cm¶ayxøIbMputKW

AD2  AB2

165 edaHRsaysmIkar eyIgmansmIkar ³

2

2

2

C

AB2  BC 2

dUcenH RbEvg

-cm¶ayxøIbMputBIcMNucRbsBVrvagGgát;RTUgeTARCugkaer KWCaRbEvgGgát;EdlP¢ab;BIcMNucRbsBVenaHeTAcMNuc kNþalénRCugkaerenaH . ebI x CaRbEvgxøIbMputenaH ¬tamRTwsþIbTBItaK½r¦ eyIg)an ³ x   a2    d2  2

2

 8 4 3  2 2 3

2







-ebI d CaRbEvgGgát;RTUgkaerEdlmanRCug a ³ tamRTwsþIbTBItaK½r ³ d  a  a  2a naM[ d  2a  d  a 2 eRBaH d  0 2

D

BD2  AD2  AB2

AC 

cm¶ayxøIbMputBIcMNuc RbsBVeTARCugkaer

a 2

B



 12 

x

2

AC 2  AB2  BC 2

Ggát;RTUg



a

1

-cMeBaHRtIekaNEkg ABC

163 KNnaGgát;RTUg nigcm¶ayxøIbMputBIcMNuc RbsBVrvagGgát;RTUgeTARCugkaer a

A

AD2  AB2  BD2

1.1 11  9 90

mann½yfa

D  1.2000000...  1.2 

b¤ x 

164 KNna AC ABC nig ABD CaRtIekaNEkg tamRTwsþIbTBItaK½r ³ -cMeBaHRtIekaNEkg ABD

ÉktaRbEvg .





dUcenH b¤sénsmIkar x  2011 .

 715



166 edaHRsaysmIkar eyIgmansmIkar ³

168 KNna eK[

x  2 x  4x  2 x  3  x  2 x  7 x  2 x  4x  2 x  3  x  2 x  3  4 x  2 x  4  x  2 x  4  4 x  2 x  3 x  2 x  4  1  4 x  2 x  3  2 x  2 x  3  2 2

2

2

2

2

2

2

2

2

2

 2y2



 2 x 2  200 y 2 x 2  200  2 y2

x 2  2x  3  2

x 2  2 x  1  0  x  1  0  x 1  0  x  1 2

-cMeBaH

 2y2



49 x 2  51x 2  92 y 2  102 y 2

2

2

-cMeBaH

2

    6  51x

49 x 2  92 y 2  51x 2  102 y 2

2

2

x2  2 y2 x2  2y2  306 294 2 2 294 x  2 y  306 x 2  2 y 2

 6  49x

2

x2 y2

x2  100 y2

x2  100 y2

dUcenH KNna)an . 169 KNna A ³ eK[ A  x  2  2x  2x  8  x  8 tamrUbmnþ a  b  a  2ab  b eyIg)an A  x  2  x  8

x 2  2 x  3  2 x 2  2 x  1  4  x  1  2 2

eday x  1  0 naM[ x  1  2 CasmIkarKµanb¤s dUcenH smIkarmanb¤s x  1 . 2

2

2

2

2

2

2

2

 x  2   x  8

2

167 RsaybBa¢ak;fa aS  bS  cS  0 eday x nig x Cab¤sénsmIkar ax  bx  c  0 enaHvaepÞógpÞat; ³ axax  bxbx  cc  00 n 1

 x  2  x  8

2

n 1

n

 10 2  100

2

1

2

2 1 2 2

1

2  2  ax1  bx1  c  0  2 ax2  bx2  c  0 ax12 n1  bx11 n1  cx1n1  0  2 n1 1 n 1 n 1  ax2  bx2  cx2  0

x1n1

eyIgGacKuNEfm eyIg)an

x2n1

 

n

n 1

n 2

n 1 1

n 1

n 1 1

170 RsaybMPøW;fa a  b  c  1 eK[ a  b  c  1 a  b  c   1 naM[

n



x

n 1

2

n 1 2

0

.

2

a 2  b 2  c 2  2ab  2ac  2bc  1 a 2  b 2  c 2  2ab  ac  bc  1

1

smµtikmµbEnßm 1a  b1  1c  0 bc  ac  ab 0 abc  bc  ac  ab  0

n 1 2

n 1

2

2

 

eday S  x  x enaH S  x ehIy S  x  x dUcenH eyIg)an aS  bS  cS n 1

2012

2

ax n 1  bx1n  cx1n 1  0   1n 1 n n 1  ax1  bx2  cx2  0 a x1n 1  x 2n 1  b x1n  x 2n  c x1n 1  x 2n 1  0



cMeBaH x  2011 KµanTak;Tgnwgtémørbs; A dUcenH eyIgKNna)an A  100 .

naM[smIkar 1 eTACa ³

 716



, abc  0

naM[ktþanImYy²esµIsUnü eyIg)an ³

a2  b2  c2  2  0  1 a2  b2  c2  1

dUcenH eyIgeXIjfa a

2

 b2  c2  1

BitEmn .

171 rkBIrcMnYnBit tag a nig b CaBIrcMnYnBitEdlRtUvrkenaH tambRmab; ³ a  b  13 1 ehIyplbUkcRmasKW 1a  b1  1340 2 tam 2 : 1a  b1  1340  aab b  13 40 Taj)anplKuN ab  40 3 tam 1 & 3 eyIg)anRbB½n§smIkar³ aab b4013  edaysÁal;plbUk nigplKuNeyIg)ansmIkardWeRkTI2 Edlman a nig b Cab¤s KWsmIkar ³ x 13x  40  0 man    13   4 1 40  169  160  9  3



x 2  5x  3  0

man   25 12  13 naM[ x   b2a    5 2 13 

x 2  5x  7  0

0 man a  25  28  3  0  naM[ smIkarKµanb¤s dUcenH cMeBaH k  3 smIkarmanb¤s x   5 2 13 .

x> kMNt;témø k edIm,I[smIkarmanb¤s BIsRmayxagelIBinitüRtg;kenSam ³ x

2

2

x

2

2

naM[ b¤

 a   b    b   a  

3

  13  3 10  5 2 1 2   13  3 16  8 2 1 2   13  3 10  5 2 1 2   13  3 16  8 2 1 2

dUcenH BIrcMnYnBitrk)an

a  5  b  8



a  8  b  5

x  1x  4x  2x  3  3

 x  5x  5  1x  5x  5  1  3 x  5x  5  1  3 x  5 x  5  2  0 x  5 x  5  2x  5x  5  2  0 x  5 x  3x  5 x  7  0 2



 5x  4 x 2  5x  6  3

2

2

2

2

2

2

2

2

2

2

 5x  5



2

 k 1

eday x  5x  5  0 naM[ k  1  0  k  1 dUcenH témøkMNt;)anKW k  1 2

2

.

173 eRbóbeFobBIrcMnYn 200 nig 300 Binitü ³ 200  200   8000000 ehIy 300  300   90000 tamry³lT§plbgðajfa 8000000   90000  dUcenH Taj)anfa 200  300 . 174 eRbóbeFobBIrcMnYn 31 nig 17 Binitü ³ 31  32  2  2 enaH 31  2 ehIy 17  16  2  2 enaH 17  2 eday 31  2  2  17 dUcenH eRbóbeFob)an 31  17 . 300

172 k> edaHRsaysmIkar cMeBaH k  3 x  1x  2x  3x  4  k eK[ x



 5 x  5  12  k

2

2

.

300

3 100

200

2 100

200

100

100

100

300

200

14

11

11

14

11

11

14

55

511

55

414

56

56

14

11

2

 717



100

14

11

55

14

56

175 KNna 1  a  a  a    a bRmab; ³ a Cab¤sénsmIkar x  1 mann½yfa vaepÞógpÞat; a  1 a eyIg)an ³ 2

3

1  1  1  1    A  1  2 1  2 1  2   ... 1  2   2  3  4   n   2  1 2  1  3  1 3  1  4  1 4  1         2  3 3  4 4   2

2010

2011

2011

2011

 n 1 n 1  ...    n   n  1 3  2 4  3 5   n 1 n 1          ...    n   2 2  3 3  4 4   n

1  0

a  1a 2011  a 2011  a 2011  ...  a  1  0 b¤Gacsresr ³ a  11  a  a 2  a 3  ...  a 2010   0

1 1 1 1 smµtikmµ ³ a  1 enaH a 1 0 1 n 1 n 1  1 1 1  ...  2 n 2n dUecñHmanEtktþa 1  a  a  a  ...  a   0 n 1 EdlnaM[plKuN a  11  a  a  a  ...  a   0 dUcenH eRkayBIKNna A  2n . dUcenH KNna)an 1  a  a  a   a  0 . 178 kMNt;témø m ³ eyIgman ³ 23xx  4yym7 176 KNna S  3  3  3  ... 3  eyIgman ³ S  3  3  3  ...  3 1 edayedaHRsaytamedETmINg; eyIg)an ³ yk 1 3 ³ 3S  3  3  ...  3 2 D  ab  ab  2  12  14 D  cb  cb  7  4m edayyk 2  1 eyIg)an ³ 2

3

2010

2

2

2

2010

3

2

2

3

2010

3

3

n

n

n 1

3

x

3S  32  33  34  ... 3n1  2 3 n  S  3  3  3  ... 3 2S  3n1  3

dUcenH KNna)an

S

3

n 1

3 2

D x 7  4m  D 14 D y  ac  ac  2m  21 x

 S

3n1  3 2

.

x

edIm,I[vamanb¤s

2  n 1   n2  n  1n  1  n2 n 1 n 1   n n

D



x0

2m  21 14

nig y  0 luHRtaEt ³

7  7  4m  m   7  4 m  0  14  0   4     2m  21 21 2 m  21  0   m  0 2  14  7 21  m 4 2

177 KNna A ³ BinitütYnImYy²manrag 1  1  2  n

Dy

b¤ Gacsresrsruby:agxøIKW

dUcenH témøEdlkMNt;)anKW

eyIgman ³

1  1  1  1    A  1  2 1  2 1  2   ...  1  2   2  3  4   n 

edaybMEbkktþanImYy²eyIg)an ³  718





7 21 m 4 2

.

179 KNna E ³

3

eyIgman E  1  2  3  ...  2009  2010  2011  2010  2009  ...  3  2  1

tag S  1 2  3  ... 2010 eyIg)an E  S  2011  S  eday

181 bgðajfa ³ 7  7  7  7 eyIgdwgehIyfa ³ 7  9  3 enaH 7  3 1 7  8  2 enaH 7  2 2  7  16  2 enaH 7  2 3 edayyk ³ (1)+(2)+(3) : eyIg)an ³

2S  2011

man 2011 cMnYn 2010 dg

naM[ 2S  2011 2010 eyIg)an E  2S  2011  2011 2011  20112  2011

dUcenH eRkayBIKNna E  2011

.

180 edaHRsayRbB½n§smIkar ³ edaybUksmIkarTaMgbYnbBa©ÚlKña eyIg)an ³

d 3

 3

a  b  c  d  6  acd 5  b 1

.

7 3 7 4 7 7

cMENkÉ karbgðajfa 4  4  4  4 eyIgman ³ 4  2 1 4  1  1 enaH 4  1 2 4  1  1 enaH 4  1 3 edayyk ³ (1)+(2)+(3) : eyIg)an ³ 3

3

3

4

4

4

4

dUcenH eXIjfa 4  4  4  4 . 182 kMNt;témø n ³ tag g x CaplEckén f x  x  4 x  1 CamYy x  3 EdlmansMNl;esµI 46 eyIg)an ³ x  4 x  1  x  3 g x  46 ebIeyIg[témø x  3 enaHsmIkareTACa ³ 3

 a  b  c  d  6 

4

n

  a  b  c  d  6  2  b  a  d  4 c2

  a  b  c  d  6  4  b  c  d  6

n

3

a0

n

2

2



 4  32  1  3  3  g 3  46 3  35  0  46 n

3n  46  35

dUcenH RbB½n§smIkarmancemøIyKW a , b , c , d   0 , 1 , 2 , 3

4

 4 2   3 4  1 4 4 1  3 4 44 4 4

edayyksmIkar  dksmIkarnImYy²bnþbnÞab;  a  b  c  d  6  1  a  b  c  3

4

3

3

 20112010  1

 18

4

dUcenH eXIjfa

 2011 2010  2011

1 2 3 4

3

 7 3   3 7  2 4 7  2  3 7  7 4 7 7

S  1  2  3  ... 2010   S  2010  2009  2008  ... 1 2S  2011  2011  2011  ... 2011

a  b  c  3 b  a  d  4   a  c  d  5 b  c  d  6 3a  3b  3c  3d

3

4

.

3n  81

dUcenH témøkMNt;)anKW  719



 3n  34

n4

.

n4

183 edaHRsaysmIkar ³ eyIgmansmIkar ³

x

1

x

2

2

x

  2  1  2  1



1 2 1 x  x 1 1 1 x

 21978  2 n27

27 2

2

 2 1  21977  2 n27 2

2

 a 2  2ab  b 2

luHRtaEt

n

B  4 27  4 n  41016

  2  1  2  1

1  x 2

 2  2    2 1  2  2  

 4 27 1  4 n27  4989

1 1 x



2

27 2

2

27 2

2

989 2

2 n 54

2

 a 2  2ab  b 2

luHRtaEt

2 2 n 55  2 989  2n  55  989 1044 2 n  522 n

x 1 1 1 x x  1 1 x

989 2

2 n 55

edIm,I[bMeBjrag a  b

ebIeyIgyklT§plenHeTACMnYs vanwgkøayeTACaTRmg; dEdl²vij. ebICMnYsbnþbnÞab; cugeRkayeyIg)an ³

dUenH témøEdlkMNt;)anKW n  2004 , n  522 .

x 1  1 x

x  12  1  x 2

185 edaHRsaysmIkar ³ eyIgman ³ x xx  1  x

x 2  2x  1  1  x

 x 1 x 1 1 x2 1 2  x 1 x x 1 1 x2  2  x  x x 1 1 x2  2  2  2  x  x x 4

x  3x  0 x x  3  0 2

2

2

2

x  0  x  3

-cMeBaH x  0 minyk eRBaHeBlepÞógpÞat; 0  1 -cMeBaH x  3 yk eRBaHeBlepÞógpÞat; 1  1

2

x 3



-krNI ³ 4 CatYkNþal eyIg)an ³

 1 1 x

dUcenH smIkarmanb¤s



2

n  2004

12  2 1  1  x  1 x 1 1 x



2

2 n27  21977  n  27  1977

2  2 1 x  x 1 1 x

1 





27 2

edIm,I[bMeBjrag a  b







n

 4 27 1  4 989  4 n27

x 2 1 1 x  x 2  1 1 x 1 1 x



1016

B  4 27  41016  4 n

x 2 1 1 x

smIkarmann½yluHRtaEt 1  x  0  x  1 Binitü RTg;RTayknÞúycugeRkayeK ³ 

27

n

x

2

184 kMNt;RKb;cMnYnKt; n B  4  4  4 CakaerR)akdéncMnYnKt; -krNI ³ 4 CatYcug eyIg)an ³

1 1   x  2 x  x x  

.  720



,

x0

t2  2  t

eday 2 : xy  yz  zx  12 naM[ x  y  z  2 12  36

t2 t  2  0

x 2  y 2  z 2  12

ebItag t  x  1x eyIg)ansmIkardWeRkTI@ ³

2

man a  b  c  1  1  2  0 CakrNIBiess naM[ t  1 , t   ac   12  2 -cMeBaH t  1 eyIg)an ³ 1

ehIy 2 : 2xy  2 yz  2zx  24 eyIgyk (*)-(**) enaHeyIg)an ³

2

x  y 2   y  z 2  z  x 2  0 eday x  y 2  0 ,  y  z 2  0 , z  x 2  0

2

1 3  x    0 2 4 

edIm,I[smIkarepÞótpÞat;manEtmYykrNIKt; KWktþa nImYy²esµIsUnü mann½yfa ³

2

1 3  x   0 ,  0 2 4 

x  y  0  y  z  0  x  y  z z  x  0  3 : 2  2  2  3 x yz x y z 2 2 2   3 x x x 222 6 3  x x  2 x 3

2

enaH  x  12   34  0 naM[smIkarKµanb¤s -cMeBaH t  2 eyIg)an ³

tam eyIg)an

2

1 2 x x 2  2x  1  0 x

x  12  0 x 1  0 x 1

186 edaHRsayRbB½n§smIkar ³ k>

x> 1 2 3

smIkarmann½yluHRtaEt ³ x  0 , y  0 , z  0 x yz 6 tam 1 ³ x  y  z  2  6 2 x 2  y 2  z 2  2xy  yz  zx   36

eday

dUcenH RbB½n§smIkarmanb¤s x  y  z  2

dUcenH eRkayBIedaHRsay smIkarmanb¤s x  1 .  x  y  z  6   xy  yz  zx  12 2 2 2 x  y  z 3 

  

2 x 2  2 y 2  2 z 2  24   2 xy  2 yz  2 zx  24 x 2  2 xy  y 2  y 2  2 yz  z 2  z 2  2 zx  x 2  0

1 x   1 x 2 x  x 1  0 1 1 3 x2  2  x     0 2 4 4



2

2 x 2  2 y 2  2 z 2  24

1

eday

2

 1 1 1  x  y  z 3  1 1 1  3    xy yz zx  1 1  xyz 

.

1 2 3

smIkarmann½yluHRtaEt ³ x  0 , y  0 , z  0 yz  zx 3 -tam 1 : 1x  1y  1z  3 smmUl xy xyz naM[ xy  yz  zx  3 eRBaH 3 : xyz1  1 -tam 2 : xy1  yz1  zx1  3  721



x yz 3  x yz 3 xyz

naM[

k> 011 edayRbB½n§ 011 manelx 6xÞg;P¢ab;CamYyk,alRbB½n§ ehIymanTRmg;Ca ³ 011 xxx xxx -CeRmIsenAtamxÞg;nImYy²man 10elxdUcKñaKW ³

1

 x  y  z 2  32

x 2  y 2  z 2  2 xy  yz  zx   9 x2  y2  z2  2 3  9 x2  y2  z2  3

2

0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9

edayyk (2)-2×(1) eyIg)an ³

¬tameKalkarN_r)ab; ¦ naM[ cMnYnelxTaMgGs;KW ³

x 2  y 2  z 2  3  2 x  2 y  2 z  6 2 2 x  2 x  y  2 y  z 2  2 z  3

x

2

 

 



10  10  10  10  10  10  10 6  1 000 000

 2x  1  y 2  2 y  1  z 2  2z  1  0

x  12   y  12  z  12  0

eday x  1  0 ,  y  1  0 , z  1  0 edIm,I[smIkarepÞótpÞat;manEtmYykrNIKt; KWktþa nImYy²esµIsUnü mann½yfa ³ 2

2

x  1  0  y 1  0 z  1  0 

2

x  1   y  1 z  1 

dUcenH RbB½n§smIkarmanb¤s x  y  z  1 . 187 KNna 2  2 ³ eyIgman 4  4  23 a

a

a

a

2 

a 2

   23  2 2  2   25

 2  2 a

dUcenH cMnYnlT§PaBénkarbegáItelxTUrs½BÞrbs; RbB½n§ 011 KW 1 000 000 elx . x> 097 dUcKñanwgRbB½n§ 011 EdrRKan;EtRbB½n§ 097 man7xÞg; manTRmg; 097 xxx xxxx naM[ cMnYnelxTaMGs;KW ³ 10  10  10  10  10  10  10  10 7  10 000 000

dUcenH cMnYnlT§PaBénkarbegáItelxTUrs½BÞrbs; RbB½n§ 097 KW 10 000 000 elx .

2

189 rkcMnYnrebobénkarbegáItelx4xÞg; 2  2  25 eyIgmanelxTaMgbYnKW 1 , 2 , 4 nig 9 2 2 5 eyIgnwgbegáIelx4xÞg;Edlman4elxxagelI edayKit smÁal; ³ xN³bMBak;r:aDIkal;BMuEmn  25 eT eRBaH tamviFIdUcxageRkam ³ 2  2  0 Canic© ¬CaGnuKmn_Gics,:ÚNg;Esül¦ -xÞg;dMbUgman4CeRmIs xÞg;TIBIrman3CeRmIs xÞg;TIbImanBIrCeRmIs nigxÞg;cugeRkayman1CeRmIs dUcenH eRkayBIKNna 2  2  5 . -tameKalkarN_r)ab; cMnYnrebob= 4 3 21  4! 12 188 rkcMnYnlT§PaBTaMgGs;énkarbegáItelxTUrs½BÞ dUcenH cMnYnrebobkñúgkarbegáItelx4xÞg; eyIg)andwgehIyfa enARbeTskm<úCaeyIgmanRbB½n§ TUrs½BÞCaeRcIn. RbB½n§xøHmanelx 6xÞg; xøHeTotman elx 7xÞg; ehIyP¢ab;CamYyk,al xusKñaman 12 rebob . a 2

a

a

a

a

a

a

a

a

a

RbB½n§. etIcMnYnén karbegáItlxTUrs½BÞ y:agNaEdr ?

 722



190 RsaybBa¢ak;fa ³ b  ab  c  pq  6 -smµtikmµ ³ a , b Cab¤sénsmIkar x  px  1  0 naM[ a abb  1 p 12  -smµtikmµ ³ b , c Cab¤sénsmIkar x  qx  2  0 naM[ b bcc  2q 34  -Taj)an a  bb  c   p q  pq ehIy ab  bc  1 2  3 b¤ 2ab  bc  6 -Binitü pq  6  a  bb  c  6 2

2

 a  b b  c   2ab  bc 

192 rkBIrcMnYnenaH ³ tag x , y CaBIrcMnYnEdlRtUvrkenaH tambRmab;RbFan ³ plbUk=plKuN=plEck eyIg)an ³ x  y  xy  xy -BinitüsmPaB ³ xy  xy  y  1y naM[ y  1  y   1  y  1 -BinitüsmPaB ³ x  y  xy cMeBaH y  1 enaH x 1  x Kµantémø x epÞógpÞat; cMeBaH y  1 enaH x  1   x  2x  1  x  12 2

dUcenH BIrcMnYnenaHKW 12 nig 1 .

 ab  ac  b 2  bc  2ba  2bc  b  ba  bc  ac  bb  a   cb  a   b  a b  c  2

193 KNnaplKuN P ³ eyIgman ³ P  1 x1 x 1 x ... 1 x  a  b  a  b a  b  -Binitü ³ naM[ a  b  aa  bb tamrUbmnþxagelIeyIg)an ³ P  1  x 1  x 1  x  ... 1  x  2

dUcenH eXIjfa

.

b  a b  c   pq  6

2

191 RsaybMPøWfaeyIg)an a1  b1  c1  2 bc smµtikmµ ³ a  b  c  abc naM[ a abc 1 eyIgman 1a  b1  1c  2 tamrUbmnþ a  b  c  a  b  b  2ab  bc  ac  1 1 1 naM[     4 a b c 2

2

2

2

2

2

2

2

2

2

2

2

2

2n

4

4

2

2n

1 x2  1  x 2  1  x 4  1  x 8          ...  2  4   1  x 2n  1  x  1  x  1  x  

n 1

n 1

1 x2  1 x

   

Edl x  1

2

1 1  1 1 1  1          2     4 a b b  ab bc ac  1 1 1 cab  2  2  2 4 2 a b c  abc  1 1 1  2  2  2 1  4 2 a b c 1 1 1  2  2 2 2 a b c

dUcenH plKuNKNna)anKW

2

.

194 KNnaplbUk S ³ eyIgman ³ S

1 1 1 1    ... 1 2 1 2  3 1 2  3  4 1  2  3  ... 2011

Binitü ³ S

dUcenH eXIjfa a1  b1  c1  2 . 2

n 1

1 x2 P 1 x

2



723 

k

 1  2  3  ...  k

naM[

x 2  9 x  20  x  4x  5

S  1  2  3  ... k  k S k  k  k  1  ... 2  1 2S k  k  1  k  1  k  1  ... k  1

enaH S   xx1 1  x  11x  2   x  21x  3  

  1 1      x  3x  4 x  4x  5  x2 x 1 S   xx  1x  2 x  2x  3 x5 x3  x  3x  4x  5 2 1 2 S   xx  2 x  2x  3 x  3x  5 2x  6  x 2   xx  2x  3 x  3x  5 3 2   xx  3 x  3x  5 3x  15  2 x 5   xx  3x  5 xx  5

man k dgén k  1

Taj)an ³ 2S  k k  1  S  k k2 1 eyIg)an ³ S  S1  S1  S1  ...  S 1 k

k

2

eday S

k



k k  1 2

3

4

2011

1 1 1 1    ... 22  1 33  1 44  1 20112011  1 2 2 2 2 2 2 2 2 S    ...  22  1 33  1 44  1 20112011  1

S

1 1 1  1  S  2    ...   2011 2012   23 3 4 45

cMeBaH x  95 eyIg)an ³

ehIyBinitütYnImYy²én S manTRmg; ³ 1 n 1 n n 1 n 1 1      nn  1 nn  1 nn  1 nn  1 n n  1 1 1  1 1 1 1 1 1 S  2       ...    2011 2012  2 3 3 4 4 5 1  1 1005 1  2     1 1006 1006  2 2012 

a b c 1 1 1      ab  a  1 bc  b  1 ca  c  1 1  a  ab 1  b  bc 1  c  ca

-cMeBaH abc  1 Binitü ³

195 KNnaplbUk S cMeBaH x  95 ³ eyIgman S  x 1 x  x  13x  2  x  15x  6  

eday

5 5 5 1    xx  5 95 95  5 5  19  100 1900

196 bgðaj[eXIjBIsmPaB

1005 dUcenH plbUkKNna)anKW S  1006 .

2

S

1 dUcenH plbUkKNna)anKW S  1900 .

naM[

2



2

1 1  2 x  7 x  12 x  9 x  20 2

x 2  x  xx  1

1 1 1   1  a  ab 1  b  bc 1  c  ca 1 c  1 a  1 b          1  a  ab c   1  b  bc a   1  c  ca b  c a b    c  ac  abc a  ab  abc b  bc  cab c a b    c  ac  1 a  ab  1 b  bc  1



x  3x  2  x  1x  2 2

x 2  5 x  6  x  2x  3

a b c   ab  a  1 bc  b  1 ca  c  1

dUcenH eyIg)ansmPaBR)akdEmn .

x  7 x  12  x  3x  4 2



724 

197 rktémø x ³ 199 KNnaplbUk S ³ ¬rMlkw rUbmnþ log b  1 log b , 1  2  3  ... n  nn  1 eyIgman xxxx  1  x  1 n 2 elxénxÞg;nImYy² CacMnYnKt;RtUvEtFMCag0 nigtUcCag10 eyIgman ³ 1 1 1 1 eyIg)an 00  xx 110 10  1  x  10 S    ...  log x log x log x log x  1 1 1 1 elx x  2 CasV½yKuNRtUvmantémøFMCag0     ...  1 1 1 log x log x log x log x enaH x  2  0  x  2 2 3 k 1 2 3 k     ...  srublkçxNÐKW 3  x  9 log x log x log x log x 1 mann½yfa x GacmantémøesµI 3 , 4 , 5, 6 , 7 , 8 , 9 1  2  3  ... k   log x b:uEnþ xxxx  1 CaelxbYnxÞg; ehIymanEt 6 EtmYy 1 k k  1 k k  1    log x 2 2 log x Kt;EdlmanelxbYnxÞg; naM[eyIgTaj)an ³  x 1  6 k k  1 S dU c enH plbU k KNna)anKW .  x7  2 log x x  2  5 enaNeyIg)an ³ xxxx  1  x  1 200 edaHRsayRbB½n§smIkar 777 7  1  7  1 eyIgmanRbB½n§smIkar ³ 7776  6 x2

an

a

a

a2

a

a

a3

a

ak

a

a

a

a

a

a

5

a

a

a

x2

72

5

 x1  x2  x3    x2011  0 1  2 2 x1  x22  x32    x2011  0 2   3 3 3 3  x1  x2  x3    x2011  0 3  .........................................................  2011  x12011  x22011  x32011    x2011  0 2011 

7776  7776

dUcenH témøEdlrk)anKW x  7 . 198 sRmYlkenSam

A

³

¬rMlkw rUbmnþelakarIt log a b  log b c  log a c 1 log a n b  log a b , log a a  1 n

2 1

>>> ¦

2 1

eyIgman ³

A  log 3 2  log 4 3  log 5 4  log 6 5  log 7 6  log 8 7

 log 3 2  log 4 3  log 5 4  log 6 5  log 7 6  log 8 7 

 log 3 2  log 5 3  log 6 5  log 8 6

 log 3 2  log 5 3  log 6 5  log 8 6

2 3

2 3

2 2011

2 2011

0

0

2 x12  x22  x32    x2011 0

cMeBaHsmIkarepSgeTot k¾epÞógpÞat;EdrsRmab;témøenH 2 x12  x22  x32    x2011 0

1 1 1  log 8 2  log 23 2  log 2 2  1  3 3 3

dUcenH eRkayBIsRmYleXIjfa

2 2

2 2

dUcenH RbB½n§smIkarmantémøb¤sesµI²KñaKW ³

 log 5 2  log 8 5

1 A 3

tamsmIkar 2 ³ x  x  x    x eday x  0 , x  0 , x  0 ,  , x naM[smIkar 2 epÞógpÞat;luHRtaEt ³

201 edaHRsayRbB½n§smIkartamedETmINg; eyIgmansmIkar ³ 23 3x x 3 3 y y21

.







725 







.

edaHRsaytamedETmINg; eyIg)an ³ D  ab  a b



203 sRmYlkenSam E & F ³ eyIgman E   a  ab b4 ab  a  b   4 ab  2

 



 3  3  2  3  3  

 3

 

 23

2

 1  2  3

Dx  cb  cb



a b

  

 2  3  1  3

D y  cb  cb  3 1  2  3  2  3  43

ehIy

 3  3

dUcenH

2

EF

 a b a b 2 a EF 

202 bgðajfa k> x  y  2 xy eday x nig y CacMnYnBitenaHeyIg)an ³





a b  2

a b



2

 a  b  a b

dUcenH

x  y 2  0 x 2  2 xy  y 2  0 x 2  y 2  2 xy

dUcenH eXIjfa x  y  2 xy . bgðajfa x> xy  xy  2 enAkñúgsMNYr k> eXIjfa x  y  2 xy smµtikmµ x nig y mansBaØadUcKña enaHmann½yfa xy  0 Canic© eBlEcknwg xy vismIkar minbþÚrTisedA eyIg)an xxy  yxy  2xyxy  xy  xy  2 2

2

2

x y  2 y x

.

E a b , F a b

2

2



nig E F E  F   a  b   a  b 

.

y  3

, 2

dUcenH eXIjfa



a b a b

a b b a ab ab a  b   a b ab

KNna

dUcenH RbB½n§smIkarmanKUcemøIy

2



F



D x  3  3  x   3 D 3 D y  3  3 y   3 D 3

2

2

 a b



x  3 

2

a  2 ab  b   a b

 3  3

naM[

2

a  2 ab  b  4 ab  a b

 2  3  3



2

. 

EF 2 a

EF  a b

&

.

204 KNnatémøénkenSam A ³ eyIgman ³ A  x n  100x n1  x n2  100x n3  x n4  100x n5

 x n  100x n1   x n2  100x n3   x n4  100x n5 

 x n  100 x n 1  x n  2  100 x n 3  x n  4  100 x n 5  x n 1  x  100   x n 3  x  100   x n 5  x  100 



  x  100  x n 1  x n 3  x n 5

cMeBaH x  100 naM[ A  100  100 100 dUcenH 726 

n 1





 100 n 3  100 n 5  0

témøKNna)anKW A  0 .

205 KNnatémøénkenSam A ³ eyIgman A  22  30  20  3

    180o  o     180   0

27  3 8

dUcenH mMuTl;kMBUl    . 208 rkcMnYnKt;viC¢man n ³ eyIgman ³ x  x  6  n KuNnwg4 ³ 4x  4x  24  4n

 22  30  20  27  3 8 3

 3 22  30  20  27  2

2

 3 22  30  20  5

2

2

 3 22  30  5

4 x

 3 22  5

2

2



 4 x  1  23  4n 2

2n   2 x  12  23 2n  2 x  12n  2 x  1  1 23 2

3

dUcenH KNna)an

A3

.

206 KNnatémøén a nig b bRmab; a nig b CacMnYnKt; eday a  b  321  0 mann½yfa a CacMnYnFMCag b ehIysnñidæanfa b  a 1 eRBaH vaCacMnYnKt;tKña eyIg)an ³ a  a  1  321 2

bRmab; ³ x nig n CacMnYnKt; ehIy n  x enaHeyIg)an ³  2n  2 x  1  1  2n  2 x  1  23 4n  24

2

-cMeBaH

2

x 2  x  30  0



eday 5   6  1 & 5 6  30 tamRTwsþIbTEvüt enaH 5 &  6 Cab¤sKt;énsmIkar dUcenH témøEdlkMNt;)anKW n  6 .

a 2  a 2  2a  1  321 a  a  2a  1  321 2

a

n6

x 2  x  6  62

a 2  a  1  321





eyIg)ansmIkar ³

n6

2

2

2

  

322  161 2

naM[ b  a 1  1611  160 a  b  dUcenH témøKNna)anKW a  161 , b  160 . 209 eRbóbeFobkenSam a  b nig 207 mMuTl;kMBUlCaGVI? Binitü ³ aa bb  a abba b mMuTl;kMBlU CamMumankMBUlrYmKña ehIyRCugénmMunImYy² a  b   a  b  pÁúMKñabegáIt)anbnÞat;BIrkat;Kña nigrgVas;mMuTaMgBIrb:unKña . 2

2

2

2

2

a2  b2 a  b2

2

2

 a  b  a  b  a 2  b 2    a  b  a  b  a  b 2



 eyIgnwgRsayfa mMuTl;kMBUl  cMeBaH RKb;cMnYnBit a nig b Edl a  b enaH ³  nig  CamMub:unKña a b a b   a  b  a  b  2b  0 Bit  a  b a  b eday     180 nig     180 eRBaHCamMurab sikSapldk ³ 2

2

2

2

2

2

o

o



727 

2

2

2

2

2

eday aabb  aa bb 2

2

2 2



a2  b2 a  b2

-cMeBaH m  1: dUcmanenAsMNYr k> bgðajrYc enaHsmIkarmanb¤DubKW x  x  1 -cMeBaH m  53 smIkar  eTACa ³ 1

1

dUcenH eRbóbeFob)an aabb  aa bb . 210 k> kMNt;témø m edIm,I[ x  1 Cab¤s eyIgman ³ m  1x  m  3x  3  m  0  ebI x  1 Cab¤sénsmIkareyIg)an ³ 2

2

2

2

2

m  112  m  31  3  m  0 m 1 m  3  3  m  0

2

2

 3  2  3   3    1 x     3  x  3      0  5   5   5 2 2 12 18 x  x 0 5 5 5 2 2 x  6x  9  0 5 x 2  6x  9  0

 

1 m  0

 

x  32  0

m 1

naM[ smIkarmanb¤sdubKW x  x  3 dUcenH témøkMNt;)an m  1 , m  ac  53 nigb¤sDub x  x  1 b¤ x  x  3 .

cMeBaH m  1 smIkarka  eTACa ³

1

1  1x 2  1  3x  3  1  0

2

1

2x 2  4x  2  0

1

2

2

1

2

x 2  2x  1  0

man a  b  c  1   2  1  0 ¬CakrNIBiess¦ naM[ x  1 , x  ac  11  1 1

2

211 rkBIrcMnYn x nig y y  25 eyIgsÁal; ³ xxy  12 eyIg)an 2

  x 2  y 2  25  2 xy  24  2 x  2 xy  y 2  1

dUcenH témø m  1 nigb¤smYyeTotKW x  1 . x> kMNt;témø m edIm,I[smIkarmanb¤sDub smIkar m  1x  m  3x  3  m  0  man   b  4ac

x  y 2  1

2

x  y  1

2

  m  3  4m  13  m  2

2

2

 5m 2  2m  3

a  0    0  m 1  0  m  1  2  2 5m  2m  3  0 5m  2m  3  0

edIm,I[smIkarmanb¤sDub luHRtaEt

naM[ sRmab; ³ 5m  2m  3  0 man a  b  c  0 naM[smIkarmanb¤s ³ m  1 , m  ac  53 eyIgnwgrk b¤sDubcMeBaHtémø m nImYy²Edlrk)an 2

1

-cMeBaH x  y  1  x  y  1 naM[  y  1y  12  y  y  12  0 man y  1  1 2 414  1 2 49  28  4 2

 m  6m  9  12m  4m  12  4m 2

2

2



1

 1  12  4 14  1  49 6 y2    3 2 2 2

ebI y  4 : x  124  3 ehIy y  3: x  123  4 -cMeBaH x  y  1  x  y 1 naM[  y  1y  12  y  y  12  0 man y    1  12  4 14  1 2 7  3 2

1

2

2

3

728 

ebI

  1  12  4 14 1  7 y2   4 2 2 y 3  3: x 

12  4 3

ehIy y

4

b¤ x  3 , y  1 -cMeBaH S  3 & P  2 eyIg)an xxy y23  x & y Cab¤sénsmIkar X  3 X  2  0 man a  b  c  0 enaHsmIkarmanb¤s ³ x  1 , y  2 b¤ x  2 , y  1 dUcenH RbB½n§smIkarmanKUcemøIybYnKU ³ x  1 , y  3 b¤ x  3 , y  1 x  1 , y  2 b¤ x  2 , y  1 . x  1 , y  3

 4: x 

12 3 4

2

dUcenH BIrcMnYnEdlkMNt;)anKW ³  x  3, y  4  x  4, y  3 b¤ .   x  3 , y  4 x  4 , y  3 



212 edaHRsayRbB½n§smIkar eyIgman xx  yy  xyx y7 8 

2

2

2

2

1 2

tag S  x  y nig P  xy tam 1 ³ x  2 xy  y  2 xy  x  y  8 2

2

x  y 2  2 xy  x  y   8 S 2  2P  S  8

tam 2 ³

3

x 2  y 2  xy  7

A

x 2  2 xy  y 2  2 xy  xy  7

x  y 2  xy  7

M

S2  P  7

4

yk 4 CMnYskñúg 3 eyIg)an ³ S 2  2P  S  8



S2 2 S2 7  S 8 S 2  2S 2  14  S  8 S2  S 6  0 S2 S 6  0

naM[ S

1



N

B

P S2 7



213 )atmFüménRtIekaNKWCaGVI? )atmFüménRtIekaN KWCaGgát;EdlKUsP¢ab;BIcMNcu kNþalénRCugBIrrbs;RtIekaN ehIyvaRsbnwgRCugTI# énRtIekaNenH nigmantémøesµIBak;kNþalRCugTI#. eyIgnwgbgðajfa MN  BC 2 tamniymn½y AB AC / nigman MN Rsbnwg BC AM  AN  2 2 -RtIekaN ³ ABC & AMN man ³ mMu AMN  ABC / mMu ANM  ACB ¬mMuRtUvKña¦ MN AM   naM[ AMN ABC BC AB  AM BC  AM BC naM[ MN  BCAB   2 AM 2 dUcenH )atmFüménRtIekaNekaNesµIBak; kNþalén)atTI# EdlRsbnwgva .

  1  1  24  2  2 3 S  2 : P   22  7  3  2  S  3 : P  3  7  2

tam 4 ebI

x  y  2   xy  3

-cMeBaH S  2 & P  3 eyIg)an x & y Cab¤sénsmIkar X  2 X  3  0 man a  b  c  0 enaHsmIkarmanb¤s ³ 2



214 rkcMnYnKt; n EdlepÞógpÞat; 72  12n  54 eyIgman 72  12n  54 b¤Gacsresr 247  n  485 smmUl 3  73  n  9  53 naM[ cMnYnKt;epÞógpÞat;KW n  4 , 5, 6 , 7 ,8, 9 729 

C

dUcenH cMnYnKt;EdlepÞógpÞat;KW

AO2  AB2 OB 2

215 rkPaKEdlenAsl; -RtIekaNEkg AEB ³ S AEB

 252  20 2  625  400  225

-cMeBaHRtIekaNEkg COD man ³ 24



A

PaKenAsl;  S  S  144  60  204 PaK dUcenH PaKEdlenAsl;KW 204 PaK . BDC

 252  24 2  625  576  49

216 Tajrk eyIgman ³ x  12011  2011 1 1 smmUl x  2011  2011 b¤ x  2011  2011 naM[ x  12012  1 1

eyIg)an AC  AO  CO  15 m  7 m  8 m dUcenH RbEvgcugr)aFøak;cHu KW AC  8 m .

2

 2011  2012 2011 1 1 2011    1 1  2011 2012 1 2011 2011

2

20 m

a  b  c  60 1  2  bc  240  a 2  b 2  c 2 3 

b  c 2  60  a 2 b 2  c 2  2bc  3600  120a  a 2 A

D 4 m B

2

tam 1 : a  b  60  c

217 rkRbEvgEdlcugr)aFøak;cuH 25 m

2

srubmkeyIg)anRbB½n§smIkar

.

1 2011  x  2012 2012

 7m

218 KNnargVas;RCugnImYy²énRtIekaN tagrUbRtIekaNenaHdUcrUbxageRkam ³ B a tambRmab;RbFan c -brimaRt a  b  c  60 cm A b 1 -RkLaépÞ 2 bc  120  bc  240cm -tamBItaK½r a  b  c

1 ? x  2012

dUcenH Taj)an

CO  CD 2 OD 2

C 10 D

1 S BDC  10 12  60 2 AEB

CO 2  CD 2 OD 2

B

12

- RtIekaNEkg BDC ³

AO  AB2 OB 2  15 m

E

1  12  24  144 2



.

n  4 , 5, 6 , 7 ,8, 9

b 2  c 2  3600  120a  a 2  2bc 4

C

edayyk (2) nig (3) CMnYskñúg (4) a 2  3600  120a  a 2  2  240

O

120a  3600  480

RbEvgcugr)aFøak;cuHKW AC  AO  CO tamRTwsþIbTBItaK½r -cMeBaHRtIekaNEkg AOB man ³

3120  26 120 b  c  60  26  34   bc  240

a

naM[ tamEvüt b nig c Cab¤sénsmIkar ³ 

730 

C

x 2  34 x  240  0

man   b  ac   17   240  289  240  7 naM[ b   171   7  10 , c   171   7  24 b¤Gac c   171   7  10 , b   171   7  24 2

2

dUcenH rgVas;RCugnImYy²rbs;RtIekaNKW .

10cm , 24cm , 26cm

2

221 k> rkRbPaKtagcm¶aypøÚvEdlsuxRtUvedIr -bRmab; ³ suxeFVIdMeNIredayrfynþ)an 83  15 40 suxeFVIdMeNIredaym:UtU)an 53  24 40 15 24 39 naM[ kareFVIdMeNIrtamrfynþ nigm:UtKU W³ 40  40  40 39 1 enaH kareFVIdMeNIredayefµIeCIgKW 40   40 40 40 dUcenH RbPaKtagkareFVIdeM NIredayefµIeCIgKW 401 .

219 bgðajfaRtIekaNmanmMuTaMgbICaRtIekaNEkg x> rkcm¶aypøÚvTaMgGs;ebIsuxedIr)an 2 km bRmab;mMuTaMgbIKW  , 2 nig 3 suxedIr)an 2 km RtUvnwgRbPaK 401 edayeyIgdwgfaplbUkmMukgñú énRtIekaNesµI 180 1 mann½ y fa  2 km cm¶aypøÚvTaMGs;KW eyIg)an   2  3  180 40 o

o

6  180 o

40  40  2 km  80 km 40

   30 o

mMuTaMgbIénRtIekaNenHKW

dUcenH cm¶aypøÚvTaMgGs;KW 80 km .

  30 o , 2  60 o , 3  90 o

RtIekaNenHmanmMumYymanrgVas; 90 vaCaRtIekaNEkg 222 k> sresr 45m CaPaKryén 1km eday 1 km  1000 m dUcenH RtIekaNmanmMuTaMgbICaRtIekaNEkg . 1 45 4.5 eyIg)an 45 1000    4.5% 1000 100 220 rk f 9 dUcenH eyIgsresr)an 4.5% . eyIgman f x f x  1  9 nig f 3  81 naM[ x> sresr 1kg CaPaKryén 800 g 9 9 1 f 3  f 4  9  f 4    f 3 81 9 eday 1kg  1000g 9 9 1 1000 1 125 f 4  f 5  9  f 5    81     125% eyIg)an 1000 800 f 4 1 / 9 8 100 100 o

f 5  f 6  9



f 6  f 7   9



f 7   f 8  9



f 8  f 9  9



dUcenH rk)an

f 9  81

f 6 

9 9 1   f 5 81 9 9 9 f 7     81 f 6 1 / 9 9 9 1 f 8    f 7  81 9 9 9 f 9    81 f 8 1 / 9

.

dUcenH eyIgsresr)an 223 KNnaRbEvg bRmab; ³ MN  18cm M

A 

AB

I 

eyIg)an ³ AB  AI 18BIcm 

731 

.

125%

³ B 

N

eday A nig B CacMNuckNþal erogKñaén MI nig NI naM[ AI  MI2 nig BI  NI2 enaH AB  MI2  NI2 MI  NI MN 18 cm     9 cm 2 2 2

dUcenH RbEvgKNna)anKW

 4  5 3  5 5 2  10 3 





o

o

o

    x  180o  x    180o       0      

  A   4  5 3  5 48  10 7  4 3  4  

2011 2012

4

4



 4  5 3  25  5 3  4  4  25  4  45 4  1

naM[ A  1 eday sV½yKuNén 2011CacMnYnmanelx 1 cugCanic© naM[ A  2011  ...1 CacMnYness eyIg)an A  1  1 dUcenH témøKNna)anKW A  1 . 20112012

2012

20112012

rMlwkragsmIkardWeRkTI3 ³ tamRTwsþIbTEvüt smIkar manrag X 3  SX 2  RX  P  0 S  a  b  c   R  ab  ac  bc  P  abc 

2

 4  5 3  5 48  10 2 2  4 3  3  4



2

4



Edl

a ,b,c

Cab¤s ³

. GñkGacepÞógpÞat;ragxagelI

edaykarBnøatkenSam x  ax  bx  c  0 .

eyIgman

4  5 3  5 48  10 7  4 3  4



2

2

226 edaHRsayRbB½n§smIkar

dUcenH pkbUkmMukñúgBIrénRtIekaNesµImMueRkAmYy EdlminCab;ngw va . 225 KNnatémøénkenSam A ³ eyIgman ³

 4  5 3  5 48  10 2  3



 3

 4 5 3 5 5 3 4

224 RsaybBa¢ak;faplbUkmMukñúgBIresµImMueRkAmYy ]bmafa eyIgmanRtIekaN nig  x mMu dUcrUbxagsþaM    eyIgnwgbgðajfa      -plbUkmMukñúgénRtIekaNesµI 180 enaH     x  180 -ehIymMu x    180 eRBaHvaCamMurab sikSapldk ³

Binitü ³



 4  5 3  5 28  10 3  4

 4 5 3 5 5 3

.

AB  9 cm



 4  5 3  5 48  10 2  3  4

2 x  2 y  2 z  7   x 7 y z 2  2  2  4  x  y  z  3 

2 x  2 y  2 z  7  1 1 1 7  x y z  4  2 x  y  z2 32 2  2  732 

 2x  2 y  2z  7  2 y 2 z  2 x 2 z  2 x 2 y 7    4 2x2 y2z  x y z 2 2 2  8 

 2x  2y  2z  7  2x  2y  2z  7  y z 7  y z x z x y x z x y 2 2  2 2  2 2   8  2 2  2 2  2 2  14 4   2x2y2z  8 2x2y2z  8  

cMeBaH

edIm,IgayRsYl eyIgtag a  2

dUcenH KNna)an  2ba   1 .   228 rkcMnYnxÞg;EpñkKt;éncMnYn A  2 eyIgman ³ A  2 edaybMBak;elakarIteKal10 eyIg)an ³ log A  log 2

x

, b  2 y , c  2z

abc  7

eyIg)anRbB½n§fµI bc  ac  ab  14 tamRTwsþIbTEvüt  abc  8 

a ,b,c

Cab¤sénsmIkar X

 7 X 2  14 X  8  0

3

smIkarxagelImanb¤sgay ³ X  1 eRkayBIEckBhuFa X  7 X 14X  8  0 nig X  1 eyIg)an ³ X  1X  6 X  8  0  X  1 X  2 X  4  0

 23    6 

2011

6   6

2011

 12011  1

2011

2011

log A  2011 log 2

bRmab; ³ log 2  0.301 naM[ log A  2011 0.301 log A  605.311

edaycMnYn 605  605.311  606 naM[ 605  log A  606 10605  A  10606

 X 1  0  X  a 1   X  2  0  X  b  2 X  4  0 X  c  4  

eyIg)an

2011

2011

2

2

naM[

 2a     b 

eyIg)an ³

2011

¬manviFIedaHRsaysmIkardWeRkTI3tam Cadan b:uEnþBuMmankñúgkmµviFIsikSarbs; RksYgGb;rM dUcenHeyIgenAEtedaHRsayedayrebobTajb¤sgay. sUmcgcaMfa vaBMuEmnhYssmtßPaBrbs;eyIgeT eRBaHeKerobcMlMhat;)anl¥Nas; ¦ 3

a3 &b6

eday

CacMnYnmanelx 606xÞg; ehIycMnYn 10 CacMnYnmanelx 607xÞg; Taj)an A CacMnYnEdlmanelx 606xÞg; dUcenH A  2 CacMnYnEdlmanEpñkKt; 606xÞg; . 10605

606

2 x  2 0 a  1 x  0  y   1 b  2   2  2   y  1 c  4 2 z  2 2 z  2   

2011

dUcenH RbB½n§smIkarmanb¤s x , y , z  0 ,1, 2 . 229 edaHRsaysmIkar 3 x  5  2 x  7  x 1 2 3 3 x 5 2 x 7 227 KNna  2ba    x 1 , x  0 eyI g man 2 3   33 x  5 22 x  7  6 x  1 eK[ a  b  15  216   6 6 6 a  b  9  36  6  6 33 x  5  22 x  7   6 x  1 2011

 32  6 6  6 

2

9 x  15  4 x  14  6 x  6

3  6 

5 x 1  6 x  6

2

x 5

 3 6

x  25 kenSaménGgÁTaMgBIrmanTRmg;dUcKña nig a nig b CaBIr cMnYnKt;viC¢man naM[eyIgTaj)ankrNIEtmYYyKt;KW ³ cMeBaH x  25 eRkayBIepÞógpÞat; 4=4 Bit dUcenH smIkarmanb¤s x  25 . a3 &b6



733 

230 eRbóbeFob ab nig PGCD a,b PPCM a,b 232 edaHRsayRbB½n§smIkar x y 4 eyIgman a  90 , b  280 edaybMEbkCaktþabzm ³ eyIgman  x  y  4    xy  z  6 z  13  xy  z  6 z  13 b  280 2 a  90 2 edaysÁal;plbUk nigplKuN eyIgbegáIt)ansmIkar 45 3 140 2 15 3 70 2 X  4 X  z  6 z  13   0 Edlman x & y Cab¤s 35 5 5 5 man   b  ac 7 7 1 2

2

2

2

2

1

2

naM[ a  90  2  3  5 nig b  280  2  5  7 eyIg)an ³  ab  90  280  25200 2





  2  z 2  6 z  13

3

 4  z 2  6 z  13  z 2  6z  9



  z 2  6z  9

 PGCD a , b   2  5  10



 z  3

2

 PPCM a , b   23  32  5  7  2520

eday  z  3  0 manEtmYykrNIKt; EdlnaM[ smIkarmanb¤sKW  z  3  0 enaH z  3 -cMeBaH z  3 eyIg)ansmIkarfµI ³ 2

enaH PGCD a , b PPCM a , b  10  2520  25200 eXIjfa ab  PGCD a , b PPCM a , b  25200 dUcenH eyIgeRbobeFob)an ab  PGCD a , b  PPCM a , b  . 231 epÞógpÞat;ÉklkçN³PaB

2





X 2  4 X  32  6  3  13  0 X 2  4X  4  0

 X  22  0

smIkarmanb¤sDub X  X  2 eyIg)anb¤sénsmIkarKW ³  XX  xy  22 1

1  sin x  cos x   21  sin x 1  cos x  Binitü ³ 1  sin x  cos x 2 2

2

1



2

tamrUbmnþ a  b  c  a  b  c  2ab  2bc  2ac dUcenH RbB½n§smIkarmancemøIy x  2 , y  2 , z  3 . edayBnøattamrUbmnþxagelI eyIg)an ³ 233 EbgEcknimitþsBaØaelakarIt 1  sin x  cos x   1  sin x  cos x  2 sin x  2 cos x  2 sin x cos x eyIgmannimitsþ BaØaelakarItdUcxageRkam ³ 2

2

2

2

2

2

2

2

 12  1  2 sin x  2 cos x  2 sin x cos x  21  sin x  cos x  sin x cos x 

Logx , log x , lg x , ln x , log 10 x , log e x

tamkareRbIR)as; rbs;GñkKNitviTüanimitþsBaØa ³ - elakarItTsSPaK b¤ elakarIteKal 10rYmman ³

 21  sin x   cos x  sin x cos x   21  sin x   cos x1  sin x   21  sin x 1  cos x 

log x , lg x , log 10 x

eRBaH edaysar sin x  cos x  1 naM[ 1  sin x  cos x   21  sin x 1  cos x  2

2

2

dUcenH 1  sin x  cos x 

2

 21  sin x 1  cos x 



.

- elakarItenEB b¤ elakarIteKal e rYmman ³ Logx , ln x , log x . e

¬lMhat;xagelI RKan;Etcg;bgðajBInimitþsBaØaelakarIt¦ 734 

3a  b b  c a  c   0 a  b b  c a  c   0

234 rkRkLaépÞrgVg;carwkkñúgRtIekaNenH -tamrUbmnþehrug épÞénRtIekaNKW S  p p  a p  b p  c

7

Taj)an

8



r Edlman a , b , c CargVas;RCug 11 abc ehIy p  2 CaknøHbrimaRt -smµtikmµ ³ RtIekaNmanrgVas;RCug 7 , 8 nig 11 enaH p  7  82 11  13 eyIg)an ³ S  1313  713  813 11

a  b  0  b  c  0 a  c  0 

-cMeBaH a  b  0 tambRmab; a  b  c  1 enaH c  1 ehIy a  b  c  1enaH a  b  0 Taj)an a  0 , b  0 eyIgKNnatémøénkenSam ³ 2

2

2

2

2

P  a 2010  b 2011  c 2012  0 2010  0 2011  12012  1

-cMeBaH b  c  0 tambRmab; a  b  c  1 enaH a  1 ehIy a  b  c  1enaH b  c  0 Taj)an  2 13 15 -épÞRtIekaNFM )anBIplbUképÞRtIekaNtUc²bIEdlman b  0 , c  0 eyIgKNnatémøénkenSam ³ Pa b c 1  0  0 1 rgVas;RCugnImYy²Ca)at nigkaMrgVg; r énrgVg;carwkkñúg -cMeBaH a  c  0 tambRmab; a  b  c  1 enaH b  1 RtIekaN Cakm
 13  6  5  2

2

2

2010

2

2

2011

2

2012

2

2

2010

2

2011

2

2012

2







2

2



2

 13 r

naM[ 13r  2 13 15  -épÞrgVg;carwkkñúgRtIekaNKW S



r

P  a 2010  b 2011  c 2012  02010  12011  02012  1

2 13 15 13

srumk eTaHCakrNINak¾eday P 1 Canic© dUcenH témøKNna)anKW P 1 .

 r 2

2

 2 13 15   S      13   4 13 15 60    13 132

236 bgðajfa a  b  c  d 1  a  b  c  d eyIgman a  b  c  d 1  a  b  c  d 2

2

2

2

2

2

2

a2  a  b2  b  c2  c  d 2  d 1  0

dUcenH épÞRkkLargVg;carwkkñúgRtIekaNKW S





60 13

.

1  2 1  2 1  2 1  2  a  a    b  b    c  c     d  d    0 4 4 4 4        2

235 KNnatémøénkenSam P  a tamrUbmnþÉklkçN³PaB

2010

2

3

3

1



2

2



dUcenH

3

2

eday  a  12   0 , b  12   0 ,  c  12   0 ,  d  12   0         naM[  a  12    b  12    c  12    d  12   0 BitCanic© 2

smµtikmµ ³ a  b  c  1 nig a  b  c naM[ 1  1  3a  bb  ca  c

2

1  1  1  1   a    b    c     d    0 2  2  2  2 

 b 2011  c 2012

a  b  c 3  a 3  b 3  c 3  3a  b b  c a  c  3

2

735 



2

2





2

2





2





a 2  b2  c2  d 2 1  a  b  c  d

.

237 rkGayumñak;² tag a CaGayu«Buk nig b , c , d CaGayukUnTaMgbI bRmab; ³ GayuGñkTaMgbYnmansmamaRt 15 , 7 , 5 , 4 ebItag x CapleFobsmamaRtGayuGñkTaMgbYn eyIg)an ³ 15a  b7  5c  d4  x Taj)an ³ 15a  x  a  15x b7  x  b  7 x

ab a  b   cd c  d 2 a c a b (1)   c d b d ab b 2  (2) cd d 2 a 2 ab  (3) c 2 cd 2

239 RsaybMPøWfaeK)an

eyIgmansmamaRt ³ smmUl -KuN (1) nwg db eyIg)an ³ -KuN (1) nwg ac eyIg)an ³ tam (2) nig (3) eyIg)anpleFobesµItKñaKW ³ a ab b a 2ab b c d     b¤ G acsresr  x  c  5x  x  d  4x c cd d 2cd d c 5 4 smµtikmµ³ Gayu«BukticCagplbUkGayukUnTaMgbI 3qñaM eyIg)an a  2ab  b  a  2ab  b c  2cd  d 2cd d c eyIg)an a  3  b  c  d a  b  2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2



15 x  3  7 x  5 x  4 x x3

naM[ ³ 15a  3  a  45

b  3  b  21 7 d  3  d  12 4

c  3  c  15 5

epÞógpÞat; ³ 45  3  2115 12  48  48 Bit dUcenH «BukmanGayu45qñaM nigkUnTaMgbImanGayu erogKñaKW ³ 21qñaM , 15qñaM , 12qñaM . 60

225  238 eRbóbeFobBIrcMnYn  259  nig  625  

Binitü ³ ehIy eday naM[

naM[

2ab a  b  2cd c  d 2 2

dUcenH bgðaj)anfa

60

120

 9   3      25  5

100

dUcenH eRkayBIeRbóbeFob

 225     625  60

50

.

320  160 2

eday x  160 CacMnYnTI1 enaHcMnYnTI2 KW x  1  161 dUcenH cMnYnKt;viC¢mantKñaenaHKW 160 nig 161 .

50

 9  225       25   625 

2

x

eRBaHvamaneKal 53  1 3   5

ab a  b   cd c  d 2

2 x  321  1

50

100



x 2  2 x  1  x 2  321

50 250 100   15  2   225  3  3               625  5 5   25  

 3   5

2

x  12  x 2  321

50

60

120

ab a  b  cd c  d 2

240 rkBIrcMnYnKt;viC¢mantKña tag x CacMnYnTI1 enaHcMnYnTI2 bnÞab;KW x 1 tambRmab;RbFaneyIg)an ³

60 260 120   3 2   9  3  3               25  5 5  5  

 3   5

c  d 2

.

¬lMhat;xagelImaneRcInnak;Nas; EdlRclMePøcKitfa eKaltUcCag!¦ 

241 etIekµgNaQñH ehIyekµgNacaj; tag N CacMnYnXøIsrub mann½yfa A  B  C  N -muneBlelg eyIgmansmamaRt ³ A B C   3 4 5 736 

tamlkçN³smamaRteyIgGacsresr)an ³

243 edaHRsayRbB½n§smIkar ³

A B C A BC N     3 4 5 3 45 12

 x  xy  y  1   y  yz  z  4  z  zx  x  9   x  xy  y  1    y  yz  z  4  z  zx  x  9 

eyIgman ³

Taj)an ³ A N 3N 12 N   A  3 12 12 48 B N 4 N 16 N    B  4 12 12 48





 x  xy  y  1  1  1   y  yz  z  1  4  1  z  zx  x  1  9  1 

 x y  1   y  1  2   y  1 x  1  2 i     y  z  1   z  1  5    z  1 y  1  5 ii   z  x  1   x  1  10  x  1 z  1  10 iii   

C N 5 N 20 N   C  5 12 12 48

-eRkayeBlelg eyIgmansmamaRt ³

edayKuNsmIkar ³ i  ii iii bBa¢ÚlKña eyIg)an

A B C   15 16 17

x  12  y  12 z  12  100 x  1 y  1z  1  10 x  1 y  1z  1  10 

tamlkçN³smamaRteyIgGacsresr)an ³ A B C A B C N     15 16 17 15  16  17 48

-cMeBaH EcksmIkar  nigsmIkar i , ii , iii eyIg)an ³

Taj)an ³

 x  1 y  1z  1 10   y  1x  1  2  z 1  5 z  4   x  1 y  1z  1 10      x `1  2   x  1  5  z  1 y  1  y 1  1  y  0       x  1 y  1 z  1 10    x  1z  1 10

A N 15N   A 15 48 48 B N 16 N    B 16 48 48 C N 17 N    C 17 48 48 

-eRbobeFobmuneBlelg nigeRkayeBlelg ³ ekµg A ³ 1248N  1548N mann½yfa A QñH ekµg B ³ 1648N  1648N mann½yfa B rYcxøÜn ekµg C ³ 2048N  1748N mann½yfa C caj;

-cMeBaH x  1 y  1z  1  10   EcksmIkar   nigsmIkar i , ii , iii eyIg)an ³

dUcenH ekµg ³ A QñH / B rYcxøÜn nig C caj; . 242 edaHRsaysmIkar x x x x 1 1 1     1    3 6 9 12 2 3 4 x 1 1 1  1 1 1   1       1     3 2 3 4  2 3 4 x   1  x  3 3

dUcenH smIkarmanb¤s x  3

eyIg)an

 x  1 y  1z  1  10   y  1x  1  2  z  1  5  z  6   x  1 y  1z  1  10      x `1  2   x  3  5  z  1 y  1  y  1  1  y  2    x  1 y  1z  1   10  x  1z  1 10

dUcenH RbB½n§smIkarmancemøIyBIrKW ³ x , y, z   1, 0 , 4 b¤ x , y , z    3,  2 ,  6 . 244 eRbóbeFobcMnYn ³ eyIgman 2 manelx 2 cMnYn 1001dg ehIy 3 manelx 3 cMnYn 1000dg Binitü ³ 2  2  16 ehIy 3  27 2

22

3

33

.

22



737 

4

3

225  240t  64t  64t  64 eXIjfa 16  27  2  3 240t  289 eyIgdwgfa 2 tUcCag 3 Edlman 998 dg 289 t 240 CasV½yKuNbnþbnÞab;dUcKña 289 960  289 671 naM [ x  4t  4   3 enaHeyIg)an 16  27 Edlmanelx2 nigelx3 240 240 240 671 epÞógpÞat; cMBaH x  240 cMnYn 998 dgCasV½yKuNbnþbnÞab;dcU Kña 3 x  4 x  4 x  5 x  5 x  3 x eday 16 ¬man dgelx ¦  2 ¬man dgelx ¦ 22

33

2

22

3

33

2

2

998

3 3

273

dUcenH 2

2

22

2

3

2

22

22

2

3

2

22

1001

2

3 3

¬man 998 dgelx 3¦  33 ¬man 1000 dgelx 3¦ ¬man 1001 dgelx 2¦  3

3

33



¬man 1000 dgelx 3¦

245 edaHRsaysmIkar x  3 x  4 x  4 x  5 x  5 x  3 x

¬vaCasmIkarGsniTan caM)ac;RtUvykcemøIEdlrkeXIjmkepÞógpÞat; ¦

49 289 289 529 529 49      240 240 240 240 240 240

7 2 17 2 17 2  232   2402 2402 7 17 17  23 23  7    240 240 240 119  391  161 671   240 240 671 671 x  240 240 

enaH

232  7 2 2402

smIkarmann½ykalNa ³

eday

3  x  0 x  3   4  x  0   x  4  x  3 5  x  0 x  5  

671 dUcenH smIkarmanb¤s x  240

671 240

Bit .

4  t  t 2  t  t 2  t  t 2 1

246 rkcm¶ayBIsVayRCMeTAsVayerog -smµtikmµ ³ begÁalcm¶ayTI1dak;fa {sVayRCM 17 km } mann½yfaeFVIdMeNIr 17 km eTot dl;sVayRCM ehIy begÁalcm¶ayTI2bnÞab;dak;fa {sVayerog 25 km } mann½yfaeFVIdMeNIr 25 km eTot dl;sVayerog . eyIgGacKUsrUbgayemIl

4  t  

PñMeBj

-edIm,IkMu[EvgeBk nigBi)akkñúgkarsresr ³ eyIgtag

 x  4t  4  x  t  3  x  t 1 5  x  t  1 

eyIg)an ³

4  t  t 1  t  t  t  1  t  1  t 1 4t 

t  1t  t t  1  t  1t  1 t 2 1  t 2  t  t 2  t

elIkGgÁTaMgBICakaer eyIg)an ³

sVayRCM

1km 



sVayerog





25km

4  t   t 2  1  t 2  t  t 2  t 4  t 2  24  t  t 2  1  t 2  1  2t 2  2t t 2  1 4  t 2  t 2  1  2t 2  2t t 2  1  24  t  t 2  1 15  8t  8 t 2  1

17km

?

tamrUbeyIgGacbkRsay)any:aggayfa cm¶ayBIsVayRCM eTAsVayerogKW ³ 25  1  17  26  17  9 km

elIkGgÁTaMgBIrCakaermþgeToteyIg)an ³

dUcenH cm¶ayBIsVayRCMeTAsVayerogKW 9 km . 

738 

247 rkcMnYncab nigcMnYnpáaQUk tag x CacMnYncab nig y CacMnYnpáaQUk -tamsmµtikmµ ³ cabmYyTMpáaQUkmYy enaHsl;cab mYyKµanpáaQUkTM eyIg)ansmIkar ³

249 rkGayurbs;davIRsIsBVé;f¶ -smµtikmµ ³ Gayurbs;davItageday x ehIy x Ca BhuKuNén mann½yfa x Gacmantémø CaeRcIndUcCa ³ 0 , 8 , 16 , 24 , 32 , 40 , 48 , ...

kñúgcMeNamelxTaMgGs;xagelI manEtelx 16 eTEdl -ehIy ebIcabBIrTMpáaQUkmYy enaHenAsl;páaQUkmYy eKarBtamlkçx½NÐ FMCag10 nigtUcCag 20 KµancabTM eyIg)ansmIkar ³ na[témø x manEtmYyKt;KW 16 x 1  y

i 

x  y 1 2

ii

-tamsmIkar i & ii eyIgcgCaRbB½n§smIkarKW ³ x 1  y  x  y 1  x  y 1      x  y 1 x  2 y  2  x  2 y  2  2

edaybUkGgÁ nigGgÁénsmIkarTaMgBIr eyIg)an ³  x  y 1   x  2 y  2 y 3



dUcenH sBVéf¶davIRsImanGayu 16 qñaM . 250 rkcMnYnéf¶EdlKat;pÁt;pÁg;cMNIdEdl[eKa -eyIgsegáteXIjfa kalNacMnYneKakan;EteRcIn enaHry³eBlsIukan;EtfycuH vaCasmamaRtRcas naM[ cMnYnéf¶EdlRtUvpÁt;pÁg;KW ³ 40 35  40 1400  35    28 40  10  40  10  50

x  y 1  3 1  4

dUcenH cabmancMnYn 4 k,al / páaQUkmancMnYn 3 Tg .

¬BMuEmn 40  10 35  43.75 éf¶enaHeT ¦ 40

dUcenH cMnYnéf¶EdlRtUvpÁt;pÁg;KW 28 éf¶ 248 rkcMnYnstVExVkEdlgab; nig rs; -eyIgKYKb,IKitfa eRkABIstVExVkgab; nigrs;vaKµanGVI 251 bgðajfa a  a  a  1 eToteT ehIysmµtikmµniyayfa gab;bIrs;BIr enaH eyIgman ³ eyIgGacsnñidæan)anfa stVTaMgGs;mancMnYn 5k,al . a  sin a  a  sin a 2 1

1

¬eRkABIgab; nigrs;KµanGVIeToteLIy ¦

éf¶

2 2

2 3

2 1 2 2 2 3

1

a2  cos a1  sin a2

.

2

1

 a  cos a1  sin 2 a2 2

-BicarNafa ³ ebIstV5 gab;3 enaHstV120gab;b:unµan? a  cos a  cos a  a  cos a  cos a naM[ a  a  a naM[ cMnYnstVgab;  1205 3  72 k,al  sin a  cos a  sin a  cos a  cos a ebIstV5 rs;;2 enaHstV120rs;b:unµan?  sin a  cos a sin a  cos a   sin a  cos a  1 naM[ cMnYnstVrs;  1205 2  48 k,al eRBaH sin   cos   1 dUcenH cMnYnstVExVkEdlgab;man 72 k,al ehIycMnYnstVExVkEdlrs;man 48 k,al . dUcenH eXIjfa a  a  a  1 R)akdEmn . 3

1

2 1

2

2 2

2

1

2

1

2

2

2

2

1

2

1

2

2 1

2 2

2 3

2

1

2

2

2

1

739 

2

1

2



2

1

2 3

2

2

2

2

2

252 KNnaplKuN P Binitü ³ 1  a  a  1  2a

abc  ca

n

2

4

  a

 a4  a2

2

4

2 2

2

2

2

1  1 a  b  c  a  b  1  1   a  b  c b  c 1  1 a  b  c  c  a  3 1 1 1    abc ab bc ca

2

2

2

1 a2  a4 1 a  a  1 a  a2

 naM[  ebIbþÚ a Ca x eyIg)an ³ 1  x  x   11xx  xx eyIg[témø k  0 , 1 , 2 , 3, ... , n ebI k  0 ³ 1  x  x   11xx xx ebI k  1 ³ 1  x  x   11  xx  xx ebI k  2 ³  1  x  x   11 xx  xx >>>>>>>>>>>>>>>> >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> ebI k  n ³ 1 x  x   1 x  x 2

2k

2k 1

2k 1

2k

2k  2

2k 1

2k

2

dUcenH eXIjfa a  3b  c  a 1 b  b 1 c  c 1 a .

4

2

254 KNnaplbUk S  11!2  2!3  3!  n  n! Binitü ³ k  1! k  1  k!

2

2

4

2

n

4

8

2

4

8

16

4

8

8

2

2n 1

2n  2

1 x2  x2 n

1  x  x 1  x 2

2







 x 4 1  x 4  x8  1  x 2  x 2 n 1



b¤Gacsresr

1 x2  x2 1 x  x2 n 1

1 x2  x2 Pn  1 x  x2

n

2 n 1

n 1

abc bc

eyIg)an ³

1 1! 2!1! 2  2! 3!2!  3  3! 4!3!  4  4! 5!4! .................  n  n! n  1!n!



n2

1 1!2  2!3  3!... n  n! n  1!1! 2n  2

2

.

1 1  abc ab 1 1   abc bc 

k  1 , 2 , 3 , 4 , ... , n

n 1

dUcenH eRkayBIKNnaeXIjfa S

253 bgðajfa a  3b  c  a 1 b  b 1 c  c 1 a tambRmab; a  0 , b  0 nig c  0 naM[ abc  ab

naM[ ebI[témø

k  1! k  k!k! k  k!  k  1!k!

n2

dUcenH KNna)an P  1 1x x xx n

n

4

n 1

3

edaybUkGgÁngi GgÁénvismPaB ³ 1  2  3 eyIg)an ³

  1  a   a  1  a  a 1  a  a   1  a  a 1  a  a   1  2a  a 2

1 1  abc ca



1

2

255 KNnaplbUk   n  9999 n 1



n

 n  1!1

.

1 n 1 4 n  4 n 1



Binitü ³  n  1  n  n  1  n    n  1  n  Et  n  1  n  n  1  n   1 naM[  n  1  n    n  11  n  4

4

4



4

eyIg)an  n  1  n  n  1  n    n  11  n  4



740 

4

4

4

   

Taj)an  n  1  n    n  1  n 1 n  1  n  257 RsaybBa¢ak;faeK)an  a  b   a  b c d cd  eyIg)an ³ eyIgman   1 1    n  n  1 n  n  1    n  1  n  ba  dc  ac  db  ac  db  ca  db   mü:ageTot ac  db  ca  db ebI[témø n  1 , 2 , 3 , ... , 9999 eyIg)an ³ 4

4

4

4

9999

4

9999

4

4

n 1

4

n 1

4 2  4 1  4 3  4 2   4 4  4 3 ............  4 10000  4 9999 

smmUl naM[

n  1  4 n  4 10000  4 1





n  1  4 n  10  1  9

4

n 1

4

n 1

9999



n 1



1

  

n  n 1



4

 9 4 n  n  1 

.



 a  b   c 3  3aba  b  c  3



 a  b  c a  b   a  b c  c 2  3aba  b  c 

  a  b  c a  a  b  c a

4

4

4

4

4

4

2

4

a4 b4  a   b       c4 d 4  c   d 

a4  b4  a  b    c4  d 4  c  d 

4

4

a4  b4  a b     c4  d 4 cd  4

.

5562  4452  111111 55562  44452  11111111 ..................................................

 a 3  3a 2 b  3ab 2  b 3  c 3  3a 2 b  3ab 2  3abc 2

4

4

56 2  452  1111

3



4

4

6 2  5 2  11

256 sRmYlkenSam eday a  b  c  3abc 3

4

4

258 rkrUbmnþTUeTA eyIgman]TahrN_ ³

a 3  b 3  c 3  3abc A 2 2 2 a  b  c  ab  bc  ca

3

4

dUcenH Rsay)anfa



9999

4

 a   b   a b         c  d  cd 

tam 1& 2



9999

dUcenH

4

4

 a  b  c  a 2  2ab  b 2  ac  bc  c 2  3ab

  ab  bc  ac 

2

 b 2  ac  bc  c 2  ab

2

 b2  c2



eyIgeXIjfa elx1 ekIneLIgeTVdgCanic© dUcenH tamlMnaMKMrUxagelIenHeyIgTaj)anrUbmnþTUeTA 555 ... 56 2

man n xÞg;

naM[

 444 ... 45 2 man n xÞg;



111 ... 111 man 2n xÞg;

RsaybBa¢ak;rUbmnþxagelI a  b  c  3abc a  b 2  c 2  ab  bc  ca a  b  c  a 2  b 2  c 2  ab  bc  ca  a 2  b 2  c 2  ab  bc  ca  abc

A

3

3

2





Edl a  b  c  ab  bc  ca  0 dUcenH eRkayBIsRmYl A  a  b  c 2

tag

3

2



An  555 ... 56 2  444 ... 45 2

  555...55  1   444...44  1



2

2

2

5  4     999...99  1    999...99  1 9  9  2

5  4    10n  1  1   10n  1  1 9  9 

2

. 

741 

2

2









2





5  4  An   10n  1  1   10 n  1  1 9  9  4 5    10n  1  1  10 n  1  1  9 9 











2

cos2 1o  cos2 89o  2 o 2 o cos 2  cos 88 cos2 3o  cos2 87 o   ........................ cos2 44o  cos2 46o   cos2 45o  S







4 5    10n  1  1  10n  1  1 9 9  1    10n  1  10n  1  2 9  1  10n  1 10n  1 9 1  102 n  1 9 1 9  999...999 9











enaH



Edlmanelx cMnYn 2n  111...11 Edlmanelx 1 cMnYn 2n dUcenH CakarBit rUbbmnþenHBitCaRtwmRtUvKW 555 ... 56 2

man n xÞg;

 444 ... 45 2 man n xÞg;



2

o

2

2

o

o

o



o

o



cos 2 o  cos 90 o  88 o  sin 88 o

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 



cos 44 o  cos 90 o  46 o  sin 46 o

enaHeyIg)an ³ cos2 1o  sin 2 89o

S

89 2

1 2

.

260 KNna S  sin 2 0o  sin 2 1o  sin 2 2o    sin 2 90o

111 ... 111 man 2n xÞg; o

44 

1 88  1 89   2 2 2

dUcenH KNna)an

259 KNna S  cos 1  cos 2  cos 3  cos 89 tamrUbmnþ cos 2     sin  b¤ cos90     sin  naM[ cos1  cos90  89   sin 89 2 o

S  44 

cos2 1o  sin 2 1o  1  2 o 2 o cos 2  sin 2  1 cos2 3o  sin 2 3o  1    ........................ cos2 44o  sin 2 44o  1  2   2 2 o   cos 45    2    

/

o

¬RsedoglMhat;TI259 ¦ tamrUbmnþ sin 2     cos  eyIg)an ³ sin 2 0 o  cos2 0 o  1  2 o 2 o sin 1  cos 1  1 sin 2 0 o  sin 2 90 o sin 2 2 o  cos2 2 o  1  2 o 2 o  sin 1  sin 89  sin 2 2 o  sin 2 88o  ........................   sin 2 44 o  cos2 46 o  1  ........................ 2  sin 2 44 o  sin 2 46 o  2 2 o    sin 45      sin 2 45o  2   1 S 45  2

enaH

cos2 2o  sin 2 88o

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

S  45 

1 90  1 91   2 2 2

dUcenH KNna)an

cos2 44o  sin 2 46o

enaHeyIg)an ³ 

742 

S

91 2

.

261 kMNt;témø a & b eyIgmancMnYn abba Edl 1  a  9 , 0  b  9 eyIg)an abba  1000 a  100 b  10b  a

¬eRBaH b  9 minRtUvmanRtaTukeT ¦ -cMeBaH b  0 eyIg)an 10 c9  9  9c01 4 tamTMnak;TMng 4 Taj)an c  8 eRBaH 8  9  72  1001 a  110 b ehIyEfmRtaTuk 8 KW 72  8  80 manelx0enAcug  1191a  10 b  smµtikmµ abba CaKUbR)akdéncMnYnKt; enaHryIg)an -cMeBaH c  8 eyIg)an 1089 8  9801 abba  k dUcenH témøkMNt;)anKW a  1 , b  0 , c  8 , d  9 3

1191a  10b   k 3

x> bBa¢ak;fa abcd nig dcba suT§EtCakaerR)akd eday a & b CacMnYnKt; enaH 91a 10b CacMnYnKt;Edr eday abcd  1089  33 naM[ k Eckdac;nwg 11 enaH k  11n / n Kt;viC¢man ehIy dcba  9801  99 eyIg)an k  11n Edl n  1 , 2 , 3 , ... dUcenH cMnYn abcd nig dcba suT§EtCakarR)akd . EtebI n  2 enaH k  22   10648  abba 263 rkBIrcMnYnCakaerR)akd naM[ cMnYnKt;viC¢man n mantémøEtmYyKt;KW n  1 tag a  k CacMnYnTI 1 nig b  n CacMnYnTI 2 Edl eyIg)an abba  k  11 1  11  1331 k & n CacMnYnKt; ehIy k  n b¤ k  n Taj)an témø a  1 , b  3 tambRmab;RbFan ab  a  b  4844 dUcenH témøkMNt;)anKW a  1 , b  3 . eyIg)an ³ ab  a  b  4844 ab  a  b  1  4844  1 262 k> kMNt;témøelxénGBaØat a , b , c nig d ab  1  b  1  4845 a  1b  1  4845 eyIgmancMnYn abcd nig dcba tamxÞg;nImYy²enaH eday a  k nig b  n enaHeyIg)an ³ 48453 1 a  9 , 0  b  9 , 0  c  9 , 1 d  9 1615 5 a  1b  1  4845 eK[ abcd  9  dcba 1 323 17 k  1n  1  4845 19 19 tamTMnak;TMng 1 naM[kMNt;)antémø a  1 EtmYyKt; k  1k 1n  1n 1  4845 1 ¬eRBaHebI a  1 enaHlT§plCaelx R)aMxÞg; ¦ Et 4845  3 51719 CaplKuNénbYncMnYnKt; -cMeBaH a  1 eyIg)an 1bcd  9  dcb1 2 EdlmanEtmYyEbbKt; tamTMnak;TMng 2 naM[kMNt;)antémø d  9 EtmYyKt; eday 3 5  4 14  1 nig 17 19  18 118 1 ¬eRBaHmanEtkrNIenHeTIb 9  9  81 manelx!cug¦ enaH k 1k 1n 1n 1  4 14 118 118 1 -cMeBaH d  9 eyIg)an 1bc9  9  9cb1 3 -cMeBaH k  n Taj)an k  18 , n  4 tamTMnak;TMng 3 Taj)an b  0 -cMeBaH k  n Taj)an k  4 , n  18 91a  10b 

k3 11

2

2

3

3

3

3

3

3

3

2

3

2

2

2

2



743 

2

naM[ b¤

2 2  a  k  18  324  2 2  b  n  4  16 2 2  a  k  4  16  2 2  b  n  18  324

2

epÞógpÞat; ³ 324 16  324  16   4844 Bit ehIy 16  324  16  324   4844 Bit

2

dUcenH BIrcMnYnEdlCakaerR)akdKW 324 & 16 . 264 KNnargVas;RCugnImYy²rbs;RtIekaN tag a , b , c CargVas;RCugén c a RtIekaNEkg Edl c CaGIubU:etnus b -tamBItaK½r ³ a  b  c 1 -bRmab;RkLaépÞesµI 24 cm naM[ 12 ab  24 2 -bRmab;brimaRtesµI 24 cm naM[ a  b  c  24 3 tam 3 ³ a  b  24 c elIkCakaer 2

2

265 rkcMnYnTaMgBIrenaH tag x CacMnYnTI ! Edl x CacMnYnbzm enaHcMnYnTI@KW x  1 ehIy x  1 CakaerR)akd enaH x  1  n eyIg)an n 1  x smmUl n  1n  1  x Et x CacMnYnbzm naM[plKuNrbs; x KW x  x 1 eyIg)an n 1n  1  1 x Taj)an ³ nn  11  1x  nn 12 x  3n  x2

2

2



2

266 rkkaMrgVg; tag r CakaMrgVg;EdlRtUvrk 2m edayP¢ab;p©itrgVg;TaMgbIdUcrUb enaHeyIg)anRtIekaNEkg EdlmanTMnak;TMngCamYy r tamBItaK½reyIg)an ³ 2  2r 2  2r 2  4r 2



 b 2  2ab  576  48c  c 2 4

4  8r  4r 2  4r 2  16r 2

edayyk 1 & 2 CMnYnskñúg 4 eyIg)an ³

8r 2  8r  4  0 2r 2  2r  1  0

c 2  2  48  576  48c  c 2 96  576  48c 48c  576  96



dUcenH cMnnY TI!KW 3 nigcMnYnTI@KW 4 .

a 2  2ab  b 2  242  48c  c 2

a



tam   b  ac  1 2  3 naM[ r   1 2 3  0 minyk 2

c

480  10 cm 48

cMeBaH c  10 enaH a  b  14 nig ab  48 tamEvüteyIg)ansmIkar ³ x  14x  48  0 Edl man a nig b Cab¤sénsmIkar

1

r1 

2

  b 2  ac  49  48  1 7 1 7 1 a 6 , b 8 1 1

1 3 2

ÉktaRbEvg

dUcenH kaMrgVg;EdlRtUvrkKW ³ r   12

.

3

b¤ a  8 , b  6 267 RsayfaRtIekaNcarwkknøHrgVg;CaRtIekaNEkg ¬munbkRsay GñkRtUvsÁal; mMucarwk C dUcenH rgVas;RCugnImYy²énRtIekaNEkgKW ³ nig mMup©ti Camunsin ³ mMucarwk CamMmu ankMBUl o elI r gV g ; ni g RCu g TaM g BI r kat; r gV g ; ÉmM u p © i t CamM u 6 cm , 8 cm , 10 cm . enaH



EdlmankMBUlelIp©itrgVg; .



744 

A

B

-TMnak;TMngrvagmMup©it nigmMucarwkKW ebI  CamMup©it nig  CamMucarwkEdlmanFñÚsáat;rYm enaHeyIg)anTMnak;TMng ³   2 . -RtIekaNcarwkknøHrgVg; CaRtIekaNEdlmanRCugmYy CaGgát;p©iténrgVg; EckrgVg;CaBIrEpñkb:unKña -¬emIlrUb¦ mMu nig A manFñsÚ áat;rYm BC naM[ A  2 eday  CamMurab enaH   180 eyIg)an ³ A  1802  90 CamMuEkg . naM[ RtIekaNcarwkknøHrgVg;manmMuEkgCanigc© o

o

o

269 RsayfaRCugnImYy²énRtIekaNtUcCagknøH brimaRtrbs;vaCanic© c a ]bmafaeyIgmanRtIekaN EdlmanrgVas;RCug a , b , c b nigmanknøHbrimaRt a  2b  c -tamvismPaBénRtIekaN eyIg)an ³ abc 2 abc  2b  a  b  c  b  2 abc  2c  a  b  c  c  2

 a bc

 2a  a  b  c  a 

 b ac  c  ab

dUcenH RtIekaNcarwkknøHrgVg;CaRtIekaNEkgCanic© . dUcenH rgVas;RCugnImYy²énRtIekaNtUcCagknøH brimaRtrbs;vaCanic© . 268 rkcMnYnRCugeRcInbMputénBhuekaN 270 rkcMnYndgénkarCk;)arIrbs;bursenaH -TMnak;TMngrvagcMnYnRCug nigmMuénBhuekaNKW ³  Ck;)an 10 dg ebIBhuekaNmYyman n RCugenaHplbUkmMukñúgTaMgGs; -)arI 10 edIm enAsl;knÞúy)arIcMnYn 10 knÞúy  3 edIm nig 1 knÞúy énBhuekaNKW ³ 180 n  2 ; -)arI 3 edIm nig 1 knÞúy  Ck;)an 3 dg tambRmab;eyIg)an ³ enAsl;knÞúy)arIcMnYn 4 knÞúy  1 edIm nig 1 knÞúy 180 n  2   2011 2011 -)arI 1 edIm nig 1 knÞúy Ck;)an 1 dg n2 180 enAsl; knÞúy)arIcMnYn 2 knÞúy x©IknÞúy)arIeK 1 2011 n 2 180 naM[)an 3 knÞúy  1 edIm  Ck;)an 1 dg 1980  31 n 2 enAsl;knÞúy)arI 1 yksgeKvij enaH)arIGs;Kµansl; 180 31 naM[cMnYndgénkarCk;)arIKW  10  3 11  15 dg n  11  2 180 dUcenH bursenaHRtUvCk;cMnYn 15 dgeTIbGs;)arIKat; . 31 n  13  o

o

o

o

o

180

271 edaHRsaysmIkar ³ k> 3  4  5 Et n CacMnYnRCug EdlCacMnnY Kt; enaH n  13 epÞógpÞat; 180 13  2  2011  1980  2011 Bit eyIgsegáteXIjfa x  2 Cab¤sénsmIkar eRBaH 3  4  5  9  16  25  25  25 Bit dUcenH BhuekaNenHGacmanRCugeRcInbMputcMnYn 13 . eyIgnwgbgðajfasmIkarmanb¤sEtmYyKt;KW x  2 x

o

o

o

o

2



745 

2

2

x

x

smIkarxagelIGacsresr ³ -krNI x  2 eyIg)an

x

x

2

x

2

 3  3     5 5

4 4     5 5

ehIy edaybUkGgÁ nigGgÁ

x

x

x

2

 3  4  3  4         5  5 5  5

2

edaybUkGgÁ nigGgÁ

x

x

x

2

x

2

4 4     5 5 x

x

x

x

3

3

3

x

smmUl naM[ x  3 minEmnCab¤sénsmIkar . -krNI x  3 eyIg)an  63    63  x

3

x

3

x

3

4 4     6 6

ehIy

x

smmUl  53    54   1 naM[ x  2 minEmnCab¤sénsmIkar . -krNI x  2 eyIg)an  53    53  ehIy

x

 3  4 5         1 6 6 6

x

x

x

3  4 5 3  4 5             6 6 6 6 6 6

 3  4      1 5  5

5 5     6 6

ehIynig edaybUkGgÁ nigGgÁ enaHeyIg)an ³ x

x

x

3

x

x

x

3

 3  4 5  3  4 5              6 6 6 6 6 6 2

 3  4  3  4         5  5 5  5

2

 3  4     1 5  5

smmUl naM[ x  2 minEmnCab¤sénsmIkar . dUcenH smIkarmanb¤sEtmYyKt;KW x  2 .

3

 3  4 5       1 6 6 6

smmUl naM[ x  3 minEmnCab¤sénsmIkar . dUcenH smIkarmanb¤sEtmYyKt;KW x  3 . 272 bgðajfa eKTaj)an x  y  z eyIgmansmPaB

edaHRsaysmIkar ³ x> 3  4  5  6             Binitü  y  z  2x  z  x  2 y   x  y  2 z  eyIgsegáteXIjfa x  3 Cab¤sénsmIkar eRBaH tamrUbmnþ³ a  b  c  a  b  c  2ab  2ac  2bc 3  4  5  6  216  216 Bit g)anktþanImYy²KW ³ eyIgnwgbgðajfasmIkarmanb¤sEtmYyKt;KW x  3 enaHeyI  y  z  2 x   y  z  4 x  2 yz  4 xy  4 xz smIkarxagelIGacsresr ³  63    64    56   1  z  x  2 y   z  x  4 y  2 xz  4 yz  4 xy yz  zx  x y 2

x

x

x

x

2

2

 y  z  2x  z  x  2 y  x  y  2z 2

2

2

2

3

3

3

2

2

2

2

2

2

3

x

-krNI x  3 eyIg)an ehIy

x

x

3

x

3

 3  3     6 6

4 4     6 6 x

5 5     6 6

ehIynig edaybUkGgÁ nigGgÁ enaHeyIg)an ³

2

2

2

2

2

2

2

2

x

 2 2 2 2  x  y  2 z   x  y  4 z  2 xy  4 xz  4 yz 

 y  z  2 x 2  z  x  2 y 2  x  y  2 z 2  6 x 2  6 y 2  6 z 2  6 xy  6 yz  6 xz

1

Binitü ³  y  z 2  z  x 2  x  y 2

3

 y 2  2 yz  z 2  z 2  2 xz  x 2  x 2  2 xy  y 2  2 x 2  2 y 2  2 z 2  2 xy  2 xz  2 yz

edayeFVIkarpÞwm 1 & 2 enaHeyIg)an 

746 

2

6 x 2  6 y 2  6 z 2  6 xy  6 yz  6 xz 

274 k> RsaybBa¢ak;fa sin12a  cota  cot2a Binitü ³ cota  cot2a

2 x 2  2 y 2  2 z 2  2 xy  2 yz  2 xz

eRkayBIeFVIkarTUTat; eyIg)anliT§plKW ³



4 x 2  4 y 2  4 z 2  4 xy  4 yz  4 xz  0 2 x 2  2 y 2  2 z 2  2 xy  2 yz  2 xz  0 x  2 xy  y  y  2 yz  z  z  2 xz  x  0 2

2

2

2

2

2

x  y    y  z   z  x  2

2

2

¬rUbmnþ cos 2a  2 cos a 1 , sin 2a  2 sin a cos a ¦ 2

cosa 2 cos2 a  1  sin a 2 sin a cosa 2 cos2 a  2 cos2 a  1  2 sin a cosa 1  sin 2a 

0

plbUkxagelIepÞógpÞat;manEtmYykrNIKt;KW ³ x  y 2  0 x  y  0 x  y    2  y  z   0   y  z  0   y  z  z  x  0 z  x 2   z  x   0

naM[eyIg)an ³ x  y  z dUcenH eKTaj)an x  y  z

dUcenH bgðaj)anfa sin12a  cota  cot2a .

.

x> KNnaplbUk Sn 

273 KNna S  ab  cd eyIgman ³

2011ab  cd  S  ab  cd  2011 2011ab  2011cd  2011 2 c  d 2 ab  a 2  b 2 cd  2011 2 abc  abd 2  a 2 cd  b 2 cd  2011 2 2 abc  a cd  abd 2  b 2 cd  2011 acbc  ad   bd ad  bc   2011 bc  ad  0  0  2011









a  1  sin a  cot 2  cot a   1  cot a  cot a  a 4 2  sin  2 a a  1   cot  cot a 8 4  sin  4 ...................................   1  cot a  cot a  a 2 n1 2n  sin n  2 a S n  cot n1  cot a 2 a S n  cot n1  cot a 2



eRBaH smµtikmµ ac  bd  0 dUcenH KNna)an S  0

1 1 1 1 1     a a a a sin a sin sin 2 sin 3 sin n 2 2 2 2

tamsRmaybBa¢ak;sMNYr k> eyIg)an ³



 

cos a cos 2a  sin a sin 2a

dUcenH eRkayBIKNna .

x cot 1 2 1  cos x cot x 1 cos x  1 1  cos x cos x

275 k> RsaybBa¢ak;fa Binitü ³ 

747 

.

¬rUbmnþ cos 2a  2 cos

2

a  1  cos 2a  1  2 cos 2 a

x x x 2 cos2 2 cos2 sin 1 cos x  1 2  2 2 1   x cos x cos x cos x cos x sin 2 x x cos sin x cos sin x 2 2    x cos x x cos x sin sin 2 2 x cot x 2  tan x cot  2 cot x

dUcenH Rsay)anfa

¦ 276 KNna x , y , z nig t smµtikmµ ebIeyIg[pleFob 2x  3y  4z  6t  a Edl a  0 eRBaH bYncMnYn x , y , z nig t viC¢man Taj)an ³ x  2a , y  3a , z  4a , t  6a naM[ yztx  ztxy  txyz  xyzt  14625 )anCa 72a 3 48a 3 36a 3 24a 3     14625 2a 3a 4a 6a 36a 2  16a 2  9a 2  4a 2  14625 65a 2  14625

x 1 2 1  cos x cot x cot

.

a 2  225

eyIg)an ³

x> KNnaplKuN   1  1  1  1  Pn  1  1   cos x  cos x  cos x   2  22 

    1     1    cos x   2n  

tamsRmaybBa¢ak;sMNYr k> eyIg)an ³

Pn  tan x cot

x 2

n 1

     

 x  2a  y  3a    z  4a t  6a

 x  2  15  x  30  y  3  15  y  45        z  4  15  z  60 t  6  15 t  90

dUcenH KNna)an x  30 , y  45 , z  60 , t  90 .

x  cot  1 2  1  cos x cot x  x  cot  1 4  1  x x  cos cot 2 2   x cot  1  8  1   x x  cos cot 4 4  ................................  x  cot n1  1 2  1  x x  cos n cot n 2 2     x cot n1 2  tan x cot x Pn  cot x 2 n1

dUcenH eRkayBIKNna

 a  15

276 k> kMNt;témø x edIm,I[ P mantémøGb,brma eyIgman ³ P  x  x  1 ¬edayeFVIkarEfmfytY¦ 2

P  x2  x 1 2

2

1 1 1  x2  2  x        1 2 2 2 2

2

1 1 4  1 3  x    x   2 4 4  2 4 

edIm,I[ P mantémøGb,brma luHRtaEtkenSam 2

1 1 1  x  0  x 0  x   2 2 2  1 3 x P 4 2

dUcenH témø eFVI[ mantémøGb,brma . x> kMNt;témø x edIm,I[ Q mantémøGtibrma eyIgman Q  2  x  x Gacsresr ³ 2

. 



Q  2  x2  x  2  x2  x

748 



n  2a  1 n  3b  1  n  4c  1 n  5d  1  n  6e  1

2 2  2 1  1   1    Q  2  x  2 x       2  2   2    2

1 1   2x    2 4  9  1  x  2  2

2

n  1  2 a n  1  3b   n  1  4c n  1  5d  n  1  6e

naM[ n 1 RtUvEtEckdac;CamYy 2, 3, 4, 5 , 6 edIm,I[ Q mantémøGtibrma luHRtaEtkenSam mann½yfa n 1 CaBhuKuNén 2, 3, 4, 5 , 6 1 1 1  eday PPCM 2 , 3, 4 , 5 , 6  2  3  5  60 x  0  x 0  x  2 2 2  dUcenH témø x  12 eFVI[ Q  94 mantémøGtibrma . naM[BhuKuNbnþbnÞab;én 2, 3, 4, 5 , 6 KW ³  60 ,120 ,180 , 240 , 300 , 360 , 420 , ... enaHnaM[ n  1   60 , 120 , 180 , 240 , 300 , 360 , 420 , ... 278 rkcMnYnKt;tUcbMput n n   61 , 121 , 181 , 241 , 301 , 361 , 421 , ... ebI a , b , c , d , e CacMnYnKt; Etsmµtikmµ n Eckdac;nwg 7 tambRmab;eyIg)an ³ ehIy kñúgcMeNamtémø n nImYy² tamlMdab;BItcU eTAFM n  2 a  1 n  2 a  1   manEttémø 301 eT EdltUcCageK nig Eckdac;nwg 7 n  3b  2 n  3b  2    n  4c  3  n  4c  3 dUcenH cMnYnKt;tUcbMputEdlRtUvrkKW n  301 .   2

2

n  5d  4 n  5d  4   n  6e  5 n  6e  5 n  1  2 a  2 n  1  2a  1 n  1  3b  3 n  1  3b  1   n  1  4 c  4   n  1  4c  1 n  1  5d  5 n  1  5d  1   n  1  6e  6 n  1  6e  1

280 RsaybBa¢ak;fakenSam E mantémøefr rMlwk cos x  sin x  1 2

2



a 3  b 3  a  b  a 2  ab  b 2



eyIgman

naM[ n 1 RtUvEtEckdac;CamYy 2, 3, 4, 5 , 6 mann½yfa n 1 CaBhuKuNén 2, 3, 4, 5 , 6 smµtikmµ rkEttémø n EdltUcbMput naM[ n  1  PPCM (2 , 3, 4 , 5, 6)  2  3 5  60 Taj)an n  60 1  59 dUcenH cMnYnKt;tUcbMputEdlRtUvrkKW n  59 . 279 rkcMnYnKt;tUcbMput n ebI a , b , c , d , e CacMnYnKt; tambRmab;eyIg)an ³ 2



E  cos6 x  sin 6 x  3sin 2 x cos2 x

     cos x  sin x cos 3

3

 cos2 x  sin 2 x  3 sin 2 x cos2 x 2

2

4



x  cos2 x sin 2 x  sin 4 x 

 3 sin 2 x cos2 x  cos4 x  cos2 x sin 2 x  sin 4 x  3 sin 2 x cos2 x  cos4 x  2 cos2 x sin 2 x  sin 4 x



 cos2 x  sin 2 x



2

 12 1

dUcenH RKb;témørbs; x eyIg)antémø E  1efrCanic© . 749 

281 edaHRsayRbB½n§smIkar eyIgmanRbB½n§smIkar x xy y 2 9 3

3



tamsmIkar 2 Taj)an x  2y

283 sresr N CaplKuNktþadWeRkTI1 eyIgman N  3a  1  4a  6a  9

1 2

2

 3a  1  2 2 a  3  3a  1  2a  33a  1  2a  3 2

3 CMnYskñúg 1

dUcenH sresr)an N  a  75a  5

8  y6  9 y3

tag y  t  y  t eyIg)an t  9t  8  0 smIkarman a  b  c  1   9  8  0 naM[ t  1 , t  8 cMeBaH t  1  y  1  y  1 enaHtam 3 : x  2y  12  2 cMeBaH t  8  y  8  y  2 enaHtam 3 : x  2y  22  1 6

2

2

 2 2 4a  1  10 2  24a  1  1024a  1  10 2

2

 8a  2  108a  2  10  8a  88a  12

 8a  1  42a  3

3

 32a  12a  3

eday N  32a  12a  3 CaBhuKuNén 32

3

dUcenH

N

CacMnYnRtUvEtEckdac;nwg 32

285 KNnatémøelxénkenSam eK[ a  b  1 nigkenSam

dUcenH RbB½n§smIkarmanKUcemøIy x  2 , y  1 , x  1, y  2

.



2011

2010

2009

2008

 

2

2

2

2

2

2

 a 2  2ab  b 2  1





  a 2  2ab  b 2  1  a  b   1 2

34018  3 x 4018  x

x  4018

2

 2a 2  2ab  2b 2  3a 2  3b 2  1

x

2  2  32010 2008  4  3 x

dUcenH smIkarmanb£s

³

  2a  b a  ab  b   3a  b   1  2a  ab  b   3a  b   1

32010 3  1  32008 3  1  4  3 x



P

.

P  2 a 3  b3  3 a 2  b 2  1 2

282 edaHRsaysmIkar ³ eyIgman 3  3 3  3   4  3

.

284 Rsayfa N Eckdac;nwg 32 ³ eyIgman N  44a  1  100

y6  9 y3  8  0 3

2

 3a  1  2a  63a  1  2a  6  a  7 5a  5

3

2    y 3  9  y 8  y3  9 3 y

eyIg)an

2

 12  1  1  1

. 

0

dUcenH témøelxénkenSamKNna)an 750



P0

.

286 rkBIrcMnYnKt;viC¢man a nig b ³ eyIgman a  b  24 eyIg)an a  ba  b  24 ebI a nig b CacMnnY Kt;enaH a  b nig a  b k¾Ca cMnYnKt;Edr EdleyIgnwgrkplKuNBIrcMnYnKt;esµI 24 2

eday naM[ b¤ b¤ b¤

2

1  24 2  12  24    3 8  4  6 a  b  1  a  b  24 a  b  2   a  b  12 a  b  3  a  b  8 a  b  4  a  b  6

dUcenH

nig

288 KNnakenSam A

A

1



2



3

1



2



3

x  1x  2 2  x 3  x  1  x x  3



x  1x  2 x  2x  3 x  1x  3 x  3  2x  1  3x  2  x  1x  2x  3 x  3  2 x  2  3x  6 x  1x  2x  3 1  x  1x  2x  3 

a  b   a  b

1 minykeRBaH a nig b minCacMnYnKt; dUcenH kenSamKNna)anKW A  . x  1x  2x  3 edaHRsay)anKUcemøIy a  7 , b  5 minykeRBaH a nig b minCacMnYnKt; 289 rkmYycMnYnenaH tag x CamYycMnYnEdlRtUvrkenaH edaHRsay)anKUcemøIy a  5 , b  1 tambRmab;RbFan eyIg)antémø 3x pÞúyBI x mann½yfa 3x   x smIikarmanKUcemøIy ba  57 b ba  15 . edaHRsay 3x   x   2

2

2

3x  x 2  0 x3  x   0

287 KNnaRCugrbs;kaernImYy² tag a CargVas;RCugkaerFM ¬KitCa m ¦ b CargVas;RCugkaertUc ¬KitCa m ¦ tambRmab;RbFan eyIg)anRbB½n§smIkar  a 2  b 2  1152    a  b  16 16a  b   1152    a  b  16

 x0  3  x  0 x  0   x  3

a  b a  b   1152   a  b  16 a  b  72   a  b  16

edaHRsaytamviFIbUkbM)at; eyIg)an ³ a  b  72   a  b  16 2a  88  a  44

enaH b  44 16  28

dUcenH RbEvgRCugkaernImYy²KW 44 m , 28 m . 

cMeBaH x  0 minykeRBaH 0 KµancMnYnpÞúyeT dUcenH cMnYnEdlRtUvrkenaHKW

3

.

290 rkelxEdlenARtg;TItaMgtYTI 2011 eyIgmanelxsresrBI 1 dl;elx 999 KW N  12345678910111213...998999

edIm,IrkelxenARtg;TItaMgtYTI 2011 eyIgsikSatamEpñk²dUcbgðajxageRkam ³ 751



-BIelx 1  9 mancMnYntY ³ 91  9 tY -BIelx 10  99 mancMnYntY ³ 90  2  180 tY -BIelx 100 199 mancMnYntY ³ 100 3  300 tY -BIelx 200  299 mancMnYntY ³ 100 3  300 tY -BIelx 300  399 mancMnYntY ³ 100 3  300 tY -BIelx 400  499 mancMnYntY ³ 100 3  300 tY -BIelx 500  599 mancMnYntY ³ 100 3  300 tY -BIelx 600  699 mancMnYntY ³ 100 3  300 tY ebIeyIgsrubtYBIelx 1 699 vamancMnYntYKW 9  180  6  300  1989 tY eyIgRtUvkar 22 tYeTot edIm,IbEnßm[RKb;tYTI 2011 ehIytYbnþbnÞab;eTot bnÞab;BI 699 enaHKW ³ 700701702703704705706707708709800...999

tYTI 1990

tYTI 2000

x2 2  x 2  x  x 2

  x 2  1  x  1  f    f x      x   2  x  x 

x2 x  x2 1 f  f x   2 x  x 2 x

edayyksmIkar 1  3 enaHeyIg)an ³  1  x2 x  1 f  x   f  x   x  1     2 2  f  1   x f  x   x  x   x  2  x 2 x 2   x  x2  x    x2 x  1   f  x    x  1   2  x 2  x    

2 x







 4 x  2 x  2 x  f x   2 x  2 2 xx  2 x  1 f  x   2 x  1 2

3

2

>

2 x  1 2 2 x x  1 1 f x   x x  1 1 1 f x    x x 1

f x  

tYTI 2011

eday[témø x  1 , 2 , 3 , ... , 2011 eyIg)an ³

291 KNnaplbUk S ³ S  f 1  f 2  f 3    f 2011  1 x2 x  1 f  x   f    x  1  x 1 x x 1 1  1  1  1  2   1 f    f    1 x x   x  1/ x  x

1 1   f 1  1  2   f 2  1  1  2 3  1 1    f 3   3 4  .....................   f 2011  1  1  2011 2012  1 1 S  1 2012 2012  1 2011 S  2012 2012

1

enaHeyIg)an ³

12 x 1 1 x   f    f x   x x   x x 2 x x2

1 x 1 f    f x   x  x

2 2

edayKuNGgÁTaMgBIrénsmIkar 2 nwg 2x x edIm,I [emKuNén f  1x  esµInwg 1 eyIg)an ³ 



  x 2  x   x 2 x  12  x   x  x 2 f x   2 x 2 x 2 3 2 2 2 4 x  2 x  2 x  x  x f x   x  3x  2  x  x 2 2

dUcenH elxEdlenARtg;TItaMgtYTI 2011 KWelx 7 .

eyIgman ebIeyIg CMnYs eday

3

dUcenH plbUkKNna)an 752



S

2011 2012

.

292 rkcMnYnKUbticbMputEdlRtUverobkñúgRbGb; edIm,I[)ancMnYnKUbticbMptu erobenAkñúgRbGb; enaHmaD rbs;KUbRtUvFMbMput. enaHeyIgRtUvrkRCugKUbFMbMput EdlvimaRtTaMgbIrbs;RbGb;Eckdac; nwgRCugrbs;KUb. -mann½yfa RCugrbs;KUbCatYEckrYmFMbMptu énvimaRt rbs;RbGb; EdleyIgnwgkMNt; -ebItag a CaRCugrbs;KUb ¬KitCa mm ¦ naM[ a  PGCD 180 , 60 , 90   2  3  5  30 eRBaH 180  2  3  5 2

2

600  2 3  3  5 2 90  2  32  5

naM[ maDKUbesµI V  30  27 000 mm maDRbGb;esµI V  180  600  90  9720 000 mm eyIg)an cMnYnKUbEdlerob)anKW 9720000  360 KUb 27000 3

3

294 rkBIrcMnYnKt; a nig b tambRmab; ³ eyIg)anRbB½n§smIkar  a  b  15n Edl n  1 , 2 , 3 , ... eRBaH a  b  a  b  45 2

2

  a  b  15n  a  b a  b   45 a  b  15n   na  b   3



10  5 y



y2



a  b  15n   a b  3  n

 a  b  15   a b  3 2a  18  a  9 a  b  45 n3   a b 1 a  b  45   a b 1 2a  46  a  23

ehIy b  6

dUcenH cMnYnKUbticbMputEdlGacerob)anKW 360 KUb . -cMeBaH

12 x  2 y  8 xy   2 x  2 y  3xy 10 x  5 xy

 a  b  15n  15na  b   45

ebI a nig b CacMnnY Kt;enaH a  b k¾CacMnYnKt;Edr enaH n3 CacMnYnKt; mann½yfa 3 RtUvEtEckdac;nwg n eyIgTaj)antémø n KW n  1 b¤ n  3 -cMeBaH n  1 ³ aabb153 edaHRsaytambUkbM)at;

3

293 edaHRsayRbB½n§smIkar eyIgmanRbB½n§smIkar 26xx2yy43xyxy 12  edaysikSapldksmIkar ³ 2  2  1



³

edaHRsaytambUkbM)at; ehIy b  22

dUcenH RbB½n§smIkarmanKUcemøIyBIrKUKW a  9 , b  6 b¤ a  23 , b  22  . 295 bgðajfa A nwg x, y , z eyIgman

cMeBaH y  2 tamsmIkar 1 eyIg)an ³ 2 x  2  2  3x  2 2x  4  6x 4x  4 x 1

2

 B 2  C 2  ABC

2

minGaRs½y

2

 y z  y  z y z A    A 2            2 z y  z y  z  y B

dUcenH RbB½n§smIkarmanKUcemøIy x  1 , y  2 . 

z x z   B2    x z x

2

2

2

2

x  z  x      2 z  x  z 2

2

 x y  x  y x y C    C 2            2 y x  y x  y  x

753



2

naM[

10VC VB  t  100 V 10   B   VB  VC  t  90 VC 9 9

A2  B 2  C 2 

2

2

2

2

2

2

y z z x x y  2 2 2  2 2 2  2 2 2 z y x z y x

 6

ehIy

y ABC    z y    x

x  x y     z  y x  xy z 2 x  x y       z 2 xy y  y x 

V A  t  100  t 

2

2

2

y2 z2 z2 x2 x2 y2       z2 y2 x2 z2 y2 x2

 y2 x2 y2 z2 z2 x2   2  2  2  2  2  2  2  x z z y x y   4

dUcenH A

2

 B 2  C 2  ABC  4

B

A

C

B

V A  t 100 V 9V 10   A   VB  A VB  t 90 VB 9 10

i 

19 m

.

297 edaHRsayRbB½n§smIkar  x  y  z  xyz   x  y  z  xyz  x  y  z  xyz 

1 2 3

pÞwm 1 & 2 eyIg)an ³ x yz  x yz

i 



x y



y  z ii 



z  x iii

pÞwm 2 & 3 eyIg)an ³ x yz  x yz

pÞwm 1 & 3 eyIg)an ³ x yz  x yz

tam i  , ii nig iii  eyIg)an x  y  z edayyk x  y  z CMnYskñúgsmIkar 1 eyIg)an ³  x  x  x  xxx x  x3



x3  x  0



x x2 1  0

C



100 100  VC   81 m 100VC VA 81

dUcenH cm¶ayKmøatBI C eTA A KW

bRmab;bnþ ³ xN³eBl B rt;dl;TI C enAxVH 10 m naM[ V t   100 3 nig V  t   90 4 eyIgeFVIpleFob 3 nig 4 eyIg)an ³ B

100 VA

mann½yfa xN³eBl t Edl A rt;dl;TIcm¶ay100 m eXIjfa C rt;)anEtcm¶ay 81 m b:ueNÑaH naM[ KmøatBI C eTA A KW 100 m  81 m  19 m

minGaRs½y x, y , z . eyIgman

296 rkcm¶ayKmøatBI C eTA A xN³eBl A rt;dl;TI tag V , V , V Cael,ÓnerogKñaén A , B , C t Cary³eBlEdl A rt;dl;TI t  Cary³eBlEdl B rt;dl;TI bRmab; ³ xN³eBl A rt;dl;TI B enAxVH 10 m naM[ V  t  100 1 nig V t  90 2 eyIgeFVIpleFob 1 nig 2 eyIg)an ³ A

d  VC  t  VC 

2

A2  B 2  C 2  ABC  6

100VC 81

ebI d Cacm¶ayEdl C rt;)ankñúgry³eBl t enaH

  y x y z z x  1  2  2  2  2  2  2  1 x z z y x y   y2 x2 y2 z2 z2 x2  2 2  2  2  2  2  2 x z z y x y 2

 VA 

ebI t Cary³eBlEdl A rt;dl;TI enaH

z  z   y  x

2

eyIg)an

edaypÞwm i  & ii enaHeyIg)an ³ 9V A 10VC  10 9

y2 z2 z2 x2 x2 y2      z2 y2 x2 z2 y2 x2

ii 

xx  1x  1  0 754



naM[

 x0 x 1  0   x  1  0

x  0   x  1  x  1

dUcenH RbB½n§smIkarmanRkumcemøIybIKW x  y  z  0 b£ x  y  z  1 b£ x  y  z  1 298 KNnaplbUk S ³ eK[ a  b  c S

a



b



c

a



b



c

a  b a  c  b  c b  a  c  a c  b 



a  b a  c  b  c a  b  a  c b  c  ab  c   ba  c   ca  b   a  b b  c a  c  ab  ac  ab  bc  ac  bc a  b b  c a  c  0  a  b b  c a  c  0

-cMeBaH 1 51  51 eyIgpÞwmktþaRtUvKña ³ eyIg)an 22 yy  22xx 11  151  2 y  2 x  2  2 y  2 x  50

y  x 1   y  x  25 2 y  26

enaH x  y 1  13 1  12 -cMeBaH 317  51 eyIgpÞwmktþaRtUvKña ³ 3 eyIg)an 22 yy  22xx 11  17  2 y  2 x  4  2 y  2 x  16

y  x  2  y  x  8 2 y  10



dUcenH témøplbUkKNna)anKW

enaH S 0

2

 y5

x  y 2  52  3

dUcenH KUcemøIyéncMnnY Kt;viC¢man manBIrKUKW ³ x  12 , y  13  b¤ x  3 , y  5 .

.

299 rkRKb;bNþaKUéncMnYnKt;viC¢man x , y  eyIgman x  x  13  y naM[ y  x  x  13 ¬KuNGgÁTaMgBIrnwg 4 ¦ 2

 y  13

2

2

300 etIcMnYn A bBa©b;edayelxsUnü ¬0 ¦ b:unµan ? eyIgman A  2  5 2 n 1

n

4 y 2  4 x 2  4 x  52

 2 n  5 n  n 1

4 y 2  4 x 2  4 x  1  52  1

 2 n  5 n  5 n 1





 10 n  5 n 1

4 y 2  4 x 2  4 x  1  51

eday -sV½yKuNén 5 CacMnYnmanelx 5 xagcugCanic© naM[ 5 CacMnYnEdlmanelx 5 xagcugCanic© -ehIy 10 manelx 0 cMnYn n dg naM[plKuN 10  5 manelx 0 cMnYn n dg

2 y 2  2 x  12  51 2 y  2 x  12 y  2 x  1  51 eday x , y  CacMnYnKt;viC¢man

n 1

n

naM[ 2 y  2x  1  2 y  2x  1 ehIyplKuNBIrktþaéncMnYnKt;esµInwg 51 KW ³

n1

n

dUcenH cMnYn A  2 cMnYn n dg

1 51 51   3 17 

755



n

 52 n1

bBa©b;edayelx 0 .

301 edaHRsaysmIkar xa xb xc 1 1 1    2    bc ac ab a b c ax  a   bx  b   cx  c   bc  ac  ab   2  abc abc   ax  a   bx  b   cx  c   2ab  bc  ac  ax  a 2  bx  b 2  cx  c 2  2ab  2bc  2ac

a  b  c x  a 2  b 2  c 2  2ab  2bc  2ac a  b  c x  a  b  c 2 a  b  c 2 x a  b  c  x  a  b  c 

dUcenH smIkarman

x  a bc

301 rkRkLaépÞTaMgGs;rbs;sUlIt ³ eyIgmanKUb 7 pÁúMP¢ab;Kña)anCa sUlItmanmaD 448 cm naM[KUbnImYy²manmaD V  4487cm  64 cm Taj)anRTnugrbs;KUb a  V  64 cm  4 cm KUbnImYy²manépÞ 6a -Kitfa ³ KUb7 manKUbmYyenAkNþaleK )at;épÞGs; nigKUb6 eTot)at;épÞGs;1dUcKña naM[épÞsUlIt ³ 3

3

3

3

3

3

2

  

S  7  6a 2  6a 2  6  a 2



 42a 2  12a 2

Cab£s .

 30a 2

a  4 cm

,

 30  4 cm  30  16 cm 2  480 cm 2 2

302 rkb£sKUbén Z ³ eyIgman Z   8 , 4  manTRmg; Z  r ,   Edl r Cam:UDul nig  CaGaKuym:g; b£sKUbén Z KW   2k   Z  r ,  Edl k  0 , 1 , 2 3   3

k

 / 4  2  0    3  0  8 , 3       2 ,   12   / 4  2 1     Z1   3 8 ,  3    2   3    2 ,    2 ,  4   12 3    / 4  2  2     Z2  3 8 ,  3    4   17    2 ,    2 ,  12   12 3  

-cMeBaH k  0 ³ Z -cMeBaH k  1 ³ -cMeBaH k  2 ³

dUcenH b£sKUbén Z KNna)anKW ³

dUcenH épÞRkLaTaMgGs;rbs;sUlItKW S  480 cm . 2

304 bgðajfa 2AM  AB  AC A -eyIgman AM  Caemdüan N naM[ cMNuc M kNþal BC -ykcMNuc N kNþal AB B M 1 naM[ AN  AB 2 -kñúgRtIekaN ABC man MN Ca)atmFüm 2 naM[ MN  AC 2 -edaybUk 1  2 eyIg)an ³ AN  MN 



AB AC  2 2

-Et kñúgRtIekaN AMN tamvismPaBénRtIekaN eyIg)an AM  AN  MN enaHeyIgTaj)an ³ AM 

    3   17  Z 0   2 ,  , Z1   2 ,  , Z1   2 ,  4  12   12   

C

AB AC  2 2



. dUcenH eyIgeXIjfa 756



2 AM  AB  AC

2 AM  AB  AC

.

305 KNnael,Ón ry³eBl nigcm¶aycr rMlwkrUbmnþ cm¶aycrKW ³ d  v  t tambRmab;RbFan ³ -ebIbEnßmel,Ón 3 km/ h eTAdl;muneBlkMNt; 1 h naM[)an ³ v  3t  1  d 1 -ebIbnßyel,Ón 2 km/ h eTAdl;eRkayeBlkMNt; 1 h naM[)an ³ v  2t  1  d 2 tam 1 & 2 eyIg)anRbB½n§smIkar ³ v  3t  1  d  v  2t  1  d  v  3t  3  d  vt   v  2t  2  d  vt

eRBaH



 vt  v  3t  3  d  vt  v  2t  2  d



 v  3t  3  0   v  2t  2  0

d  vt   v  3t  3  0   v  2t  2  0 t 5  0  t  5 h

bUkGgÁnigGgÁ ³ cMeBaH v  2t  2  0 v  2  5  2  0 v  12  0

naM[

307 rkcMnYnénkarcab;édKñaTaMgGs; karcab;édBMumanRcMEdleLIy enaHeyIgKiteXIjfa ³ GñkTI1 cab;)an 9 dg / GñkTI2 cab;)an 8 dg GñkTI3 cab;)an 7 dg / GñkTI4 cab;)an 6 dg >>> rhUtdl;GñkTI10 )an 0 dg naM[ cMnYndgénkarcab;édKñaKW ³ 9  8  7  6  5  4  3  2  1  0  45 dg -GñkGaceFVItamrebobmü:ageTotKW ³ mnusSman 10nak; ehIycab;édKñaBIr²nak; mann½yfa³ vaCabnSM én10Fatu eRCIserIsyk2Fatu naM[ C 10 , 2  10 10 2!!2!  108!92!8 !  45 dg dUcenH cMnYndgénkarcab;édTaMgGs;KW

308 RsaybBa¢ak;fa 2  3 Eckdab;nwg eyIgman 2  3  2   3  9

9



.

45

9

3 3

9

35

3 3



   8  27 2  2  3  3   35 2  2  3  3 

v  12 km / h

 2 3  33 2 6  2 3  33  3 6

d  v  t  12  5  60 km

6

6

3

3

3

3

6

6

dUcenH eyIgKNna)an el,Ón v  12km/ h eXIjfalT§plén 2  3 CaBhuKuNén 35 ry³eBl t  5h cm¶aycr d  60km . enaH 2  3 RtUvEtEckdac;nwg 35 9

9

9

9

306 KNnamYycMnYnenaH tag x CamYycMnYnEdlRtUvrkenaH tambRmab;RbFan eyIg)an ³ x  x  x  x b£ x  2x naM[ x  2x  0 x  0 xx  2  0 Taj)an  x2

dUcenH cMnYn 2

dUcenH cMnYnEdlRtUvKNnaKW 0 b£

dUcenH eyIgsRmYl)an E  aa3bb .

2

2

. 

 39

Eckdac;nwg 35 .

309 sRmYlRbPaKsniTan E ³  2b eyIgman E  aa  35ab ab  6b 



2

9

757



2

2

2

2

a  b a  2b   a  b a  2b a  3b  a  3b

310 KNnargVas;RCugnImYy² 312 KNnargVas;RCugénRbelLÚRkam ABCD ³ C D tag x , y , z CargVas;RCugTaMgbIénRtIekaN KitCa cm tag h  5 RtUvnwg)at AB h  7 RtUvnwg)at AD A tambRmab;RbFan eyIg)an 3x  4y  5z B eyIg)an épÞRkLaRbelLÚRlam ABCD KW tamlkçN³smamaRt eyIg)anpleFob S  AB  h b¤ S  AD  h x y z x  y  z 24     2 3 4 5 3  4  5 12 h AD  AB  h  AD  h Taj)an naM [ h AB eRBaH brimaRt x  y  z  24 cm h AB  5 hAD  7

AB

AD

ABCD

AB

ABCD

AD

AB

AB

AD

AD

eyIg)an

x 2 3 y 2 4 z 2 5



x6

cm



y 8

cm



z  10 cm

tambRmab; smamaRtkm
 5 AB  7 AD  0 1

bRmab;brimaRt

2 AB  AD   48

cm

AB  AD  24

2

dUcenH rgVas;RCugénRtIekaNKW 6cm , 8cm , 10cm .

tam 1 & 2 eyIg)anRbB½n§smIkar ³ 5 AB  7 AD  0 bUkbM)at;edayyksmIkar 2 7  AB  AD  24

311 KNnacMnYnKt;enaH tag ab CacMnYnKK;EdlmanelxBIrxÞg;enaH naM[eyIg)an ³ 0  a  9 , 0  b  9 tambRmab;RbFan eyIgcg)anRbB½n§smIkar ³ Binitü

 ab 9  ba  ab  63

h AB 5  h AD 7



 5 AB  7 AD  0  7 AB  7 AD  168 12 AB  168  AB  14 5 AB 5  14 5 AB  7 AD  AD    10 7 7

eyIg)an

eday dUcenH rgVas;RCugRbelLÚRkameRkayBIKNna)an KW ³ AB  14 cm , AD  10 cm .



ba  ab  10 b  a   10 a  b 

 10b  a  10a  b  9a  9b

 9 a  b 

313 rktémø x edIm,I[ P mantémøtUcbMput eyIgman P  x 1x  2x  3x  6

enaHeyIg)an RbB½n§smIkar  eTACa ³  ab 9  9 a  b   63



 ab 9   a  b  7  ab 9   a  b  7 2b  16

 x  1x  6 x  2 x  3

    x  5 x   6  x  5 x   36 eday x  5x  0 naM[ x  5x  36  36 enaHtémø P  x  5x  36  P  36  x 2  5x  6 x 2  5x  6

tamviFIbUkbM)at;  b8 Taj)an a  9  b  a  9  8  a  1 dUcenH cMnYnKt;enaHKW ab  18 . 

2

2

2

2

2

2

2

758



2

2

2

2

mann½yfa P mantémøtUcbMputesµI  36 cMeBaH x  5x  0  xx  5  0 naM[ x  0 , x  5

315 bgðajfaplKuNénBIrcMnYnenaHtUcCag b¤esµI 14

2

dUcenH

CatémøEdleFV[I . P  36 CatémøtUcbMput

x  0 , x  5

tag a nig b CaBIrcMnYnenaH tambRmab; a  b  1 ¬elIkGgÁTaMgBIrCakaer¦ eyIg)an a  b  1 2

2

a 2  2ab  b 2  1



2ab  1  a 2  b 2

314 rkcMnYnmnusS nigcMnYnekAGI -rebobTI1 ³ ¬tamRbB½n§smIkar ¦ tag x CacMnYnmnusS nig y CacNYnekAGI Edl x nig y CacMnYnKt;

 1

mü:ageTot ebI a nig b CaBIrcMnYnenaHeyIg)an ³ a  b2  0 a 2  2ab  b 2  0





 x  y  4 y  4  x  2  x y 4  x  4  y 1     x  2 y  8  x  2 y  8 2

tambRmab;RbFan eyIg)anRbB½n§smIkar Taj[gay edaypÞwm 1 & 2 enaHeyIg)an ³

2ab  a 2  b 2



2

edaybUkGgÁngi GgÁén 1 nig 2 eyIg)an ³ 

2ab  1  a 2  b 2  2 2  2ab  a  b 4ab  1







 ab 

1 4

dUcenH plKuNénBIrcMnYnenaHtUcCag b¤esµI 14 .

2y 8  4  y 2y  y  4  8 y  12

316 rképÞkaerEdlcarwkkñúgrgVg;TaMgmUl r tam 1 : x  4  y  x  4  12  x  16 tag s nig a CaépÞ nigRCug énkaertUc dUcenH mnusSmancMnYn 16 nak; /ekAGImancMnYn 12 . S nig b CaépÞ nigRCug énkaerFM r tambRmab; ³ s  100 cm -rebobTI2 ³ ¬tamsmIkar¦ naM[ a  s  100 enaH a  10 cm tag x CacMnYnmnusS enaHcMnYnekAGIKW x  4 tamRTwsþIbTBIrtaK½r r CaRbEvgGIub:Uetnus ¬kaMrgVg;¦ Edl x CacMnYnKt; a  10  enaH r     a     10  125 cm tambRmab;RbFaneyIg)ansmIkar ³ 2 2 x nig 2r   b  b  4r  2b  b  2r  x  4  4 2 eyIg)an épÞRkLakaerFMKW S  b x  2 x  16 x  16 naM[ S  2r  S  2 125  S  225 cm naM[ cMnYnekAGIKW x  4  16  4  12 dUcenH épÞkaercarwkkñúgrgVg;TaMgmUlKW S  225 cm . dUcenH mnusSmancMnYn 16 nak; /ekAGImancMnYn 12 . a



a 2

2



b

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2



759



317 kMNt;témøéncMnYnBit a nig b ³ eyIgman a  b  0 RKb;témøéncMnYnBit a nig b enaHeyIg)an ³ 2

x 2  y 2  z 2  52 x 2  y 2  z 2  81 29 2 2 2 2 29 x  y  z  52  81 x  y 2  z 2

2



  29x  y  z   29  52  81x  y  z  81x  y  z   29x  y  z   29  52 52x  y  z   29  52

a 0 , b 0 2

2



2

2

2

2

2

2

2

2

2

2

2

2

naM[ a  b  0 x  y  z  29 cMeBaH a  b  0 mankrNIEtmYyKt;EdlepÞógpÞat; 1 enaHeyIg)an ³ x4  y9  16z  29 KW ba  00 ¬KµankrNINaepSgeToteLIy¦ 29  naM[eyIgTaj)an ³ x dUcenH cMnYnBitkMNt;)anKW a  0 nig b  0 . 1  x  4  x  2 2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

4 y2 1 9 z2 1 16

318 edaHRsayRbB½n§smIkar eyIgman

 x y z     2 3 4  xy  yz  zx  26

1 2

tamsmamaRtenaHeyIg)an 1 :

x y z x yz x yz     2 3 4 23 4 9 x y z x yz    2 3 4 9 2 2 2 2  x y z x  y  z    4 9 16 81 2 2 2 2 x y z x  y 2  z 2  2xy  yz  zx     4 9 16 81 2 2 2 2 2 2 x y z x  y  z  2  26    4 9 16 81 2 2 2 2 2 x y z x  y  z 2  52 i     4 9 16 81

eRBaHtam 2 : xy  yz  zx  26 EttamsmamaRt 2

2

2

2

y2  9



y  3



z 2  16

 z  4

dUcenH RbB½n§smIkarmanKUcemøIyRtUvKñaKW ³ x , y , z  2 , 3,  4 b¤ x , y , z  2 , 3, 4 . 319 KNnatémøKt; énkenSamelx E ³ eyIgman E  2  5  2  5 naM[ E   2  5  2  5  3

3

3

3

3

3





2

 2  5  3 3 2  5   3 2  5       2





 3 3 2  5  3 2  5   2  5     4  33 2  5  3 2  5  3 2  5  3 2  5     4  33 2 2  5 2 E E 3  4  3E

x y z x y z    4 9 16 4  9  16 2 2 2 x y z x2  y2  z2    4 9 16 29 2



eyIg)an E

2

3

 3E  4  0

E  1E 2  E  4  0

naM[ EE 1E 0 4  0  eRkayBIedaHRsaymanEttémøKt; E  1 b:ueNÑaH

ii 

tam i  nig ii enaHeyIg)an ³

2

dUcenH KNnatémøKt;)anKW E  1 . 

760



320 KNnaplbUkcRmaséncMnYnTaMgBIr tag a nig b CaBIrcMnYnenaH naM[plbUkcRmascMnYnTaMgBIrKW 1a  b1 -rebobTI1 ³ eyIgKNna tamtRmUvPaKEbgrYmKW ab naM[ 1a  b1  aab b edaybRmab; plbUk a  b  12 nigplKuN ab  4 eK)an 1a  b1  aab b  124  3 enaH 1a  b1  3 -rebobTI2 ³ edayEckGgÁ nigGgÁ eyIgman a  b  12 edayEckGgÁTaMgBIrnwg ab eyIg)an ³ a  b 12 1 1 12      3 eRBaH ab  4 ab ab a b 4

322 KNna A ³ eyIgman A  2  4  6 ... 2n

 2  1  2  2  2  3  ... 2  n   2  2  2  ... 21 2  3  ... n   2 n  n!

eRBaH

2 2  2  ... 2  2 n n dgénelx 2

nig

n! 1 2  3  ... n

dUcenH témøEdlKNna)an A  2 323 KNna eyIgman

1024

dUcenH plbUkcRmascMnYnTaMgBIrKW

321 KNnark r nig s ³ ebI x  3x  8 CaktþamYyénkenSam x 2



4



      2  11  21  2 1  2  ... 1  2   2  11  2 1  2 1  2  ... 1  2   2  11  2 1  2  ... 1  2   2  11  2  ... 1  2 

S  1  2 1  2 2 1  2 4 1  28  ... 1  21024

.



x 4  rx 2  s  x 2  3x  8 x 2  ax  b



4

2

2

4

4

4

8

8

8

 ...



enaH

 rx 2  s

.

 n!

³

S 1

2

1 1  3 a b

n

1024

8

1024

1024

1024



 21024  1 1  21024



 2 2048  1

 x 4  ax 3  bx 2  3x 3  3ax 2  3bx 

naM[

1024

 8 x 2  8ax  8b

S  1  1024 22048  1  1  1024 2 2048

 x 4  a  3x 3  b  3a  8x 2   3b  8a x  8b

 

 1024 2 2

1024

 22  4

edaypÞwmelxemKuNRtUvKñaén x enaHeK)an ³

dUcenH KNna)an

a  3  0  a  3 a  3 r  b  3a  8 r  b98  r7          3b  8a  0 3b  24  0  b8  s  8b  s  8b  s  64

324 KNna A ³ 2012 man A  1234568 1234567 12345679

eK)an





x  7 x  64  x  3x  8 x  3x  8 4

2

dUcenH témøKNna)anKW

2

r 7

2

1024

2

2012 1234568  1234568  11234568  1 2012 2012    2012 2 2 1 1234568  1234568  1





2



nig s  64 .

dUcenH KNna)an 

.

S 1  4

761





A  2012

.

325 rkcMnYnKt;viC¢man n ³ eyIgman 4  n  n  4n  4  4n

327 KNnarkelxxagcugén A ³ man A  2012  2010  2  n  2  2n  eday 2010 manelxxagcug 0 enaHelxxagcugén  n  2  2n n  2  2n  2010  2 GaRs½yelIelxxagcugén 2  n  2n  2n  2n  2 eday n  enaHRtUvEt n  2n  2  n  2n  2 -Binitü lkçN³TUeTAcMeBaHsV½yKuNén 2 KW ³ ebI 4  n CacMnYnbzm enaHvaCaplKuNBIrktþa Edl cMeBaH n  1 , 2 , 3, 4 , 5 , 6 , 7 , 8 , ... enaHelxcug ktþaTI1esµInwg 1 nigktþaTI2esµInwgxøÜnÉg eyIg)an ³ én 2 KW 2 , 4 , 8, 6 , 2 , 4 , 8, 6 , ... manTRmg;TUeTA KW ³ 2 manelxxagcug 2 ebI n  4k  1 , k  n  2n  2  1 n  2n  1  0    n  2n  2  4  n n  n  2n  2  0 2 manelxxagcug 4 ebI n  4k  2 , k  n  1  0 n  1  0 2 manelxxagcug 8 ebI n  4k  3 , k         n  1 n  n  2  0 n n  1  2n  1  0  , k  2 manelxxagcug 6 ebI n  4k n  1 n  1    eday 2013  4  503 1 manTRmg; n  4k 1 n  2 n  2  0 n  1 n  2n  2  0 naM[ 2  2 manelxxagcugKW 2 cMeBaH n  2n  2  0 man ³   1  2  1  0 naM[smIkarKµanb£s dUcenH elxxagcugén A KW 2 . dUcenH cMnYnKt;viC¢manEdlrk)anKW n  1 . 328 rkRKb;cMnYnKt;viC¢man n ³ cMeBaH n  1 , 2 , 3, 4 , 5 , 6 , 7 , 8 , ... enaHeyIg)an 326 rkelxxagcugénplKuN ³ 2 KW 2 , 4 , 8 , 16 , 32 , 64 , 128, 256 , ... ehIy eyIgman 7  2013  7  2013 sMNl;Eckén 2 nwg 7 KW 2 , 4 , 1, 2 , 4 , 1 , 2, 4 , 1 ,...  7  7  2013  2013 EdlsMNl;énplEckenHmanTRmg;TUeTAKW ³ 7  2013  7  2013 -ebI n  3k  1 , k  enaH 2  7 mansMNl; 2  7  2013 -ebI n  3k  2 , k  enaH 2  7 mansMNl; 4  14091 -ebI n  3k , k  enaH 2  7 mansMNl; 1  ...1 sV½yKuNénmYycMnYnEdlmanelx1xagcug esµInwgmYy cMeBaHkrNI 2  7 mansMNl; 1 Edl n  3k cMnYnEdlmanelx1 enAxagcugCanic©. naM[ 2 1  7 mansMNl; 0 Edl mann½yfa 2 1 Eckdac;nwg 7 kñúgkrNI n  3k dUcenH elxxagcugénplKuNKW 1 . dUcenH 2 1 Eckdac;nwg 7 kalNa n CaBhuKuNén 3 . 4

4

2

2

2

2013

2013

2

2

2

2

2013

2

2013

2

2

2

4

n

2

n

2

2

4

4

2

n

2

2

n

3

2

2

n

2

2

2

45031

2013

2

n

2012

2012

2010

2000

2012 2000 4012

2000

2012

2010

2002

n

2010 2002

4012

n

4012

n

4012

n

n

n

n

n



762



329 bgðajfa 12  2 Eckdac;nwg 10 ³ edIm,I[ 12  2 Eckdac;nwg 10 eyIgRKan;Etbgðaj faplkdén 12  2 manelxsUnüenAxagcug . elxcugén12  2 GaRs½yelIelxcugén 2  2 -sikSasV½yKuNén 2 KW ³ cMeBaH n  1 , 2 , 3, 4 , 5 , 6 , 7 , 8 , ... enaHelxcug én 2 KW 2 , 4 , 8, 6 , 2 , 4 , 8, 6 , ... manTRmg;TUeTA KW ³ 2 manelxxagcug 2 ebI n  4k  1 , k  2 manelxxagcug 4 ebI n  4k  2 , k  2 manelxxagcug 8 ebI n  4k  3 , k  , k  2 manelxxagcug 6 ebI n  4k eday 2  2 manTRmg; 2 naM[ 2 CacMnYnmanelx 6 enAxagcug nig 2  2 manTRmg; 2 naM[ 2 CacMnYnmanelx 6 enAxagcugEdr eyIg)anpldkén 12  2 manelx 0 enAxagcug 2012

2012

2008

2008

2012

2012

2008

2008

2012

2008

n

n

n

n

n

4503

2012

4k

ehIy

man n 1nn  1 CabIcMnYn Kt;tKñaenaH 5n 1nn  1 RtUvEtEckdac;nwg 2 , 3 nig 5 b¤cMnYnenHRtUvEtEckdac;nwg 6 nig 5 eday PGCD 6 , 5  1 enaHcMnYnEdlEckdac;nwg 6 nig 5 CaCMnYnEdlEckdac;nwg 30 dUcenH cMnYn A  n

4502

2012

dUcenH cMnYn 12

2012

2008

 2 2008

3

x 3   3  

2

  1n

2



1

  nn  1n  1n

   4   5nn  1n  1

 nn  1n  1 n 2  4  5 2

 

3 2 

 2 3  33

3 2

3  2  



naM[

3

3  2  33



3 2





3 2 x

32  2 2  x

 2 3  3x

Taj)an

x 3  3x  2 3

dUcenH KNna)an

enaH

f x   x 3  3x  2 3

f x   2 3

.

332 rkBIrcMnYnKt; a nig b ³ bRmab; a  b  92 naM[ a 1 b  93 eday a 1 CaBhuKuNén b enaH a  1  kb , k  eyIg)an kb  b  93  k  1b  93 naM[ b  k93 1 eday b CacMnYnKt;viC¢man enaH 93 RtUvEtEckdac;nwg k 1

A  n5  n

  nn



3 2 3

3

Eckdac;nwg 10 .

330 bgðajfa A Eckdac;nwg 30 ³ cMeBaH RKb;cMnYnKt;viC¢man n eyIg)an ³  n n4 1

Eckdac;nwg 30 .

n

3

4k

2008

5

331 KNna f x ³ eyIgman f x  x  3x cMeBaH x  3  2 

2012

2008

5n  1nn  1

 nn  1n  1n  2 n  2   5nn  1n  1  n  2 n  1nn  1n  2   5n  1nn  1

eday n  2n 1nn  1n  2 CaR)aMcMnYntKña enaHcMnYnenH RtUvEckdak;nwg 2 , 3 nig 5 b¤cMnYnenHRtUvEtEckdac;nwg 6 nig 5 

eday 93  1393 enaH 31 

-cMeBaH -cMeBaH 763



1 0 93 92 k 1    k  3 2   31 30

enaH b  93 minyk eRBaH a  b  92 k  92 enaH b  1 k 0

-cMeBaH -cMeBaH eyIg)an

enaH b  31 k  30 enaH b  3

335 KNnakenSam A ³ eyIgman a  a  1 nig

k 2

1  b  31 3 

naM[

2

A  a 4  2a 3  4a 2  3a  3  a 4  2a 3  a 2  3a 2  3a  3

 92  1  91  a  92  b  92  31  61  92  3  89 

  a

dUcenH cMnYnKt;viC¢manEdlrkeXIj a  91 , b  1 a  61 , b  31 nig a  89 , b  3 . 333 bgðajfa P Eckdac;nwg P ³ man P  n  1n  2n  3 ...  n  n ehIy P  1 3  5  ...  2n  1 enaHeyIg)an ³

2



2

336 KNna A [lT§plCaplKuNbIktþa ³ eyIgman A  12  2823  6 

tamlT§plbgðajfa P Eckdac;nwg P )anplEck 2

 12  8   3  6 

334 KNna a  b ³ eyIgman 2a3  326  5b9 Edl 0  a  9 ,0  b  9 bRmab;RbFan ³ 5b9 Eckdac;ngw 9 naM[ 5  b  9 Eckdac;nwg 9 enaHmanEt b  4 eRBaH 5  4  9  18 Eckdac;nwg 9 eyIg)an 2a3  326  549 2a3  223 Taj)an a  2 naM[ a  b  2  4  6 dUcenH eyIgKNna)an a  b  6 .





   

2 2





4 3 2  3 3 2



n

.



2 2



P  2 n  P

dUcenH P Eckdac;nwg )anplEck 2



 a  3 a2  a  3



n



  1  3 1  3  1 3  3 1

n

P



2

dUcenH kenSam A  1 RtUv)anKNna .

n!P  n!n  1n  2n  3  ... n  n   1  2  ... nn  1n  2n  3  ... n  n   1  2  ... nn  1n  2n  3  ... 2n   1  3  5  ... 2n  12  4  6  ... 2n   P   2  12  22  3  ... 2  n   P   1  2  ... n 2  2  2  ... 2 n!P  P   n!2

 

 a 4  2a 3  a 2  3a 2  3a  3



2 2 3 2



4 3

2 2

3 2 2 2 2 2











3 2

3 2







4 3

4 3

3 2 4 3 3  24  3



3 2

dUcenH KNna)an A  

2 2





4 3

4 3



3  2 2 3



2

2

2

2

2

2

2

2



2 2 1  2 2  32  ... 1002 32 1  2 2  32  ... 1002



22 4  32 9





 

dUcenH témøelxKNna)an E  94 . 764







337 KNnatémøelxénkenSam E ³ 200 eyIgman S  23  64  96  ......  300  



.

338 rkrgVas;RCugmMuEkgTaMgBIr ³ tag x nig y CargVas;RCugmMuEkg x Edl x  0 , y  0 KitCa cm tambRmab;eyIg)an ³

341 edaHRsaysmIkar ³ 13 cm

y

 x 2  y 2  132  x 2  y 2  169     x  y  17  x  y  17

cMeBaH

x  y  17

elIkGgÁTaMgTaMgBIrCakaer

x 2  2 xy  y 2  289



naM[ x  2012  0  x  2012 1 1 1 1 ehIy 2008    0 2009 2010 2011



2 xy  289  x 2  y 2 289  169 xy   60 2  x  y  17  5  12   xy  60  5 12

dUcenH

eday enaH x  5, y  12 b¤ x  12, y  5 dUcenH RCugmMuEkgTaMgBIr

nig 12cm .

5cm

339 RsaybBa¢ak;fa 3  2 ³ Binitü 9  8  3  2  3   2  nig 2 2  2   2  tamTMnak;TMng  nig   eyIg)an ³ 3   2  Taj)an 3  2 dUcenH 3  2 RtUv)anRsaybBa¢ak; . 2

2

9

2

2

3

3

3

2

6

3

2

2

3

3

2

2

3



2

 

3

3

3

340 bgðajfa

A6

³

A  6  6  6  ...  6  3 24  3 24  3 24  ...  3 24

eday

  6  6  6  ...  6  6  6  6  ...  9  3   3 24  3 24  ...  3 24  3 24  3 24  ...  3 27  3  6  6  6  ...  6  24  24  ...  3 24  6 3

3

A6

dUcenH

A6

x  4 x  3 x  2 x 1    0 2008 2009 2010 2011 x  2012  2008 x  2012  2009 x  2012  2010 x  2012  2011    0 2008 2009 2010 2011 x  2012 x  2012 x  2012 x  2012 1 1 1 1  0 2008 2009 2010 2011 x  2012 x  2012 x  2012 x  2012    0 2008 2009 2010 2011 x  2012 1  1  1  1   0  2008 2009 2010 2011 

RtUv)anRsaybBa¢ak;

. 

x  2012

Cab£sénsmIkar .

342 rkbIcMnYnKt;viC¢manxusKña x , y nig z ³ eyIgman  yx zy106  eyIg[témøén x edIm,IKNnatémørbs; y nig z ³ eday x  y  6 naM[ 0  x  6 enaH ³ ebI x  1 eyIg)an y  5 nig z  5 ¬minyk¦ x  2 eyIg)an y  4 nig z  6 ¬yk¦ x  3 eyIg)an y  3 nig z  7 ¬minyk¦ x  4 eyIg)an y  2 nig z  8 ¬yk¦ x  5 eyIg)an y  1 nig z  9 ¬yk¦ dUcenH bIcMnYnKt;viC¢manxusKñaEdlepÞógpÞat;KW ³  x  2 , y  4 , z  6  ,  x  4 , y  2 , z  8 .  x  5 , y  1, z  9  343 edaHRsaysmIkar ³ x  1  x  1 elIkGgÁTaMgBIrCakaer x  1  x 2  2x  1 x 2  3x  0

minyk eRBaHminepÞógpÞat; x  3 yk dUcenH smIkarman x  3 Cab£s . xx  3  0  x  0

765



344 KNnamMu x ³

347 k> KNnargVas;RCugénRtIekaN eyIgman ³ 24a  18b  12c nig b  c  10 cm tamlkçN³smamaRteyIg)an ³

d 

30 o

x

30

110

o

l 

o

b c bc 10 1     18 12 18  12 30 3 a b c 1    24 18 12 3 a 1  24  3 3a  24 a  8  b 1    3b  18  b  6   18 3 3c  12 c  4   c 1  12 3 

bnøayRCugénmMu x [kat;bnÞat; l  naM[ enaHeyIg)anRtIekaNmYy enAkñúgbnÞat;Rsb Edl;man mMu x CamMueRkAénRtIekaNenH manrgVas;esµpI lbUkmMu kñúgBIrEdlminCab;nwgva . Taj)an eyIg)an ³ x  30  180  110   100 . dUcenH mMu x  100 RtUv)anKNnabgðaj . dUcenH rgVas;RCugénRtIekaNEdlKNna)anKW ³ o

o

o

o

o

a  8 cm , b  6 cm , c  4am

345 KNnaépÞRkLaénrUb ³ rMlkw RtIekaNsm½gSEdlmanRCug a enaHkm
RkLaépÞrUbenH )anBIépÞRtIekaNFMmYynig RtIekaNtUcbI EdlsuT§EtRtIekaNsm½gS.

3 a 2 A

D

F

B

ebI S CaépÞRtIekaNFM ¬ Big =FM¦ nig S CaépÞRtIekaNtUc ¬ Small =tUc¦ naM[ S  S  3S B

C

E

 x 2  h2  42  2 2 2 8  x   h  6  x 2  h 2  16  2 2 64  16 x  x  h  36

S

B

S

1  1  3 3     3  3   3  1 1 2 2  2 2 

x

a  8cm

1 2

yk 1 CMnYskñúg 2 eyIg)an ³

9 3 3 3  4 4 2  3 3 cm 

64  16 x  16  36

dUcenH RkLaépÞénrUbKW

S  3 3 cm 2

7 5 3

6  15 1  15 8  15

15 15 15

 16 x  80  36  44 11 x  x  16 4

.

346 bMeBjelxkñúgRbGb; ³ eyIgGacbMeBj)antambRmab;RbFan dUcxageRkam ³ 15 2 9 4

x> KNnargVas;km
cMeBaH x  114 enaH naM[

h 2  16  x 2

256  121 135 3 15  11  h  16       16 4 4 4 2

dUcenH km
15



766



h

3 15 cm 4

.

abc  2012 3

348 rkcMnYnsisSenAkñúgfñak;eronenaH ehIy tag x CacMnYnsisS enAkñgú fñak;eronenaH ¬KitCa nak;¦ enaH tambRmab;RbFan eyIgsresr)ansmIkar ³ x4 x2  8 9 9 x  36  8 x  16 9 x  8 x  16  36

a  b  c  3 2012 4024  c  6036 c  6036  4024 c  2012

dUcenH cMnYnTI3 enaHKW

.

2012

x  52

dUcenH cMnYnsisSenAkñgú fñak;KW 52 nak; . 349 rkmYycMnYnenaH tag A CacMnYnenaH tambRmab;eyIg)an ³  AA  44

 A4



dUcenH cMnYnEdlRtUvrkenaHKW

352 KNnacMnYnBIrxÞg; x ³ bRmab; ³ 44 Eckdac;nwg x sl;sMNl; 10 ebI k CaplEckrvag 44 nig x Edl k  eyIg)an ³ 44  kx  10  kx  34 eday 34  2 17 enaH kx  217 Et x CaelxBIrxÞg; enaHRtUvEt x  17 , k  2

4

.

dUcenH cMnYnBIrxÞg;én x KW

350 rkmYycMnYnenaH tag x CacMnYnEdlRtUvrkenaH tambRmab;RbFan eyIg)an ³

353 edaHRsaysmIkar HE  SHE ³ BinitüsmIkar ³ HE  SHE kaerénmYycMnYnenArkSaelxxagcugenAEt E dEdl naM[ E  0 ,1, 5 , 6 -ebI E  0 enaH HE RtUvmanelxsUnüBIrenAxagcug Et HE  SHE manelxxagcugmindUcKña enaH E  0 -eyIgepÞógpÞat;cMeBaH E  1, 5, 6 tamtémø H Edl lT§plrbs; HE RtwmEtCaelxbIxÞg;b:ueNÑaH eyIg)an³ 21  441 minepÞógpÞat; / 31  961 minepÞógpÞat; 15  225 minepÞógpÞat; / 25  625 epÞógpÞat; 16  256 minepÞógpÞat; / 26  676 minepÞógpÞat; eXIjfa HE  SHE epÞógpÞat;eday 25  625 dUcenH E  5 , H  2 , S  6 . 2

x 2  2x

naM[

.

2

x x  x  x

x 2  2x  0 x x  2  0  x0  x  2  0

x  17

2

enaH

2

x  0  x  2

dUcenH cMnYnEdlRtUvrkenaHKW

x0 , x2

.

2

2

2

351 rkcMnYnTIbIenaH tag a , b , c CacMnYnTI1 / TI2 / TI3 erogKña tambRmab;RbFan ³

2

2

2

2

2

ab  2012  a  b  4024 2 

767



2

354 kMNt;témø a nig b nigkMNt;eTVFaenaH ³ eyIgman ax  bx  54x  27 CaKUbéneTVFa tag x    CaeTVFaEdlRtUvkMNt; naM[ x      x  3 x  3 x    x   pÞwmelxemKuN ³  axx  3bxx  354 x  27 3

2

3

3

3

2

3

3

2

2

2

3

eyIg)an ³

356 kMNt;témø m ³ eyIgman 23xx  57yy  20m ¬edaHRsaytamedETmINg;¦

2



D

3

2

3

2 5

Dx 

2

 3   a  3  a 8  a  2  2 36  b 3   b 3   b       2 3   54   2   2  3  27   3   3  

epÞógpÞat; cMeBaH a  8 , b  36 nigeTVFa 2x  3 eyIg)an

3 7

2 x  33  8 x 3  36 x 2  54 x  27

 15  14  1

m 7  5m  140 20 5

5m  140  5m  140 1 3 m Dy   60  2m 2 20  x

 y

60  2m  60  2m 1

edIm,I[RbB½ns§ mIkarmanKUcemøIyviC¢manluHRtaEt ³ x  0 5m  140  0 m  28    28  m  30  y  0  60  2m  0 m  30

Bit

dUcenH kMNt;)an a  8 , b  36 nigeTVFa 2x  3 . dUcenH kMNt;)anKW 28  m  30 b¤ m  28 , 30  . 355 KNnargVas;RCug AB nig AC ³ eyIgman AB  AC  23 cm ¬elIkGgÁTaMgBIrCakaer¦ C

BC  17 cm B

A

1

AB 2  AC 2  2 AB  AC  529

tamRTwsþIbTBItaK½r AB  AC  BC  17  289 naM[ 1 : 289  2AB  AC  529 naM[ AB AC  120  AC  23 eyIg)an  AB ¬tamRTwsþIbTEvüt¦ AB  AC  120 2

eday b¤

  AB  AC  8  15   AB  AC  8  15  AB  AC  15  8   AB  AC  15  8

2

2

2

enaH AB  8 , AC  15 enaH AB  15 , AC  8

2

x



1

1 1

r

1

2  2 2  1  r 2  x 2  2 xr  r 2 3  2 2  x 2  2 xr 3  2 2  x  x  2r 

, x  2r  1

x  3 2 2

cMeBaH x  3  2 2 naM[ x  2r  1 

3  2 2  2r  1

 2r  2 2  2

dUcenH kaMrgVg;énrUbKW . 

1

2

2



dUcenH rgVas;RCugénRtIekaNEdlKNna)anKW ³ AB  8cm , AC  15cm b¤ AB  15cm , AC  8cm

357 KNnakaMrgVg;énrUb ³ tamrUb eyIg)an ³ 1 x  2r  1 nig tamRTwsþIbTBItaK½r  2  1  r  x  r 

768



r  2 1 r  2 1

ÉktaRbEvg .

1

358 KNnacMnYnKt;FmµCati n ³ bRmab; n 13 nig n  76 CakaerR)akd 0 naM[ nn  13  n  76 76  0

360 edaHRsayRbB½n§smIkar ³ man 12xx  y 1 , 12yy  z 2 , 12zz eyIgdwgfa 1  x   0 enaH 1  2x  x  0 2

2

2

2

2

 x 3

2



tag n  13  a 1 nig n  76  b 2 Edl a nig b CacMnYnKt; ehIy a  b edayyk 1  2 eyIg)an ³ 2

2

2

2



1  x 2  2x



2x 1 1 x2

2x 2  x 4 1 x2



tamlMnaMdUcKñaenH eyIgk¾)an ³ 2z 2y  z 6  y 5 nig 1 z 1 y eyIgCMnYs³ 1 kñúg 4 / 2 kñúg 5 nig 3 kñúg 6

 n  13  a 2  2 n  76  b 89  a 2  b 2

2

2

2

2

Gacsresr ³ a  ba  b  89 mann½yfa 89 CaplKuNénBIrcMnYnKt; ³ edaydwgfa 1 89  89 ¬eRBaH 89 CacMnnY bzm¦ eyIgpÞwm)an aa  bb  189 ¬edaybUkGgÁnigGgÁ¦

y  x  z  y  x  y  z x  z 

eyIg)an

tam 1 ³ 12xx

2

 a  b  1  a  b  89 2a  90

2

y



2x 2 x 1 x2 2x 2  x  x 3

eyIg)an ³ x  2x  x  0  a  45 xx  2 x  1  0 naM[ n  13  45 enaH n 13  2025 b¤ n  2012 xx  1  0 ¬min)ac;sikSa b eRBaHeKalbMNgcg;rktémø n ¦ naM[ x  0 , x  1 dUcenH cMnYnKt;FmµCatiKNna)anKW n  2012 . eyIg)an ³ x  y  z  0 , x  y  z  1 dUcenH x  y  z  0 , x  y  z  1 . 359 KNnatémøénmMu x ³ 5x a b tamc,ab;plbUkmMukñúg 6x 361 RsaybBa¢ak;plbUkmMukñúgénRtIekaNesµI 180 énRtIekaN eyIg)an ³  3 x  4 x  a  180 KUsbnÞat;kat;kMBUl A ehIyRsbnwgRCug BC   6 x  7 x  b  180  naM[ B  A ¬mMuqøas;kñúg¦ 1 20 x  a  b  180 C  A ¬mMuqøas;kñúg¦ ehIy 5x  a  b  180  a  b  180  5x 2 Et A  A  A  180 ¬mMurab¦ eyIgyk 2 CMnYskñúg 1 enaHeyIgnwg)an ³ enaHeyIg)an A  B  C  180 ¬CaplbUkmMukñúg  ¦ 20x  180  5x  360 b¤ 15x  180  x  12 dUcenH témømMuKNna)anKW x  12 . dUcenH plbUkmMukñúgRtIekaNTaMgGs;esµI 180 . 3

2

2

2

2

3x

7x

4x

o

o o

A

o

1

1

o

2

o

3

C

B

o

1

o

o

o

3

o

o

o

o



769



362 RsaybBa¢ak;BIRTwsþIbTBItaK½r a  b  c ³ -eyIgmanRtIekaNEkgEdlmanrgVas; a c RCug a , b , c ehIy c CaGIub:Uetnus b -eyIgpÁúMRtIekaNenH)andUcrUbxageRkam ³ -ctuekaNxageRkA Cakaerman a A b a c b c D rgVas;RCug a  b naM[ ³ c B épÞkaerFM  a  b b c a  a  2ab  b . C a b - ABCD Cakaer eRBaH plbUkmMuRsYcBIrEdlenACab;mMu énctuekaNenH CamMubMeBjKñanaM[ ³ épÞkaertUc  c -RtIekaNEkgnImYy²man RkLaépÞ  12 ab -tamrUbEdlpÁúM eyIg)anTMnak;TMngrvagRkLaépÞ ³ épÞkaerFM  épÞkaertUc  épÞRtIekaNtUcTaMgbYn 2

2

2

2

2

2

2

1  a 2  2ab  b 2  c 2  4 ab  2  a 2  2ab  b 2  c 2  2ab

cMeBaH c  9 naM[ 5c  1  2116 minyk ¬)anCayk 5c  1  1681 eRBaHelx abca manTRmg;dUcelx 1681 Edl a  1 , b  6 , c  8 dUcenH cMnYnmanelxbYnxÞg;enaHKW 1681 . 2

2

364 bgðajfa n  IN enaHeK)an a  b ³ Binitü ³ a  b  a  ba  a b  ...  b  smµtikmµ ³ a  b  0 naM[ a  b  0 nig n

n

n 1

n

n

n2

n

a n1  a n2b  ... b n  0

naM[plKuN a  ba  a b  ...  b   0 eyIg)an a  b  0 Taj)an a  b dUcenH bgðaj)anfa a  b . n 1

n

n2

n

n

n

n

n

n

365 KNnaplKuN P  22  36  124  ...  eyIgKNnaplKuN P )andUcxageRkam ³

2 6 12 9900    ... 2 3 4 100 1 2 23 3 4 99  100     ... 2 3 4 100 1 2 2 3 3 4 99  100     ... 2 3 4 100

P

a 2  b 2  c 2  2ab  2ab a2  b2  c2

dUcenH RTwsþIbTBItaK½rRtUv)anRsaybBa¢ak; .

1  2 2  3 2  4 2  ... 99 2  100 2  3  4  ... 100 1  2  3  4  ... 99  10  2  3  4  ... 100 10 1   100 10

363 rkmYycMnYnEdlmanelxbYnxÞg; abca ³ eyIgman abca  5c  1 enaH a , b , c CacMnYnKt; naM[ 0  a  9 , 0  b  9 , 0  c  9 1 ehIy 10000  abca  961



2

1002  5c  1  312 2

dUcenH KNna)anplKuN P  101 .

100  5c  1  31

cMeBaH 5c  1  31  5c  30  c  6 2 tam 1 nig 2 eyIg)an 6  c  9  c  7 , 8 , 9 kargarlM)ak KWCasRtUvénkarBüayam >>> cMeBaH c  7 naM[ 5c  1  1296 minyk cMeBaH c  8 naM[ 5c  1  1681 yk 2

2



9900 100

770



366 dak;kenSam P CaplKuNktþa ³ eyIgman P  x  y    y  z   z  x  tag a  x  y , b  y  z , c  z  x eyIg)an P  a  b  c a bc  x  y y  z z  x eday 3

3

3

3

368 kMNt; x viC¢man edIm,I[ A CacMnYnKt;viC¢man ³ eyIgman A  xx 13

3

A

3

a  b 3  c 3

x  3  1 x  1  3     x  3  2 x  2  3

a 2  3a 2 b  3ab 2  b 3  c 3 a 2  b 3  c 3  3a 2 b  3ab 2

eyIg)an ³

369 bgðajfaeK)an a  b  c  3abc ³ smµtikmµ ³ a  b  c  0 enaH a  b  c eyIg)an ³ 3

P  3x  y  y  z x  y  y  z  P  3x  y  y  z x  z  P  3x  y  y  z z  x 

2  a  b  a  b2

a 2  b 2  2ab  2 a  b 2  2ab

P

eyIg)an

3a 2  3b 2  6ab P  2 3a  3b 2  6ab 10ab  6ab 4ab 1 P2    10ab  6ab 16ab 4 1 1 P  ¬ P  0¦ 4 2

a 2  b 3  c 3  3a 2 b  3ab 2 a 2  b 3  c 3  3aba  b  a 2  b 3  c 3  3ab c 

dUcenH KNna)an

a 2  b 3  c 3  3abc

dUcenH bgðaj)anfa

2012

1 2

x  2012   x

-cMeBaH -cMeBaH

.

smIkarKµanb£s x  2012   x naM[ x  1006 x  2012  x

dUcenH smIkarmanb£s 

771



x  1006

.

 x 2012  0

x  2012 2012  x 2012  0 x  2012 2012  x 2012

eRBaH

P

a 2  b 3  c 3  3abc

370 edaHRsaysmIkar x  2012  eyIg)an ³

2

Taj)an

3

a 2  3a 2 b  3ab 2  b 3  c 3

2

naM[

2

3

a  b 3  c 3

.

367 KNnatémøénkenSam P  aa  bb ³ smµtikmµ 3a  3b  10ab eyIgman P  aa  bb Edl a b  0 enaH P  0 2

x  4  x  5

dUcenH kMNt;)antémø x  4 , x  5 .

a 2  b 3  c 3  3aba  b 

dUcenH dak;)an

x 3

2 x 3

-edIm,I[ A CacMnYnKt;viCm¢ an luHRtaEt x 2 3 CacMnYn Kt;viC¢manEdr naM[ 2 RtUvEckdac;nwg x  3 -edaytYEckviC¢manén 2 KW 1 b¤ 2 enaHeyIg)an ³

abc  0 a  b  c

P  3x  y  y  z z  x 

x  3  2  1 

.

371 KNnatémø eyIgman ³ x 





A  x 4  x 3  x 2  2 x 1 2 1 2 1 1

tag

1

X

2012

2  1 1





naM[ eyIg)an

2 1 1

2 1 1

x 2  x 2  6 x  9  89 2 x 2  6 x  80  0

2012

 12012  1

.

374 KNnatémø eyIgmansmIkar x

2

x, y

2

8 , 5



5,8

.

BIsmIkar ³

 4x  y  6 y  13  0

 x  2   y  3  0 plbUkénBIrkaeresµI 0 luHRtakaerTaMgBIresµI 0 ³ x

2

 

 4x  4  y  6 y  9  0 2

ab  4a  6b  24  ab  4a  6b  24

eyIg)an

2a  3b  12

eyIg)an 2  720  3b  12 b

2

x  22  0  x  2  0 x  2      2  y  3  0 y  9  y  3  0





dUcenH témøKNna)anKW

240  b  4 b 480  b 2  4b

2

x2, y 9

.

cMNaM ³ ebIman A  B  0 enaHeyIg)an ³ A  0 nig B  0 eRBaHfa A  0 , B  0 .

b 2  4b  480  0

2

    2   480   484  22 2 2

  2  22  20  0 1   2  22 b  24 1

naM[ xx  85  00  xx  58   -cMeBaH x  8 naM[ x  3  8  3  5 -cMeBaH x  5 naM[ x  3  5  3  8 dUcenH cMnYnTaMgBIrenaHKW

372 KNnavimaRténsYnc,arenaH ³ tag a CabeNþay nig b CaTTwg énsYn tamsmµtikmµ ³ sYnmanépÞRkLa 720 m eyIg)an ab  720 naM[ a  720 b müa:geTot a  6b  4  ab

b

x 2  3 x  40  0 x  8x  5  0

2012



A 1

720 720   30 b 24

2

4 3 2 A   2  2  2  2 2  1  

dUcenH KNna)an

a

x 2  x  3  89





enaH

373 rkcMnYnTaMgBIr ³ tag x nig x  3 CacMnYnTaMgBIrenaH tambRmab;RbFan eyIg)an ³

1

 4  2 2  2  2 2 1

man enaH

b  24

dUcenH KNna)anvimaRtrbs;sYnKW 30m nig 24m .

1

2  1  1   2  1  1     2  1  1 2  1  1    2 2    2 2 11 2 2 2 x   2 X 2



cMeBaH

minyk

2

2



772



2

375 k> eRbóbeFob 3  3 nig 62  3  ³ Binitü 62  3   12  6 3

-cMeBaH

dUcenH smIkarmanb£sBIrKW

 96 33  32  6 3  3

3  3 

2



3 3  6 2 3 4

4

2

 3 3

x> eRbóbeFob 14 48 nig 7  4 Binitü 14 48  14 16  3  3 ehIy 7  4 3  7  4 3  7  4 3 7  4 3 

3 4 74 3

 4 49  48  4 1  1 3 1

48  4 7  4 3  4 7  4 3

.

1 48  4 7  4 3  4 7  4 3 4

376 edaHRsaysmIkar x  2  x  3 eyIgmansmIkar x  2  x  3  1 tag t  x  2 naM[ x  3  t 1 eyIg)ansmIkareTACa t  t  1  1 4

4

4

1

³



2

2

2

2

2

2

2

2

378 KNna eyIgman

4

t 4  t  1 t  1  1



eXIjfa kaerén A nigkaerén B manelxcugdUcKña eday 0  A  9 , 0  B  9 eyIg)an ³ -ebI A  81  B  61 minyk 61 minCakaerR)akd -ebI A  64  B  44 minyk 44 minCakaerR)akd -ebI A  49  B  29 minyk 29 minCakaerR)akd -ebI A  36  B  16 yk ¬CakaerR)akddUcKña¦ eyIg)an A  6 , B  4 dUcenH cMnYnmanelxBIrxÞg;enaHKW AB  64 .

4

4

2

2

A 2  B 2  20

4

dUcenH

.

10 A  B 2  10B  A2  1980 10 A  B  10B  A10 A  B  10B  A  1980 9 A  9 B 11A  11B   1980 99 A  B  A  B   99  20  A  B  A  B   20

.

4

edaysar naM[ 14

x2, x3

377 rkcMnYnEdlmanelxBIrxÞg; AB ³ AB  BA  1980 eyIgman

2



dUcenH eRbóbeFob)an

t 1 : 1 x  2  x  3

2



t 4  t 2  2t  1 t 2  2t  1  1

a,b,c

ab  4 i   ac  5 ii  bc  20 iii  

³ naM[

abc2  400

cMeBaH abc  400 Taj)an abc  20   20   c  5 -yk i  : abc ab 4  20   b  4 -yk ii : abc ac 5  20   a  1 -yk iii : abc bc 20 2

t 4  t 4  2t 3  t 2  2t 3  4t 2  2t  t 2  2t  1  1 2t 4  4t 3  6t 2  4t  0



 2t t  1t  t  2  0

2t t 3  2t 2  3t  2  0 2

naM[ tt10 0  tt 10   ehIy t  t  2 man   1 8  7  0 Kµanb£s -cMeBaH t  0 : 0  x  2  x  2 2



dUcenH KNna)an 773



a   1 , b   4 , c  5 a 1 , b  4 , c  5

.

379 KNna

³ eyIgman

381 rkcMnYnelxsUnüenAxagcugén 2012! A  2025  1 2025  2 2025  3  ...  2025  50  eday 2012! 1 2  3  ... 2012 eday 2025  45 enaHeyIgsresr)an ³ cMnYnelxsUnüenAxagcugéncMnYn 2012! bgáBIelxEdl A  45  1 45  2 45  3  ...  45  50  CaBhuKuNén 5 , 5 , 5 , 5 kñúgcMeNam ktþaBI 45  1  rhUtdl; 45  50  ¬minyk 5 eRBaH 5  3125  2012 ¦ R)akdCamanktþamYyKW 45  45   0 -tag n CacMnYnBhuKuNén 5 naM[ A CaplKuN Edlman 0 Caktþa enaH A  0 enaH 5n  2012 KNna)an n  402 -tag n CacMnYnBhuKuNén 5 = 25 dUcenH KNna)an A  0 . enaH 25n  2012 KNna)an n  80 380 rkcMnYnelxsUnüenAxagcugrbs; P : -tag n CacMnYnBhuKuNén 5 = 125 eyIgman P  1 2  3...100 enaH 125 n  2012 KNna)an n  16 cMnYnelxsUnüxagcugrbs; P ekItBIcMnYnCaBhuKuNén 5 -tag n CacMnYnBhuKuNén 5 = 625 enaHeyIgRKan;EtrkcMnYnEdlCaBhuKuNén5 kñúgcMeNam enaH 625 n  2012 KNna)an n  3 elxBI 1 rhUtdl; 100 mann½yfaeyIgkMBugrkcMnYn eyIg)an cMnYnelxsUnüTaMgGs;éncMnYn 2012! KW n  n  n  n  402  80  16  3  501 elxenAxagcugTaMgGs;rbs; P elxEdlCaBhuKuN 5 man ³ dUcenH cMnUn 2012! bBa©b;edayelxsUnücMnYn 501 . 5 , 10 ,15 , … , 100 man 20 elx EtcMeBaHelx 25 , 50 , 75 , 100 ekItBIBhuKuNén 5 382 KNna N : eyIgman N  4  15  4  15  2 3  5 dl;eTA 2 dg xusBIcMnYnepSgeTot enaHmanelx 5 8  2 15 8  2 15 62 5   2 cMnYn 4 eTot 2 2 2 srubBhuKuNén 5 KW 20 + 4 = 24 énelx 5  5  3    5  3   2  5  1  2 2 2 dUcenH P manelxsUnüenAxagcMnYn 24 .  5  3    5  3   2 5  1  2 2 2 ***smÁal; ³ GñkGaceFVItamrebobdUcxageRkam ³ 5 3 5  32 5 2  -ebI n CacMnYnBhuKuNén 5 2 2 enaH 5n  100 KNna)an n  20   2 2 -ebI n CacMnYnBhuKuNén 5 = 25 dUcenH KNna)an N  2 . enaH 25n  100 KNna)an n  4 eyIg)an cMnYnelxsUnüTaMgGs; n  n  20  4  24 A

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

3

4

5

2

2

1

1

1

2

2

2

2

3

3

3

3

4

4

4

1

4

2

3

2

1

1

1

2

2

2

2

1

2



774



4

2

2

383 rkcMnYnXøIBN’ s ³ tag x CacMnYnXøIBN’ s enaHcMnYnXøIBN’exµAKW 12  x RbU)abcab;)anXøIBN’exµAKW P(x)  1212 x (1) Etsmµtikmµ RbU)abXøIBN’exµAKW P(x)  13 (2) tam (1) nig (2) eyIg)an ³ 12  x 1  12 3

12 3 x  12  4 x 8

 12  x  

eyIgbUkGgÁ nigGgÁénvismIkar

1 , 2 nig 3 ³

AB AC   AM  2  2  BC AB    BN   2 2  BC AC  CP  2  2  AM  BN  CP  AB  BC  AC

dUcenH

AM  BN  CP  AB  BC  AC

.

x> Rsayfa AM  BN  CP  AB  BC2  AC dUcenH XøIBN’ s mancMnYn 8 RKab; . -tamc,ab;vismPaBkñúg ABM ³ AM  AB  MB BC 384 k> Rsayfa AM  BN  CP  AB  BC  AC tam  Gacsresr AM  AB  2 i  -tamc,ab;vismPaBkñúg BNC ³ BN  BC  NC tambRmab;RbFaneyIgKUsrUb)an ³ A ii tam  Gacsresr BN  BC  AC 2 o N -tamc,ab;vismPaBkñúg ACP ³ CP  AC  PA P o iii tam  Gacsresr CP  AC  AB // // 2 C B M i  , ii    eday AM , BN nig CP Caemdüanén ABC enaH eyIgbUkGgÁ nigGgÁ énvismIkar BC nig iii ³  AM  AB  2 M , N , P CacMNuckNþalerogKñaén BC , AC , AB  PA 

AB BC AC , MB  , NC  2 2 2

AC    BN  BC  2  AB  CP  AC  2  AB BC AC AM  BN  CP    2 2 2



mü:ageTot eyIg)an )atmFüm cMnYnbIKW ³ PM 

AC AB BC , MN  , NP  2 2 2

 

Gacsresr AM  BN  CP  AB  BC2  AC

-tamc,ab;vismPaBkñúg AMP ³ AM  PA PM AC 1 tam  nig   eyIg)an AM  AB  2 2 dUcenH AM  BN  CP  AB  BC2  AC . -tamc,ab;vismPaBkñúg BMN ³ BN  MB  MN AB 2 ***smÁal; ³ vismPaBkñúgRtIekaNmYyKW ³  tam  nig   eyIg)an BN  BC 2 2 -tamc,ab;vismPaBkñúg CPN ³ CP  NP  NC -plbUkRCugBIrRtUv > RCugmYyeTot AC 3 - pldkRCugBIrRtUv < RCugmYyeTot .  tam  nig   eyIg)an CP  BC 2 2 

775



385 k> KNna S  a  b  c CaGnuKmn_én b ³ eyIgman a , b , c CabIcMnYnKt;ruWLaTIbtKña naM[ eyIg)an a  b 1 nig c  b 1 eyIg)an S  a  b  c

387 edaHRsayRbB½n§smIkar eyIgman xx  y y z zxy yz3 xz 2



tam 1 :

2011

2011

2012

1 2

x 2  y 2  z 2  xy  yz  xz

x 2  2 xy  y 2  y 2  2 yz  z 2  z 2  2 zx  x 2  0

 3b

S  3b

2011

2

2 x 2  2 y 2  2 z 2  2 xy  2 yz  2 xz

 b  1  b  b  1

dUcenH KNna)an

2

vaCaGnuKmn_én b .

x  y 2   y  z 2  z  x 2  0

plbUkéneRcInkaeresµIsUnü luHRta kaernImYy²esµIsnU ü x  y 2  0 x  y  0   2  y  z   0   y  z  0  x  y  z  z  x  0 2  z  x   0

x> Tajrktémøén a , b , c edaydwgfa S  333 eyIg)an eyIgman S  3b EteyIgdwgfa S  333 naM[ 3b  333 Taj)an b  111 tam 2 : x enaHeyIg)an a  b 1 b¤ a  1111  112 eyIg)an x nig c  b  1 b¤ c  111 1  110 dUcenH KNna)an a  112 , b  111 , c  110

2011

386 rkcMnYnRksakñúghVÚgTaMgGs; ³ tag x CacMnYnRksaTaMgGs;enAkñúghVÚg tambRmab; EdlCaBaküsmþIrbs;emxül;énhVÚgRksa eyIgsresr)ansmIkardUcxageRkam ³ 1 1 x  x  x  x  1  100 2 4 4 x  4 x  2 x  x  4  400 11x  396 x  36

 x 2011  x 2011  32012 3x 2011  32012 x 2011  32011 x3

dUcenH RbB½n§smIkarmanb£s x  y  z  3 . 388 KNnargVas;RCugnImYy² ³ smµtikmµ ³ RtIekaN ABC manbrimaRt 80 cm tag a , b , c CargVas;RCugTaMgbIénRtIekaN ABC eyIg)an a  b  c  80 edayRCugTaMgbImansmamaRterogKña 5 , 7 , 4 tamlkçN³smamaRt eyIgsresr)an ³

epÞógpÞat; ³ 36  36 18  9 1  100 100  100

2011

 y 2011  z 2011  32012

Bit

dUcenH cMnYnRksaenAkñgú hVÚgTaMgGs;mancMnnY 36 . eyIg)an

a b c a  b  c 80     5 5 7 4 5  7  4 16 a 5  5 a  25  b    5  b  35 7 c  20  c 4  5 

dUcenH RCugTaMgbImanrgVas; 25cm , 35cm , 20cm . 

776



bc ac 389 KNnatémøénkenSam P  ab :   c a b eyIgman 1a  b1  1c  0 2

2

2

1 1 1   a b c 3

1 1  1       a b  c 1 1 3 1 1 1  3     3 3 ab  a b  a b c

391 eRbóbeFob ba  11 , ba nig ba 11 eyIgman a  1 , b  1 nig a  b eyIg)an ab  a  ab  b a b  1  ba  1

3

a a 1  b b 1

ehIy a  b enaH

1 1 1 3 1 1  3  3     3 ab  a b  a b c 1 1 1 3  1  3  3     3 ab  c  a b c 1 1 1 3  3 3  3 abc a b c 1 1  1 abc 3  3  3   3 b c  a bc ac ab   3 a2 b2 c2 P3

dUcenH KNna)antémøénkenSam

P3

tam 1 nig

.

 3 2 2  6  3 2 1  3 2 2  6  3 2 1

.

3

2 3  3 2 2  3 2  13  2 3  3 2 2  3 2  13

3

3 



  2  1 2  1   2  1  2 3

2 1  3

3

B  51  10 2  51  10 2

 x  3  2 y  1  2  4 x  3  2 y  1  8  3 x  3  6

 50  10 2  1  50  10 2  1

5 2   2  5 2  1  5 2   2  5 2  1  5 2  1  5 2  1  5 2  1  5 2  1  2 eRkayBIKNna eXIjfa A  2 nig B  2 Edr naM[ eyIg)an A  B  2 

 x 3  4  x 1

yktémø x  1 CMnYskñúgsmIkar 1 eyIg)an 1 3  2 y 1  2  2  2 y 1  2

 y 1  0

a 1 a a 1   b 1 b b 1

A 3 5 2 7 3 5 2 7

eyIgyk 1  2  2 enaHeyIg)an ³

  2 y 1  0

eyIg)an

392 eRbóbeFob A nig B :

y  1  2 1 2 x  3  y  1  4 2

1 :

 a  b ab  a  ab  b ab  1  ba  1 a a 1 2  b b 1 a 1 a a 1 2   b 1 b b 1

dUcenH eyIgeRbóbeFob)an

390 edaHRsayRbB½n§smIkar ³  eyIgmanRbB½n§smIkar  x  3  2

x3  2

1



y 1  0

 y  1

2

2

2

dUcenH RbB½n§smIkarmanKUcemøIy x  1 , y  1 . dUcenH eRbóbeFob)an 

777



2

A B

.

393 edaHRsaysmIkar ³ eyIgman 1 x x  2 x x  3 x x  ... 2013x  x  0 1  2  3   2013   1  0   1    1    1  ...   x  x  x   x  1 2 3 2013    ...   2013  0 x x x x 1  2  3  ...  2013 1  2013 x 1  2  3  ...  2013 x  2013 2013 1  2013 1  2  3  ...  2013  2

1  1 1 1         a  b b  c a  c  a b c abc

ebI a , b , c mancMnYnpÞúyKñamYyy:agticKW ³  a  b  a  b   0  b  c  b  c   0  c  a  a  c   0

ebImankrNImYyy:agtic kñúgcMeNamkrNIxagelIenaH 1 1 1 1       0 a b c abc 1 1 1 1    a b c abc

Et

 20131007

eyIg)an

x

>

2013  1007  1007  2013

dUcenH smIkarmanb£s

x  1007

dUcenH ebImanBIrcMnYnpÞúyKñamYyy:agtickñúgcMeNam a , b , c enaHeyIg)anTMnak;TMng ³

.

395 edaHRsaysmIkar ³ eyIgmansmIkar 3  3

394 k> dak;CaplKuNktþa ³ eyIgman 1a  b1  1c  a  1b  c eyIg)an

2 x

2 x

 30

32  3 x  32  3 x  30



bc  ac  ab 1  abc abc bc  ac  aba  b  c   abc



9 3 x  3 x  30 10 3 1 10 3x  x  3 3

3 x  3 x 

a  b bc  ac  ab  cbc  ac  ab  abc  0 a  b bc  ac  ab  bc 2  ac 2  abc  abc  0 a  b bc  ac  ab  bc 2  ac 2   0 a  b bc  ac  ab  a  b c 2  0 a  b bc  ac  ab  c 2   0 a  b bc  ab  ac  c 2   0 a  b bc  a   a  c c  0 a  b a  c b  c   0

tag t  3 Edl t  0 ¬eRBaH 3  0 ¦ eyIg)an t  1t  103  3t  10t  3  0 x

x

2

man   25  9  16 enaH -cMeBaH t  3 -cMeBaH t  3

dUcenH eyIgdak;CaplKuNktþa)an a  ba  c b  c   0

.

1 1 1 1    a b c abc

1

1

.

2

x> mancMnYnpÞúyKñamYyy:agtickñúgcMeNam a , b , c ³ tamsRmayenAkñúgsMNYr k> eyIg)an ³ 

  5  4 1 1   3 t1  3 3  t    5  4  3  2 3

 3 x  31  x  1  3x  3

 x 1

dUcenH smIkarmanb£sBIrKW x  1 b¤ x  1 .

778



396 sRmÜlRbPaK ³ eyIgman A  x3x 14xx 1x eday x  0 naM[ x 1  x 1 ehIy x  x eyIg)an A  3xx 14xx1 x  3x 3xx1x  1

398 KNnabrimaRt nigRkLaépÞénRtIekaNenH ³

2

2

2

  x  1   x  1   3 x x  1   x  1  x  13 x  1 1 1   3x  1 1  3x

dUcenH sRmÜlRbPaK)an

A

1 1  3x

x2

tag x , x  2 , x  4 CaRCugénRtIekaNEkgenH tamRTwsþIbTBItaK½r eyIg)an ³ x 2  x  2  x  4 2

x 2  4 x  12  0

.

x  y 1  xyz  2 1  y z 5 2   6  xyz x  z 2 3   3  xyz 2 x  y  z  1 5 2    xyz 2 6 3

naM[

x 2  6 x  2 x  12  0 x  6x  2x  6  0 x  6x  2  0 x  6  0 x  6    x  2  0  x  2 x  2  6  2  8 x6   x  4  6  4  10

minyk

cMeBaH enaH eXIjfa RtIekaNenHmanRbEvgRCug 6 , 8 , 10 naM[ brimaRt P = 6 + 8 + 10 = 24 ÉktþaRbEvg RkLaépÞ S  12  6  8  24 ÉktþaépÞRkLa

2x  y  z  3  5  4  xyz 6 x yz 4 1 xyz     2   xyz   36     xyz  6 xyz  6 ,   z  3 xy 2 xyz  6 xyz  6   x  1 ,   y  2 yz 6 xz 3

4  1 :

z 1   xy  2 xyz 2 4  2 : x  1  yz  6 xyz 6 4  3 : y  1  xz  3 xyz 3

dUcenH KNna)an brimaRtesµI 24 ÉktþaRbEvg RkLaépÞesµI 24 ÉktþaépÞRkLa . 399 sRmYlkenSam F  xx 11 2

-krNI x  1 naM[ x 1  x 1 eyIg)an F  xx 11  x x1x1 1  x  1 2

-krNI x  1 naM[

F

Kµann½y .

-krNI x  1 naM[ x 1  x 1 eyIg)an F  xx 11  x1xx11 

dUcenH RbB½n§smIkarmanKUcemøIy ³ x  1 , y  2 , z  3

2

x 2  x 2  4 x  4  x 2  8 x  16

397 edaHRsaysmIkar ³ eyIgman

x 1 , y  2 , z  3

x4

x

2

b¤ . 

779



  x  1

.

400 KNnacm¶ayBIcMNuc A eTAbnÞat; (D) ³ eyIgmancMNuc A6 , 6 nigbnÞat; D: y   x  4

401 >>>>>>>>>>>>>>>¬enAmanbnþ¦

A6 , 6 

D : y  x  B2 , 2

D : y   x  4

-rkbnÞat;Edlkat;tam A6 , 6 nigEkgnwg D  bnÞat;RtUvrkmanrag D : y  ax  b eday D  D  a  a1   11  1 ehIy D kat;tam A6 , 6 enaH x  6 , y  6 eyIg)an D : 6  1 6  b  b  0 dUcenH bnÞat; D : y  x -rkcMNucEdl D  RbsBVnwg D tageday B ³ pÞwmsmIkarGab;sIus eyIg)an ³  x  4  x  2x  4  x  2 > cMeBaH x  2  y  2 naM[cMNuc B2 , 2 -rkcm¶atBIcMNuc A6 , 6 eTAbnÞat; D: y   x  4 mann½yfa rkcm¶ayBI A6 , 6 eTAcMNuc B2 , 2 d  AB  

xB  x A 2   y B  y A 2 2  62  2  62

 16  16  32  4 2

dUcenH cm¶ayrk)anKW

d 4 2

ÉktþaRbEvg . 

780



sYsþI¡ elakGñkmitþGñkGanCaTIRsLaj;rab;Gan enAkñúgEpñkenHelakGñknwg)aneXIj BIkarbEnßmCUn Biess² nigl¥² dUcCakarkmSanþKNitviTüa taragsV½yKuN >>>. ral;GVI² EdlsMxan; ehIy Tak;TgnwgcMeNHdwgKNitviTüafñak;TI 9 RtUv)an´erobcMCUnmitþGñkGanenAkñúgEpñkenH (...) . critlkçN³sMxan;enARtg;EpñkenH KWkarKNnaelx[)anrh½s dwgBIcMNucl¥² EdlmanTMnak;TMng CamYyemeronKNitviTüafñak;TI 9 . karkmSanþsb,ayCamYyKNitviTüa eFVI[eyIgmancMNg;cMNUlcitþ edIm,I sikSaemeronKNitviTüa . elIsBIenHeTAeTot EpñkenHk¾manbgðajGMBIkarrIkceRmInrbs;KNitviTüapgEdr. RbsinebIelakGñkmanbBaða b¤cm¶l;Rtg;cMNucNa EdlmanenAkñúgEpñkenH elakGñkGacTak;Tg;eTAkan; RKU b¤mitþPkþirbs;GñkEdlmansmtßPaB b¤GñkeroberogesovePAenHkñúgeBlevlasmRsb . …

viii



:

001

kñúgcMeNamrUbTaMgbYnxageRkam etIrUbNamYyCarUbEdlmanlkçN³xuseK ??? k> kaer



:

002



:

003



:

004



:

005



:

006



:

007

x> RtIekaNsm½gS

K> RtIekaNEkg

X> ctuekaNesµI

GñksYrnrNamñak;nUvsMNYrxageRkam ehIy[eKeqøIyy:agrh½sbMput ³ etI«Bukekµkbgéfø´ RtUvCaGVInwg´ ??? GñksYrnrNamñak;nUvsMNYrxageRkam ehIy[eKeqøIyy:agrh½sbMput ³ etI 2  2 2  b:unµan ??? GñksYrnrNamñak;nUvsMNYrxageRkam ehIy[eKeqøIyy:agrh½sbMput ³ elxenaHminFMCag 2 ehIymintUcCag 2 etIelxenaHb:unµan ??? bursmñak;mankUneQIEt 6 edIm b:uEnþKat;GacdaM)an 4 CYr EdlkñúgmYyCYr²mankUneQI cMnYn 3 edImCanic©. etIKat;daMtamreboby:agNa cUrKUsrUbbBa¢ak;kardaM ??? bursmñak;mankUneQIEt 10 edIm b:uEnþKat;GacdaM)an 5 CYr EdlkñúgmYyCYr²mankUneQI cMnYn 4 edImCanic©. etIKat;daMtamreboby:agNa cUrKUsrUbbBa¢ak;kardaM ??? bursmñak;mankUneQIEt 12 edIm b:uEnþKat;GacdaM)an 6 CYr EdlkñúgmYyCYr²mankUneQI cMnYn 4 edImCanic©. etIKat;daMtamreboby:agNa cUrKUsrUbbBa¢ak;kardaM ??? 

781



eKmanelx 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 . cUrykelxTaMgenH eTAbMeBjkñúgRbGb;kaerxagsþaM edIm,I[plbUkCYredk esµIplbUk CYrQr esµIplbUkGgÁt;RTUg esµInwg 15 .



:

008



:

009

etIelxb:unµan EdlmanplbUkesµIplKuNénxøÜnÉg ???



:

010

cUrKUsbnÞat; 6 edIm,I[)anRtIekaNcMnYn 8 .



:

011

stVExVkTMelIEmkxVav )ak;EmkR)av gab; 3 rs; 2 cuHebIstV 120 gab;b:unµanrs;b:unµan ???



:

012

etImanviFIsaRsþGVI EdleFVI[eKeCOeyIgfa 11 bUkEfm 2 eTotesµInwg 1 ???



:

013



:

014



:

015



:

016

edayeRbIelx 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 cUrykelxTaMgenHdak; kñúgRbGb;TaMg 8 xagsþaM ély:agNa kM[u elxEdlenAbnÞab;Kña sßitenAkñúgRbGb;Cab;Kña b¤enAExVgKñak¾eday . etIeKemIly:agdUcemþcdwgfaqñaMNacUlqñaeM nAéf¶TI 13 ehIyqñaMNacUlqñaMéf¶TI 14 ??? enAelIpøÚvRtg;mYymanLanebIkCaCYr ebIdwgfa LanmuxebIkmuxLanBIr LankNþal ebIkkNþalLanBIr LaneRkayebIkeRkayLanBIr etILanTaMgGs;manb:unµan ??? davImanGayudUc x ebIKit[xÞic x CaBhuKuNén 8 edaydwgfa x FMCag 10 nigtUcCag 20 etIsBVéf¶davIRsImanGayub:unµan ???



782







:

:

017

018

enACMuvijRtIekaNxagsþaMeKeRbIcMnYnBI 2 dl; 10 edIm,IteRmób [cMnYnEdlenAelIRCugnImYy²énRtIekaNmanplbUkesµI 21. etIeKRtUvteRmóbcMnYnenHya:gNa edIm,I[cMnYnelIRCugnImYy² manplbUkesµInwg 24 vijmþg ???

2

:

019



:

020



:

021

6

5 9

10

2

 7

 8

4

tamry³lMnaMrUbxageRkam etIRtUvykelxb:unµanmkbMeBjenAkñúgRbGb;sBaØa {?} ??? 6

7

8



3 

3

4

20

30

9

4

?

8

rkbIelxEdldUcKña éllkeFVIplbUkedIm,I[esµI 24 . bUkya:gNaeRsccitþ [EtesµI 24 ehIybIelxenaHKWCaelxdUcKña ]TahrN_ 8  8  8  24 . eKmanb‘íccMnYn 10 edImerobmYy²enAdac;edayELkBIKña)anmYyCYrdUcrUbxageRkam. cUrelIkb‘ícmþgmYy²eTAcab;KUKña edaykñúgkarelIkRtUvrMlgb‘íccMnYnBIKt; eTaHbICa sßitenAkñúgsßanPaBEbbNak¾edayKWrMlgb‘ícBIrCanic© edIm,I[bí‘cTaMgGs;enACaKU².

enAkñúgrUbctuekaNEkgxageRkammanGkSr A , B , C CaKU². cUrGñkKUsExSP¢ab;KUGkSr EdldUcKña KWBI A eTA A / BI B eTA B nigBI C eTA C edaymin[ExSenaHkat;KñaeLIy ehIyExSEdlKUsP¢ab;minGacenAeRkActuekaNEkg)aneLIy. B A

A

C

C

B 

smÁal; ³ GñkRtUvcmøgrUbdak;RkdasepSgeTot minRtUvKUsP¢ab;elIrUbxageqVgenHeLIg edIm,ITuk[GñkeRkaykmSanþbnþeTot .

783





:

022



:

023



:

024



:

025



:

026

bursmñak;cg;cmøg xøa / eKa nig esµA eTAeRtIymçageToténTenømYy. TUkrbs;Kat;tUc EdleFVI[Kat;Gaccmøg)anmþgmYyb:ueNÑaHkñúgcMeNam xøa / eKa nigesµA . eKdwgfaebI bursenaHminenAKW xøasIueKa b¤ eKasIuesµA EtebIbursenaHenAKWKµankarsIuKñaekIteLIgeT. etIKat;KYcmøg xøa / eKa nigesµA eTAeRtIymçageTotedayviFINaeTIbKµankar)at;bg; . GñksYrnrNamñak;nUvsMNYrxageRkam ehIy[eKeqøIyy:agrh½sbMput ³ mþayBUsn mankUnRbusbInak;KW kUnRbusb¥ÚneKmaneQµaHfa sux kUnRbusTI2maneQµaH fa esA etIkUnRbusc,geKmaneQµaHfaGVI ??? kaerFMmYyeKGacEckeTACakaertUcCagcMnYn 7 dUcrUbxagsþaM cUrGñkEckkaerFMenHeTACakaertUcCagcMnYn 6 vijmþg . eKeRbIeQIcak;eFµjedIm,Ierob)ankaercMnYn 4 b:un²Kña. cUrbþÚrTItaMg eQIcak;eFµjcMnYn 3 edIm,I[)ankaercMnYn 3 EdlmanTMhMb:un²Kña. eKmanEmkeQIBIrmanRbEvgRbEhlKña. kac;EmkeQITaMgBIrRtg;cMNuckNþaldUcKña edaykac;mYy[dac; nigmYyeTotkMu[dac;. eKykEmkeQIEdldac;mYyeTAdak;Tl; EmkeQIEdlminTan;dac; [mansßanPaBlMnwg ¬dUcrUbxageRkam¦ . eKnwgykEmk eQIEdldac;mYyeToteTAelIkEmkeQITaMgGs;[eLIgputBIdIkñúgeBlEtmYy . etIeKRtUvelIkdUcemþc ???



784



eKeRbIeQIcak;eFµjedIm,Ierob)ankaercMnnY 5 b:un²Kña. cUrbþÚrTItaMg eQIcak;eFµjcMnYn 2 edIm,I[)ankaercMnYn 4 EdlmanTMhMb:un²Kña.



:

027



:

028



:

029



:

030

cUrbMeBjRbGb;[)anRtwmRtUv ³ c6  30 s



:

031

tamlMnaMKRmUénrUbbIxagedIm cUrrkelxmkCMnYssBaØa {?} [)anRtwmRtUv ³

bursmñak;mandIERsragCakaer . Kat;cg;daMbEnøelIdIERsenH dUcenHKat;RtUveFVIrbg. ebIdwgfaRCugnImYy²RtUvmanbegÁal 10 edImdUcKña rkcMnYnbegÁalTaMgGs;EdlKat; RtUvkar ? cUrKUsGgát;bIbEnßmBIelIrUbxagsþaM edIm,I[vakøayCaRbGb;dIs.

¬sUmcmøgrUbecj kMuKUselIesovePAenH Tuk[GñkeRkaykmSanþbnþ¦

5

4

9

6

2



:

032

5

8

30

4

6

6

20 5

3

.

?

4

2

2

5

3

eK[lkçxNÐbI EdlbursbInak; A , B , C eTAsþIdNþwgnarIbInak; 1, 2 , 3 CaKUGnaKt dUcxageRkam ³ k> ebIburs A CaKUnwgnarI 1 enaH burs B CaKUnwgnarI 2 x> ebIburs A CaKUnwgnarI 3 enaH burs C CaKUnwgnarI 1 K> ebIburs B minCaKUnwgnarI 3 enaH burs C CaKUnwgnarI 1 . sMNYrsYrfa etIbursNa CaKUnwgnarINa ? 

785



rkBIrcMnYnedaydwgfa plbUk plKuN nigplEckrvagcMnYnTaMgBIr esµIKña .



:

033



:

034



:

035



:

036



:

037

mFüménBIrcMnYnesµI 2012 nigmFüménbIcMnYnk¾esµInwg 2012 Edr. cUrrkcMnYnTI 3 .



:

038

etIrUbxagsþamM ankaerTaMgGs;cMnYnb:unµan ?



:

039

eKmanGkSrLataMg T ,



:

040

ksikmñak;mancMNIsRmab;pÁt;pÁg;eKarbs;Kat; 40 k,al)an 35 éf¶. ebIKat;TijeKa 10 k,albEnßmeTot etIkat;GacpÁt;pgÁ ;cMNIdEdl[eKa)anb:unµanéf¶ ? bursmñak;man)arImUledayéd 10 edIm. Kat;Ck;)arIedayrkSaknÞúy)arI ebICk;Gs;bIedIm enaHKat;GacykbnÞúy)arIEdlsl;mUl)anmYyedImfµvI ij . etIKat;Ck;b:unµandgeTIbGs;)arITaMg 10 edImKµansl; ? kñúgkic©RbCMumYymanmnusS 6 nak; )ancUlrYm ehIyGñkTaMgenaH)ancab;édsVaKmn_Kña eTAvijeTAmk. ebIdwgfaGñkTaMgGs;)ancab;édKñaRKb;²Kña. cUrrkcMnYnénkarcab;édKña TaMgGs;.

H , L,K , E , F

etIGkSrNamanlkçN³xuseK ???

kñúgfñak;eronmYy eQµaHrbs;sux enAelxerogTI 20 ebIrab;BIxagelI EtebIrab;BIxag eRkamvij k¾enAEtelxerogTI 20 dEdl. etIfñak;eronenaHmansisSb:unµannak; ?



786



005

001  



 



4 3 ÂÂCÂÂ

6 ÂÂCÂÂ

3

3 002

006



  ÂÂCÂÂ

 

3

   

 

5 4

003

ÂÂCÂÂ

2  2 2  6 ”

2  2 2 2 2  4

10

3

42  6 8

007

ÂÂCÂÂ



3





 

004

 









2 2



5

2

4

2

10 ÂÂCÂÂ

ÂÂCÂÂ

3

3  787



008

011 120

15

2 9 4

7 5 3

6  15 1  15 8  15

15 15 15

72

5 120

15

48

3

2

120  3  72 5

120  2  48 5

ÂÂCÂÂ

3

15 .......

012 11

ÂÂCÂÂ

3

2

1 11 + 2 = 13 13

009 0

1

ÂÂCÂÂ

3

2

013

2  2  2 2

0  0  0 0

ÂÂCÂÂ

3 7

3

5

1

8

4

6

2

010 6

8 ÂÂCÂÂ

3 014 4

6 2

29

8

13

6

4 ÂÂCÂÂ

28

3

14 ÂÂCÂÂ

3  788



015

019 2, 2, 2

22 + 2 = 24 2, 2, 2 ÂÂCÂÂ

ÂÂCÂÂ

3

3

020

016 x  16 16



8

10

20

ÂÂCÂÂ

3 017

ÂÂCÂÂ

3

6  5

2

3

021

7

10  4

 8

9

B A

24

A

C

C

B

ÂÂCÂÂ

3

ÂÂCÂÂ

3

017 ”

32

022

6

4

32

8

2  8  4  20 3 7  9  30

4  6  8  32 ÂÂCÂÂ

ÂÂCÂÂ

3

3  789



023

027



2

ÂÂCÂÂ

3

ÂÂCÂÂ

3 024

028

6 36

8 ÂÂCÂÂ

3

10

                        

10

8  10 10  8  8  36

025

ÂÂCÂÂ

3 029 ÂÂCÂÂ

3 ឬ

026 ÂÂCÂÂ

3 c  30  6 s 6

c  c  6 1 6 c 6

ÂÂCÂÂ

3

ÂÂCÂÂ



1 30

s  30  1 s s 30

30

3  790

030



034

031 ”

6 5

5

4

4 4  25  6 ,

6

2

4

9

6 20

x

3

50

5

9  5  3 5  30

30

3

8

28

2 8

1  35  1  1 40  x    35    28 1  50  40 x 50

5

8  4  2  6  20

4

2

ÂÂCÂÂ

ÂÂCÂÂ

3

3

035

032 15

A  3 , B  2 , C 1  10

10

6 ១. A  1 , B  2 , C  3 ២. A  1 , B  3 , C  2

=3

3

+1

3

4

=1

1

+1

1

2

+

1

1

1

៣. A  2 , B  1 , C  3

10

+1 +1

1

=1

10  3  1  1  15

៤. A  2 , B  3 , C  1

ÂÂCÂÂ

៥. A  3 , B  1 , C  2

3

៦. A  3 , B  2 , C  1

6

036

6

15

ÂÂCÂÂ

3

 

 

3

1

1 1 1   1    1  2 2 2 1



ÂÂCÂÂ

033 1 2



037

1  2

2012

A  B  4024

ÂÂCÂÂ

3

A, B, C A B  2012 2 A B C  2012 3

4024  C  2012 ឬ C  2012 3

 791



)

038 14 ÂÂCÂÂ

3 039 K T, H , L , E , F K ÂÂCÂÂ

3 040 39 20 20

 20  20 1  39 1 ÂÂCÂÂ

3

 792



brimaRt épÞRkLa nigmaD énrUbFrNImaRt ctuekaNEkg -CactuekaNmanRCugb:unKñaBIr² nigmanmMuEkg . A -RkLaépÞ ³ S  ab -brimaRt ³ P  2a  b a -Ggát;RTUg ³ d  a  b B b

RtIekaNsam½BaØ -RtIekaNsam½BaØ CaRtIekaNKµanlkçN³Biess. B -RkLaépÞ ³ S  12 bh

5)

1)

-brimaRt ³

a

c

h

P  a bc A

2

RtIekaNEkg -RtIekaNEkg CaRtIekaNmanmMuEkg manrgVas; 90 . -RkLaépÞ ³ S  12 ab o

2

3)

-

c

a

C

RbelLÚRkam -CactuekaN EdlmanRCugRsbKñaBIr² . -RkLaépÞ ³ S  bh  ab sin  A -brimaRt ³ P  2a  b B h 6)

D

a



C

b

ctuekaNesµI -CactuekaNmanRCugTaMgbYnb:unKña nigKµanmMuEkg. -RkLaépÞ ³ S  bc2 7)

b

2

2

C

b

2)

-brimaRt ³ P  a  b  c -GIub:Uetnus ³ c  a  b

D

a

RtIekaNsm½gS

CaRtIekaNmanRCugTaMgbIb:unKña mMuTaMgbIesµIKañ esµInwg 60 .

-brimaRt ³

c

P  4a b

o

-RkLaépÞ ³ -km
1 a2 3 S  ah  2 4

3 h a 2

a

a

A

h

-brimaRt ³ P  3a 4)

ctuekaNBñay -CactuekaNmanRCugRsbKñaEtBIr . -RkLaépÞ ³ S  a 2bh 8)

c

-brimaRt ³ P  a  b  c  d 9)

kaer

B d

h

D

C

b

rgVg; ¬fas¦

-CasMNMucMNcu CaeRcInsßitenAesµIcm¶ay

-CactuekaNmanRCugTaMgbYnb:unKña nigmanmMuEkg. A D -RkLaépÞ ³ S  a a -brimaRt ³ P  4a d -Ggát;RTUg ³ d  a 2 C B 2

BIcMNucnwgmYy¬p©it¦. -RkLaépÞ ³ S  r  d4 -brimaRt ³ P  2r  d -Ggát;p©it ³ d  2r 2

793

r

2

A

 o

B

d

-

KUb -CarUbFrNImaRtkñúglMhmanRTnugb:un²Kña . H -RkLaépÞ ³ S  6a E -maD ³ V  a D -Ggát;RTUg ³ d  a 3 10)

15)

ceRmókfas

-RkLaépÞ ³ S  12 r  2

G

2



-RbEvgFñÚ ³ s  r

F

s

r

r

3

a

a

A

RbelBIEb:tEkg -CarUbFrNImaRtkñúglMhman RTnugminb:unKña . -RkLaépÞ ³ S  4ab  2aca c -maD ³ V  abc -Ggát;RTUg ³ d  a  b  c 12) sIuLaMg -CarUbFrNImaRtkñúglMhman )atBIrCargVg;b:unKña . S  2 Rh -RkLaépÞ ³ S  S  2S -maD ³ V  S h   R h Edl S CaRkLaépÞxag , S

EsV‘ -RkLaépÞ ³ S  4 R -maD ³ S  43  R 16)

C

a

B

F

A

D

C

B

b

R 

C

I Sb

1 V  Sb h 3

A

B

A

19)

RBIs

B

-maD ³ V  13 S h

F

b

Sb

D

b

E

a

20)



  sin  

D

C

cMNit)a:r:abUl

B a

-RkLaépÞ ³

RkLaépÞcMNitfas 2

h

a

SB

eGlIb -(emIlniymn½yeGlIb) -RkLaépÞ ³ S  ab 1 2 a  b2 2

GabU:Etm

A

B

13)

-RkLaépÞ ³ S  12 r

l

a

-maD ³

h

B



h

CenRt

BIr:amIt -RkLaépÞ ³ S  12  p  a p

B

14)

 r l  r 

18)

2

-brimaRt ³ P  2

2

2

L

L

r



2

L

T

ekaN -RkLaépÞ ³ S  rl  r -maD ³ V  13 r h 17)

G

H

E

2



3

11)

2

R 2

r





r

2 S  ab 3

21)

kaMrgVg;carwkeRkARtIekaN

-

R

Edl 794

A

C

b

abc

4 p p  a  p  b  p  c  P abc p  2 2

c a

R



b -

22)

ctumux

A

29) L

-maD ³ V  13 S h

2

b

h

2

Sb

B

C

sIuLaMgeRTt -maD ³ V  R h  R l sin -RkLaépÞ ³ S  2Rl  2sinRh 



23)

2

r 30)

2

l

24)

BhuekaNman n RCugcarwkkñúgrgVg;

S

1 2 2 1 2 360 o nr sin  nr sin 2 n 2 n



c : a r  abc p 2 b  p  a  p  b  p  c  r p



31)

h

-

S  2 Rh 2 V   R2h 3 1 V   h 2  3R  h  3

-

BhuekaNman n RCugcarwkeRkArgVg;

-



180 o S  nr 2 tan  nr 2 tan n n  180 o P  2nr tan  2nr tan n n

27)



R

r



Sb

32)

-

V



h S B  Sb  S B S b 3



h SB

eGlIbbrivtþ

c



a

4 V  abc 3

b

cMNit)a:r:abUlbrivtþ

-manmaD

R

r

180 o P  2nr sin  2nr sin n n

-manmaD



2

kaMrgVg;carwkkñúgRtIekaN

-

h



26)

a

h

2

T

D

25)

 r

- S  aR  r - S  aR  r  R r -maD³ V  3h  R  r  Rr 

១២

a

1 V  b 2 a 2



b

RbelBIEb:teRTt -manmaD V  S h 28)

B

h



795

-

1

n n

n2

n3

n4

n5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 256 289 324 361 400 441 484 529 576 625 676 729 784 841 900 961 1024 1089 1156 1225 1296 1369 1444 1521 1600 1681 1764 1849 1936 2025 2116 2209 2304 2401 2500

1 8 27 64 125 216 343 512 729 1000 1331 1728 2197 2744 3375 4096 4913 5832 6859 8000 9261 10648 12167 13824 15625 17576 19683 21952 24389 27000 29791 32768 35937 39304 42875 46656 50653 54872 59319 64000 68921 74088 79507 85184 91125 97336 103823 110592 117649 125000

1 16 81 256 625 1296 2401 4096 6561 10000 14641 20736 28561 38416 50625 65536 83521 104976 130321 160000 194481 234256 279841 331776 390625 456976 531441 614656 707281 810000 923521 1048576 1185921 1336336 1500625 1679616 1874161 2085136 2313441 2560000 2825761 3111696 3418801 3748096 4100625 4477456 4879681 5308416 5764801 6250000

1 32 243 1024 3125 7776 16807 32768 59049 100000 161051 248832 371293 537824 759375 1048576 1419857 1889568 2476099 3200000 4084101 5153632 6436343 7962624 9765625 11881376 14348907 17210368 20511149 24300000 28629151 33554432 39135393 45435424 52521875 60466176 69343957 79235168 90224199 102400000 115856201 130691232 147008443 164916224 184528125 205962976 229345007 254803968 282475249 312500000

n

796

1 1.414214 1.732051 2.000000 2.236068 2.449490 2.645751 2.828427 3.000000 3.162278 3.316625 3.464102 3.605551 3.741657 3.872983 4.000000 4.123106 4.242641 4.358899 4.472136 4.582576 4.690416 4.795832 4.898979 5.000000 5.099020 5.196152 5.291503 5.385165 5.477226 5.567764 5.656854 5.744563 5.830952 5.916080 6.000000 6.082763 6.164414 6.244998 6.324555 6.403124 6.480741 6.557439 6.633250 6.708204 6.782330 6.855655 6.928203 7.000000 7.071068

100 3

n

1 1.259921 1.442250 1.587401 1.709976 1.817121 1.912931 2.000000 2.080084 2.154435 2.223980 2.289428 2.351335 2.410142 2.466212 2.519842 2.571282 2.620741 2.668402 2.714418 2.758924 2.802039 2.843867 2.884499 2.924018 2.962496 3.000000 3.036589 3.072317 3.107233 3.141381 3.174802 3.207534 3.239612 3.271066 3.301927 3.332222 3.361975 3.391211 3.419952 3.448217 3.476027 3.503398 3.530348 3.556893 3.583048 3.608826 3.634241 3.659306 3.684031

4

n

1 1.189207 1.316074 1.414214 1.495349 1.565085 1.626577 1.681793 1.732051 1.778279 1.821160 1.861210 1.898829 1.934336 1.967990 2.000000 2.030543 2.059767 2.087798 2.114743 2.140695 2.165737 2.189939 2.213364 2.236068 2.258101 2.279507 2.300327 2.320596 2.340347 2.359611 2.378414 2.396782 2.414736 2.432299 2.449490 2.466326 2.482824 2.498999 2.514867 2.530440 2.545730 2.560750 2.575510 2.590020 2.604291 2.618330 2.632148 2.645751 2.659148

5

n

1 1.148698 1.245731 1.319508 1.379730 1.430969 1.475773 1.515717 1.551846 1.584893 1.615394 1.643752 1.670278 1.695218 1.718772 1.741101 1.762340 1.782602 1.801983 1.820564 1.838416 1.855601 1.872171 1.888175 1.903654 1.918645 1.933182 1.947294 1.961009 1.974350 1.987341 2.000000 2.012347 2.024397 2.036168 2.047673 2.058924 2.069935 2.080717 2.091279 2.101632 2.111786 2.121747 2.131526 2.141127 2.150560 2.159830 2.168944 2.177906 2.186724 -

n

n2

n3

n4

n5

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

2601 2704 2809 2916 3025 3136 3249 3364 3481 3600 3721 3844 3969 4096 4225 4356 4489 4624 4761 4900 5041 5184 5329 5476 5625 5776 5929 6084 6241 6400 6561 6724 6889 7056 7225 7396 7569 7744 7921 8100 8281 8464 8649 8836 9025 9216 9409 9604 9801 10000

132651 140608 148877 157464 166375 175616 185193 195112 205379 216000 226981 238328 250047 262144 274625 287496 300763 314432 328509 343000 357911 373248 389017 405224 421875 438976 456533 474552 493039 512000 531441 551368 571787 592704 614125 636056 658503 681472 704969 729000 753571 778688 804357 830584 857375 884736 912673 941192 970299 1000000

6765201 7311616 7890481 8503056 9150625 9834496 10556001 11316496 12117361 12960000 13845841 14776336 15752961 16777216 17850625 18974736 20151121 21381376 22667121 24010000 25411681 26873856 28398241 29986576 31640625 33362176 35153041 37015056 38950081 40960000 43046721 45212176 47458321 49787136 52200625 54700816 57289761 59969536 62742241 65610000 68574961 71639296 74805201 78074896 81450625 84934656 88529281 92236816 96059601 100000000

345025251 380204032 418195493 459165024 503284375 550731776 601692057 656356768 714924299 777600000 844596301 916132832 992436543 1073741824 1160290625 1252332576 1350125107 1453933568 1564031349 1680700000 1804229351 1934917632 2073071593 2219006624 2373046875 2535525376 2706784157 2887174368 3077056399 3276800000 3486784401 3707398432 3939040643 4182119424 4437053125 4704270176 4984209207 5277319168 5584059449 5904900000 6240321451 6590815232 6956883693 7339040224 7737809375 8153726976 8587340257 9039207968 9509900499 10000000000

n 7.141428 7.211103 7.280110 7.348469 7.416198 7.483315 7.549834 7.615773 7.681146 7.745967 7.810250 7.874008 7.937254 8.000000 8.062258 8.124038 8.185353 8.246211 8.306624 8.366600 8.426150 8.485281 8.544004 8.602325 8.660254 8.717798 8.774964 8.831761 8.888194 8.944272 9.000000 9.055385 9.110434 9.165151 9.219544 9.273618 9.327379 9.380832 9.433981 9.486833 9.539392 9.591663 9.643651 9.695360 9.746794 9.797959 9.848858 9.899495 9.949874 10.000000

3

n

3.708430 3.732511 3.756286 3.779763 3.802952 3.825862 3.848501 3.870877 3.892996 3.914868 3.936497 3.957892 3.979057 4.000000 4.020726 4.041240 4.061548 4.081655 4.101566 4.121285 4.140818 4.160168 4.179339 4.198336 4.217163 4.235824 4.254321 4.272659 4.290840 4.308869 4.326749 4.344481 4.362071 4.379519 4.396830 4.414005 4.431048 4.447960 4.464745 4.481405 4.497941 4.514357 4.530655 4.546836 4.562903 4.578857 4.594701 4.610436 4.626065 4.641589

4

n

2.672345 2.685350 2.698168 2.710806 2.723270 2.735565 2.747696 2.759669 2.771488 2.783158 2.794682 2.806066 2.817313 2.828427 2.839412 2.850270 2.861006 2.871622 2.882121 2.892508 2.902783 2.912951 2.923013 2.932972 2.942831 2.952592 2.962257 2.971828 2.981308 2.990698 3.000000 3.009217 3.018349 3.027400 3.036370 3.045262 3.054076 3.062814 3.071479 3.080070 3.088591 3.097041 3.105423 3.113737 3.121986 3.130169 3.138289 3.146346 3.154342 3.162278

5

n

2.195402 2.203945 2.212357 2.220643 2.228807 2.236854 2.244786 2.252608 2.260322 2.267933 2.275443 2.282855 2.290172 2.297397 2.304532 2.311579 2.318542 2.325422 2.332222 2.338943 2.345588 2.352158 2.358656 2.365083 2.371441 2.377731 2.383956 2.390116 2.396213 2.402249 2.408225 2.414142 2.420001 2.425805 2.431553 2.437248 2.442890 2.448480 2.454019 2.459509 2.464951 2.470345 2.475692 2.480993 2.486250 2.491462 2.496631 2.501758 2.506842 2.511886

Computer

797

-

º 1º 2º 3º 4º 5º 6º 7º 8º 9º 10º 11º 12º 13º 14º 15º 16º 17º 18º 19º 20º 21º 22º 23º 24º 25º 26º 27º 28º 29º 30º 31º 32º 33º 34º 35º 36º 37º 38º 39º 40º 41º 42º 43º 44º 45º

0.0000 0.0175 0.0349 0.0524 0.0698 0.0873 0.1047 0.1222 0.1396 0.1571 0.1745 0.1920 0.2094 0.2269 0.2443 0.2618 0.2793 0.2967 0.3142 0.3316 0.3491 0.3665 0.3840 0.4014 0.4189 0.4363 0.4538 0.4712 0.4887 0.5061 0.5236 0.5411 0.5585 0.5760 0.5934 0.6109 0.6283 0.6458 0.6632 0.6807 0.6981 0.7156 0.7330 0.7505 0.7679 0.7854

sin 

cos 

tan 

cot 

0.0000 0.0175 0.0349 0.0523 0.0698 0.0872 0.1045 0.1219 0.1392 0.1564 0.1736 0.1908 0.2079 0.2250 0.2419 0.2588 0.2756 0.2924 0.3090 0.3256 0.3420 0.3584 0.3746 0.3907 0.4067 0.4226 0.4384 0.4540 0.4695 0.4848 0.5000 0.5150 0.5299 0.5446 0.5592 0.5736 0.5878 0.6018 0.6157 0.6293 0.6428 0.6561 0.6691 0.6820 0.6947 0.7071

1.0000 0.9998 0.9994 0.9986 0.9976 0.9962 0.9945 0.9925 0.9903 0.9877 0.9848 0.9816 0.9781 0.9744 0.9703 0.9659 0.9613 0.9563 0.9511 0.9455 0.9397 0.9336 0.9272 0.9205 0.9135 0.9063 0.8988 0.8910 0.8829 0.8746 0.8660 0.8572 0.8480 0.8387 0.8290 0.8192 0.8090 0.7986 0.7880 0.7771 0.7660 0.7547 0.7431 0.7314 0.7193 0.7071

0.0000 0.0175 0.0349 0.0524 0.0699 0.0875 0.1051 0.1228 0.1405 0.1584 0.1763 0.1944 0.2126 0.2309 0.2493 0.2679 0.2867 0.3057 0.3249 0.3443 0.3640 0.3839 0.4040 0.4245 0.4452 0.4663 0.4877 0.5095 0.5317 0.5543 0.5774 0.6009 0.6249 0.6494 0.6745 0.7002 0.7265 0.7536 0.7813 0.8098 0.8391 0.8693 0.9004 0.9325 0.9657 1.0000

------57.2900 28.6363 19.0811 14.3007 11.4301 9.5144 8.1443 7.1154 6.3138 5.6713 5.1446 4.7046 4.3315 4.0108 3.7321 3.4874 3.2709 3.0777 2.9042 2.7475 2.6051 2.4751 2.3559 2.2460 2.1445 2.0503 1.9626 1.8807 1.8040 1.7321 1.6643 1.6003 1.5399 1.4826 1.4281 1.3764 1.3270 1.2799 1.2349 1.1918 1.1504 1.1106 1.0724 1.0355 1.0000

798

46º 47º 48º 49º 50º 51º 52º 53º 54º 55º 56º 57º 58º 59º 60º 61º 62º 63º 64º 65º 66º 67º 68º 69º 70º 71º 72º 73º 74º 75º 76º 77º 78º 79º 80º 81º 82º 83º 84º 85º 86º 87º 88º 89º 90º

0.8029 0.8203 0.8378 0.8552 0.8727 0.8901 0.9076 0.9250 0.9425 0.9599 0.9774 0.9948 1.0123 1.0297 1.0472 1.0647 1.0821 1.0996 1.1170 1.1345 1.1519 1.1694 1.1868 1.2043 1.2217 1.2392 1.2566 1.2741 1.2915 1.3090 1.3265 1.3439 1.3614 1.3788 1.3963 1.4137 1.4312 1.4486 1.4661 1.4835 1.5010 1.5184 1.5359 1.5533 1.5708

sin 

cos 

tan 

cot 

0.7193 0.7314 0.7431 0.7547 0.7660 0.7771 0.7880 0.7986 0.8090 0.8192 0.8290 0.8387 0.8480 0.8572 0.8660 0.8746 0.8829 0.8910 0.8988 0.9063 0.9135 0.9205 0.9272 0.9336 0.9397 0.9455 0.9511 0.9563 0.9613 0.9659 0.9703 0.9744 0.9781 0.9816 0.9848 0.9877 0.9903 0.9925 0.9945 0.9962 0.9976 0.9986 0.9994 0.9998 1.0000

0.6947 0.6820 0.6691 0.6561 0.6428 0.6293 0.6157 0.6018 0.5878 0.5736 0.5592 0.5446 0.5299 0.5150 0.5000 0.4848 0.4695 0.4540 0.4384 0.4226 0.4067 0.3907 0.3746 0.3584 0.3420 0.3256 0.3090 0.2924 0.2756 0.2588 0.2419 0.2250 0.2079 0.1908 0.1736 0.1564 0.1392 0.1219 0.1045 0.0872 0.0698 0.0523 0.0349 0.0175 0.0000

1.0355 1.0724 1.1106 1.1504 1.1918 1.2349 1.2799 1.3270 1.3764 1.4281 1.4826 1.5399 1.6003 1.6643 1.7321 1.8040 1.8807 1.9626 2.0503 2.1445 2.2460 2.3559 2.4751 2.6051 2.7475 2.9042 3.0777 3.2709 3.4874 3.7321 4.0108 4.3315 4.7046 5.1446 5.6713 6.3138 7.1154 8.1443 9.5144 11.4301 14.3007 19.0811 28.6363 57.2900 --------

0.9657 0.9325 0.9004 0.8693 0.8391 0.8098 0.7813 0.7536 0.7265 0.7002 0.6745 0.6494 0.6249 0.6009 0.5774 0.5543 0.5317 0.5095 0.4877 0.4663 0.4452 0.4245 0.4040 0.3839 0.3640 0.3443 0.3249 0.3057 0.2867 0.2679 0.2493 0.2309 0.2126 0.1944 0.1763 0.1584 0.1405 0.1228 0.1051 0.0875 0.0699 0.0524 0.0349 0.0175 0.0000

-

sBVéf¶kareRbIR)as;xñatmaneRcInsn§wksn§ab;Nas; edIm,IbMeBjeTAnwgkarrIkceRmInénviTüasaRsþ . minEt b:uNÑaHxñatmYycMnYnRtUv)anCMnYsedayxñatfµIepSgeTot edIm,I[RsbeTAnwgsþg;daGnþrCati. enHehIyCa mUlehtuEdl naM[xñatFmµtamYycMnYn)an)at;bg;bnþicmþg² mYyvijeTot xñatmYycMnYnFMenAEteRbIR)as;enAkñúg CIvPaBrs;enAsBVéf¶ b:uEnþKµanÉksarNa )anniyaylm¥it nigrebobeRbIxñatTaMgenaHeLIy. CaBiessedIm,I kMu[sñaédExµr)at;bg; EdlbuBVburs )anbnSl;Tuk eTIb´)anerobcMeLIgvij GMBIxñatCaeRcIn CamYykarRsavRCav Éksarmintic . kñúgEpñkenHnwgmankarbgðajxñatepSg²CaeRcInrYmman ³

1> xñatRbEvg BhuKuNén m

1

=1 =2m

1Tm

 1012 m

1

= 16 km

1

1Gm

 109 m

1

= 4 km

1 inch

 1.54 cm

1Mm

 106 m

1

= 40 m

1 foot

 30.48 cm

1Km

 103 m

1

= 20 m

1 yard

 0.9114 m

1

= 0.50 m

1 feet

 0.3038 m

1

= 0.20 m

1 mile

GnuBhuKuNén m

 1609.344 m

1mm

 103 m

1

= 0.10 m

1 yard

= 3 feet (

1μm

 106 m

1

= 0.01 m

1 mile

= 1760 yd

1nm

 109 m

1

= 100

1 mill , mrin

1pm

 1012 m

1

= 400

1 m  1010 Ao (



Km

hm

dam

m

dm

cm

 1852m

mm



-

799

-

2> xñatépÞRkLa -

-

m2

-

m2

1 Tm 2  1024 m 2

1 mm 2  106 m 2

1 ha

= 10 000 m 2

1 Gm 2  1018 m 2

1 μm 2  1012 m 2

1a (

= 100 m 2

1 Mm 2  1012 m 2

1 nm 2  1018 m 2

1 ca

= 1 m2

1 Km 2  106 m 2

1 pm 2  1024 m 2

Km2



hm2 ha

dam2 a

m2

dm2

cm2

mm2



ca

-

3> xñatmaD 1 pm3  1036 m3

1 Tm3  1036 m3

= 0.001

1 ml  1 000 ml

1

 1 dm

1 Mm  10 m

1 hl

 100

1 mm3  1 cc

1 Km3  109 m3

1 cl

= 0.01

1 ml  1 cm3

1 dal

= 10

1

1 Gm  10 3

3

27

m

3

18

1 mm3  109 m3 1 μm  10 3

18

m

3

1

1 nm3  1027 m3



3

Km3

hm3

dl

dam3

= 30 = 0.1 m 3

1

= 0.1

m3

1

dm3

cm3

mm3 cc



-

800

-

4> xñateBl s  1

= 1000

1

j,

 h

mn ,

s

 mn 

1h

= 3600 s (

) = 60 s (

)

1j(

= 1440 mn

)

1j

= 60

1

= 100

1 mn (

1

= 10

1s(

)

= 60 (

1

= 365

1 (

)

= 60

6

h,

= 86400 s

1

= 8766 h

1

= 10

5> xñatm:as 1 kg

= 1 000 g

1 hg

= 100 g

edkaRkam dag = 10 g 1 Rkam g = 0.001 kg 1 edsIuRkam dg = 0.1 g 1

sg;TIRkam cg = 0.01 g 1 mIlIRkam mg = 0.001 g 1

= 60 kg

1

¬Ggár¦

1

= 15 kg

1

= 600 g

1

= 37.5 g

1

= 3.75 g

1

= 0.375 g

1

= 0.0375 g

1

=2

1

=2

1

=4

1

= 30 kg

1

= 16

1

= 30 kg

1

= 10

1

= 10

1 kg ( 1

) = 10

= 100 g = 1000 kg

1 1

= 907.18 kg

1

= 1016.05 kg

1

 pound  =

1

N  100 g

0.453 kg

6> xñatsItuNðPaB ³  K  t  273 

o

F

180  oC  32 100

 C o

K  ,

,

³K ³ F

,

 F o

t ,

o

o

C

7> xñatmMu 1o (

= 60

180º = 200 Grad

1

= 60

180º =  rad

1 D = 90º

)

1 rad  57 o1745

801

1º = 0.0174533 rad 1º = 1.111111 Grad 1 rad  63.662 Grad  rad = 200 Grad -

8> xñatepSg² LÚ = 12 1 ekH ¬Rsaebo¦ = 24 kMb:ug 1 b‘íc = 25 sug ¬)arI¦ 1 sug = 10 kBa©b; ¬)arI¦ 1 kBa©b; = 20 edIm¬)arI¦ 1 sIu = 0.25 L lIt

ry = 10 erol 1 erol = 10 kak; 1 kak; = 10 esn 1 dMbr = 4 ¬b¤5ebIKitk,ac;¦ 1 pøÚn = 10 dMbr 1 søwk = 10 pøÚn

1

1

)aj; = 100 g ¬fñaM¦ 1eb ¬Ggár¦= 50 kg 1 )avRkecA = 100 kg 1 yYr¬TwksuT¦§ = 12 db 1

1

= 0.25 kg

20 10

9> esckþIbEnßm -xñatsemøgKitCa edsIuEbl -xñatrBa¢ÜydIKitCa -xñatfamBlGKÁisnIKitCa kw/h -xñatkMlaMgKitCa jÚtun (N) -xñatem:m:UrI KitCa éb -cMnYnGaKuyKitCa RKab; -xñatKitCa eRKÓg Qut sRmab; kMebø ér: >>> .

802

-

Emailing Book_Grade_9.pdf

1 1 2. , 3 3. V S h V R h. B. 1. , 2. L L S p a S Ra. 100% , 100% b a b a. a a.. 3 3 2 2 a b a b a ab b. Page 1 of 829 ...

25MB Sizes 1 Downloads 479 Views

Recommend Documents

Emailing 15214699781_SBI_PO_2018_ENGLISH.pdf
Those who are in the Final year/. Semester of their Graduation may also ... subjects in all semester(s)/ year(s). by aggregate maximum marks in all the subjects irrespective of honours/ optional/ ... been born not later than 01.04.1997 and not earlie

Emailing- Common Phrases - UsingEnglish.com
Dear John, Hi/ Hi John. Hello John/ Hi John. My name is Alex Case and I…/ This is Alex Case. How are you?/ How's it going? (= How are things?) How are you?/

Emailing Roleplays 2 - Using English
Roleplay email exchanges from below, saying exactly what you would write in your email. Continue each ... My name is… and I work for… I was given your ...

Emailing SummaryReport_Cast.pdf
There was a problem loading more pages. Retrying... Emailing SummaryReport_Cast.pdf. Emailing SummaryReport_Cast.pdf. Open. Extract. Open with. Sign In.

Emailing- Common Phrases - UsingEnglish.com
I look forward to your quick reply. I look forward to hearing from you soon./ I expect to hear from you soon./ I am waiting for your reply./ Please get back to me as soon as you can./ Please reply asap. Thank you (in advance)./ Thank you for your coo

Emailing Roleplays 2 - UsingEnglish.com
Emailing roleplays and brainstorming useful phrases. Roleplay email exchanges from below, saying exactly what you would write in your email. Continue each exchange until it comes to a natural end. The person who picked the card should take the role w

Emailing politeness competition game - UsingEnglish.com
Opening line. I got your mail. Wow! That was quick! About… Writing to… Great to meet U yesterday! Wassup?/ Alright? Good weekend? Closing line. Write soon!

Emailing- Starters and Endings - UsingEnglish.com
Match the email phrase starters and endings. Try to think of three endings for each of the sentence starters below. Sometimes one option is to put nothing after the part that is given, in which case you can just write -. Opening greeting. Dear +. Ope

Emailing- Starters and Endings - UsingEnglish.com
Match the email phrase starters and endings. Try to think ... you (and your family) are well/ you had a good weekend/ the weather has improved there. Try to think ...

Emailing The_Hindu_Full_17-Feb-2018_Delhi Edition_www ...
the Reserve Bank of India ... picked up a red ag on the ... coee plantation of both .... adjourning the House twice .... Edition_www.studykare1.blogspot.com.pdf.

MSCC Waffle – Emailing Photos
are two methods, but before you leap into them, please take the time to read the sermon about file sizes and resolution. ***** File Size and Resolution Sermon Starts ... In Windows Explorer, simply hover the mouse over the picture file for about a se

Emailing- Formal and Informal Phrases - UsingEnglish.com
Classify and rank the formal and informal business email phrases. Dear Sir or Madam ... Thank you for your email yesterday. ... Hope you had a good weekend.

Emailing Sakshi_AP_P_04-12-2017.pdf
ýæÑ..._ ̄]l D §ýl–WÓçÙĶæ$... {ç3ç3...^èl ÐéÅç3¢...V> ç3Ë$. §ólÔ>ÌZÏ MýS ̄]l$Ñ.. ...... Displaying Emailing Sakshi_AP_P_04-12-2017.pdf. Page 1 of 18.

Emailing Functions- Correction and Brainstorming - Using English
Explaining the topic of the email/ Explaining the reason for writing. • Friendly ... Mentioning previous email communication ... I hope you had a good weekend.

Emailing gstindia.com-Gst with examples.pdf
VAT / Sales Tax. Entertainment tax (other than the tax levied by local bodies). Central Sales Tax. Octroi and Entry Tax. Purchase Tax. Luxury Tax. Taxes on ...

Emailing Solution of different year problems (CE 461).pdf ...
Emailing Solution of different year problems (CE 461).pdf. Emailing Solution of different year problems (CE 461).pdf. Open. Extract. Open with. Sign In.

Emailing pre test std 3 eng.pdf
Teacher: Manu goodmorning. Manu :goodmorning teacher ............................................. ............................................. ............................................. ............................................ OR. Hai..I am