Tabloid data set 1

Description

A large retailer wants to explore the predictability of response to a tabloid mailing. If they mail a tabloid to a customer in their data-base, can they predict whether or not the customer will respond by making a purchase. The dependent variable is 1 if they buy something, 0 if they do not. They tried to come up with x’s based on past purchasing behavior. The Predictive Analytics team builds a model for the probability the customer responds given information about the customer. What information about a customer do they use? • • • •

nTab: number of past orders. moCbook: months since last order. iRecMer1: 1/months since last order in merchandise category 1. llDol: log of the dollar value of past purchases.

The data for these variables is obtained from the companies operational data base.

2

Preprocessing

We download the data and preprocess it first download.file( 'https://github.com/ChicagoBoothML/MLClassData/raw/master/Tabloid/Tabloid_test.csv', 'Tabloid_test.csv') download.file( 'https://github.com/ChicagoBoothML/MLClassData/raw/master/Tabloid/Tabloid_train.csv', 'Tabloid_train.csv') td = read.csv("Tabloid_train.csv") td_test = read.csv("Tabloid_test.csv") td$purchase = as.factor(td$purchase) td_test$purchase = as.factor(td_test$purchase)

1

3

Summary statistics

summary(td) ## ## ## ## ## ## ## ## ## ## ## ## ## ##

purchase nTab moCbook 0:9742 Min. : 0.0 Min. : 1.2 1: 258 1st Qu.: 0.0 1st Qu.:50.0 Median : 0.0 Median :50.0 Mean : 1.9 Mean :47.6 3rd Qu.: 2.0 3rd Qu.:50.0 Max. :81.0 Max. :50.0 iRecMer1 llDol Min. :0.020 Min. :-2.30 1st Qu.:0.020 1st Qu.:-2.30 Median :0.020 Median :-2.30 Mean :0.094 Mean :-1.39 3rd Qu.:0.074 3rd Qu.:-2.30 Max. :0.968 Max. : 7.31

Notice that the percentage of households that make a purchase is pretty small! 258/10000 = 0.0258 Illustration of how nTab is related to responders. par(mfrow=c(1,2)) hist(td[td$purchase==0, "nTab"], breaks=40, col="red", main="nonresponders", xlab="nTab", xlim=c(0,85)) hist(td[td$purchase==1, "nTab"], breaks=40, col="blue", main="responders", xlab="nTab", xlim=c(0,85)) responders

60 20

40

Frequency

3000

0

1000 0

Frequency

5000

80

7000

nonresponders

0

20

40

60

80

0

nTab

20

40 nTab

2

60

80

Here is Y plotted vs. each of the four X’s

0

0

10

20

nTab 40

moCbook 20 30

60

40

80

50

par(mfrow=c(2,2), mar=c(3,3,3,1), mgp=c(2,1,0)) plot(nTab~purchase,td,col=c("red", "blue")) plot(moCbook~purchase,td,col=c("red", "blue")) plot(iRecMer1~purchase,td,col=c("red", "blue")) plot(llDol~purchase,td,col=c("red", "blue"))

0

1

0

1 purchase

0.0

−2

0.2

0

llDol 2

iRecMer1 0.4 0.6

4

0.8

6

1.0

purchase

0

1

0

purchase

1 purchase

3

4

Fit models

We fit • logistic regression • random forest model • boosting library(tree) library(randomForest) library(gbm) Create some helper function used for evaluation. The following function is used to compute the deviance of a model # deviance loss function # y should be 0/1 # phat are probabilities obtain by our algorithm # wht shrinks probs in phat towards .5 --- this helps avoid numerical problems don't use log(0)! lossf = function(y,phat,wht=0.0000001) { if(is.factor(y)) y = as.numeric(y)-1 phat = (1-wht)*phat + wht*.5 py = ifelse(y==1, phat, 1-phat) return(-2*sum(log(py))) } The following will get confucion matrix: # deviance loss function # y should be 0/1 # phat are probabilities obtain by our algorithm # thr is the cut off value - everything above thr is classified as 1 getConfusionMatrix = function(y,phat,thr=0.5) { if(is.factor(y)) y = as.numeric(y)-1 yhat = ifelse(phat > thr, 1, 0) tb = table(predictions = yhat, actual = y) rownames(tb) = c("predict_0", "predict_1") return(tb) } And finally, this function gives miss-classification rate: # deviance loss function # y should be 0/1 # phat are probabilities obtain by our algorithm # thr is the cut off value - everything above thr is classified as 1 lossMR = function(y,phat,thr=0.5) { if(is.factor(y)) y = as.numeric(y)-1 yhat = ifelse(phat > thr, 1, 0) return(1 - mean(yhat == y)) } We need a place to store results phatL = list() #store the test phat for the different methods here

4

4.1

Logistic regression

We fit a logistic regression model using all variables lgfit = glm(purchase~., td, family=binomial) print(summary(lgfit)) ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

Call: glm(formula = purchase ~ ., family = binomial, data = td) Deviance Residuals: Min 1Q Median -1.501 -0.188 -0.161

3Q -0.157

Max 2.968

Coefficients: Estimate Std. Error z value (Intercept) -2.62131 0.25667 -10.21 nTab 0.05530 0.01209 4.57 moCbook -0.03249 0.00527 -6.17 iRecMer1 1.72688 0.31282 5.52 llDol 0.07842 0.02630 2.98 Pr(>|z|) (Intercept) < 2e-16 *** nTab 4.8e-06 *** moCbook 7.0e-10 *** iRecMer1 3.4e-08 *** llDol 0.0029 ** --Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 (Dispersion parameter for binomial family taken to be 1) Null deviance: 2396.5 Residual deviance: 2063.5 AIC: 2073

on 9999 on 9995

degrees of freedom degrees of freedom

Number of Fisher Scoring iterations: 7

Predictions are stored for later analysis phat = predict(lgfit, td_test, type="response") phatL$logit = matrix(phat,ncol=1)

5

4.2

Random Forest

We fit random forest models for a few different settings. set.seed(99) ##settings for randomForest p=ncol(td)-1 mtryv = c(p, sqrt(p)) ntreev = c(500,1000) setrf = expand.grid(mtryv,ntreev) # this contains all settings to try colnames(setrf)=c("mtry","ntree") phatL$rf = matrix(0.0,nrow(td_test),nrow(setrf)) # we will store results here ###fit rf for(i in 1:nrow(setrf)) { #fit and predict frf = randomForest(purchase~., data=td, mtry=setrf[i,1], ntree=setrf[i,2], nodesize=10) phat = predict(frf, newdata=td_test, type="prob")[,2] phatL$rf[,i]=phat }

6

4.3

Boosting

We fit boosting models for a few different settings. ##settings for boosting idv = c(2,4) ntv = c(1000,5000) shv = c(.1,.01) setboost = expand.grid(idv,ntv,shv) colnames(setboost) = c("tdepth","ntree","shrink") phatL$boost = matrix(0.0,nrow(td_test),nrow(setboost)) Remember to convert to numeric 0,1 values for boosting. tdB = td; tdB$purchase = as.numeric(tdB$purchase)-1 td_testB = td_test; td_testB$purchase = as.numeric(td_testB$purchase)-1 Fitting for(i in 1:nrow(setboost)) { ##fit and predict fboost = gbm(purchase~., data=tdB, distribution="bernoulli", n.trees=setboost[i,2], interaction.depth=setboost[i,1], shrinkage=setboost[i,3]) phat = predict(fboost, newdata=td_testB, n.trees=setboost[i,2], type="response") }

phatL$boost[,i] = phat

5 5.1

Analysis of results Miss-classification rate

Let us first look at miss-classification rate. For logistic regression we have: getConfusionMatrix(td_test$purchase, phatL[[1]][,1], 0.5) ## actual ## predictions 0 1 ## predict_0 4884 108 ## predict_1 4 4 cat('Missclassification rate = ', lossMR(td_test$purchase, phatL[[1]][,1], 0.5), '\n') ## Missclassification rate =

0.0224

7

For random forest we have: nrun = nrow(setrf) for(j in 1:nrun) { print(setrf[j,]) print("Confusion Matrix:") print(getConfusionMatrix(td_test$purchase, phatL[[2]][,j], 0.5)) cat('Missclassification rate = ', lossMR(td_test$purchase, phatL[[2]][,j], 0.5), '\n') } ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

mtry ntree 1 4 500 [1] "Confusion Matrix:" actual predictions 0 1 predict_0 4881 108 predict_1 7 4 Missclassification rate mtry ntree 2 2 500 [1] "Confusion Matrix:" actual predictions 0 1 predict_0 4882 108 predict_1 6 4 Missclassification rate mtry ntree 3 4 1000 [1] "Confusion Matrix:" actual predictions 0 1 predict_0 4882 107 predict_1 6 5 Missclassification rate mtry ntree 4 2 1000 [1] "Confusion Matrix:" actual predictions 0 1 predict_0 4882 108 predict_1 6 4 Missclassification rate

=

0.023

=

0.0228

=

0.0226

=

0.0228

8

For boosting we have: nrun = nrow(setboost) for(j in 1:nrun) { print(setboost[j,]) print("Confusion Matrix:") print(getConfusionMatrix(td_test$purchase, phatL[[3]][,j], 0.5)) cat('Missclassification rate = ', lossMR(td_test$purchase, phatL[[3]][,j], 0.5), '\n') } ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

tdepth ntree shrink 1 2 1000 0.1 [1] "Confusion Matrix:" actual predictions 0 1 predict_0 4874 105 predict_1 14 7 Missclassification rate tdepth ntree shrink 2 4 1000 0.1 [1] "Confusion Matrix:" actual predictions 0 1 predict_0 4863 105 predict_1 25 7 Missclassification rate tdepth ntree shrink 3 2 5000 0.1 [1] "Confusion Matrix:" actual predictions 0 1 predict_0 4864 106 predict_1 24 6 Missclassification rate tdepth ntree shrink 4 4 5000 0.1 [1] "Confusion Matrix:" actual predictions 0 1 predict_0 4845 106 predict_1 43 6 Missclassification rate tdepth ntree shrink 5 2 1000 0.01 [1] "Confusion Matrix:" actual predictions 0 1 predict_0 4886 110 predict_1 2 2 Missclassification rate tdepth ntree shrink 6 4 1000 0.01 [1] "Confusion Matrix:" actual predictions 0 1

=

0.0238

=

0.026

=

0.026

=

0.0298

=

0.0224

9

## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

predict_0 4880 107 predict_1 8 5 Missclassification rate = tdepth ntree shrink 7 2 5000 0.01 [1] "Confusion Matrix:" actual predictions 0 1 predict_0 4878 107 predict_1 10 5 Missclassification rate = tdepth ntree shrink 8 4 5000 0.01 [1] "Confusion Matrix:" actual predictions 0 1 predict_0 4874 106 predict_1 14 6 Missclassification rate =

0.023

0.0234

0.024

This is strange. . . There seems to be fit in the model.

0.0

0.2

0.4

phat 0.6

0.8

1.0

par(mar=c(3,3,3,1), mgp=c(2,1,0)) phat = predict(lgfit, newdata=td, type="response") plot(phat~td$purchase, col=c("red","blue"), xlab="purchase", ylab="phat", ylim=c(0,1.05), cex.text=0.7)

0

1 purchase

10

5.2

Deviance

Plot test set loss — deviance: lossL = list() nmethod = length(phatL) for(i in 1:nmethod) { nrun = ncol(phatL[[i]]) lvec = rep(0,nrun) for(j in 1:nrun) lvec[j] = lossf(td_test$purchase, phatL[[i]][,j]) lossL[[i]]=lvec; names(lossL)[i] = names(phatL)[i] } lossv = unlist(lossL) plot(lossv, ylab="loss on Test", type="n") nloss=0 for(i in 1:nmethod) { ii = nloss + 1:ncol(phatL[[i]]) points(ii,lossv[ii],col=i,pch=17) nloss = nloss + ncol(phatL[[i]]) } legend("topright",legend=names(phatL),col=1:nmethod,pch=rep(17,nmethod))

11

2000 1400 1000

1200

loss on Test

1600

1800

logit rf boost

2

4

6

8

10

Index From each method class, we choose the one that has the lowest error on the validation set. nmethod = length(phatL) phatBest = matrix(0.0,nrow(td_test),nmethod) #pick off best from each method colnames(phatBest) = names(phatL) for(i in 1:nmethod) { nrun = ncol(phatL[[i]]) lvec = rep(0,nrun) for(j in 1:nrun) lvec[j] = lossf(td_test$purchase,phatL[[i]][,j]) imin = which.min(lvec) phatBest[,i] = phatL[[i]][,imin] phatBest[,i] = phatL[[i]][,1] }

12

12

We can plot pˆ for best models on the test set pairs(phatBest) 0.2

0.4

0.6

0.8

0.4

0.5

0.6

0.7

0.0

0.6

0.8

0.0

0.1

0.2

0.3

logit

0.6

0.8

1.0

0.0

0.2

0.4

rf

0.0

0.2

0.4

boost

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0

13

0.2

0.4

0.6

0.8

1.0

The idea behind the tabloid example is that if we can predict who will buy we can target those customers and send them the tabloid. To get an idea of how well our model is working, we can imagine choosing a customer from the data set to mail to first - did they buy? We can look at the y value to see if they bought. Whom would you mail to first? You could mail the first 40 people in your database. td$phat = phat td[1:40, c("purchase", "phat")] ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

purchase 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

phat 0.0122 0.0670 0.0153 0.0129 0.0122 0.0429 0.0124 0.0122 0.0223 0.0122 0.0399 0.0122 0.0353 0.0163 0.0288 0.0125 0.0175 0.0122 0.0200 0.0122 0.0184 0.0203 0.0122 0.0122 0.0144 0.0122 0.0122 0.0131 0.0160 0.0122 0.0122 0.0122 0.0265 0.0122 0.0122 0.0274 0.0122 0.0123 0.0122 0.0136

Out of the first 40, there is only one purchase.

14

If you believe your model, you might mail to the household with the largest pˆ (estimated prob of buying) first. Then you would mail to the household with the second largest pˆ and so on. td$phat = phat sorted_phat = order(-phat) td[sorted_phat[1:40], c("purchase", "phat")] ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##

2000 2755 8862 3628 1284 529 8086 2072 1435 4524 4626 978 9351 7040 7424 6545 5716 1218 374 521 1887 7703 789 8931 3853 5239 2999 6997 3526 8566 891 2417 5214 8490 6594 4548 6147 6548 1637 4748

purchase 1 1 1 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1

phat 0.918 0.792 0.711 0.692 0.676 0.667 0.654 0.636 0.632 0.563 0.544 0.529 0.524 0.517 0.507 0.499 0.499 0.497 0.493 0.480 0.471 0.450 0.446 0.444 0.436 0.434 0.434 0.427 0.414 0.409 0.407 0.407 0.396 0.386 0.380 0.378 0.377 0.376 0.373 0.370

You got 16 purchases out of the first 40 customers you targeted. Using only 40/10000 = 0.004 of the data we got 16/258 = .062 of the purchases!

15

5.3

Expected value of a classifier

Let us target everyone with pˆ > 0.02 Our cost/benefit matrix looks like this cost_benefit = matrix(c(0,-0.8,0,39.20), nrow=2) print(cost_benefit) ## [,1] [,2] ## [1,] 0.0 0.0 ## [2,] -0.8 39.2 Expected values of targeting is below: confMat = getConfusionMatrix(td_test$purchase, phatBest[,1], 0.02) print(confMat) ## actual ## predictions 0 ## predict_0 3730 ## predict_1 1158

1 37 75

cat("Expected value of targeting using logistic regression = ", sum(sum(confMat * cost_benefit)), "\n") ## Expected value of targeting using logistic regression =

2014

confMat = getConfusionMatrix(td_test$purchase, phatBest[,2], 0.02) print(confMat) ## actual ## predictions 0 ## predict_0 4282 ## predict_1 606

1 60 52

cat("Expected value of targeting using random forests = ", sum(sum(confMat * cost_benefit)), "\n") ## Expected value of targeting using random forests =

1554

confMat = getConfusionMatrix(td_test$purchase, phatBest[,3], 0.02) print(confMat) ## actual ## predictions 0 ## predict_0 3785 ## predict_1 1103

1 42 70

cat("Expected value of targeting using boosting = ", sum(sum(confMat * cost_benefit)), "\n") ## Expected value of targeting using boosting =

16

1862

5.4

ROC curves

Library for plotting various summary curves library(ROCR) plot(c(0,1),c(0,1),xlab='FPR',ylab='TPR',main="ROC curve",cex.lab=1,type="n") for(i in 1:ncol(phatBest)) { pred = prediction(phatBest[,i], td_test$purchase) perf = performance(pred, measure = "tpr", x.measure = "fpr") lines([email protected][[1]], [email protected][[1]],col=i) } abline(0,1,lty=2) legend("topleft",legend=names(phatL),col=1:nmethod,lty=rep(1,nmethod))

1.0

ROC curve

0.0

0.2

0.4

TPR

0.6

0.8

logit rf boost

0.0

0.2

0.4

0.6 FPR

17

0.8

1.0

5.5

Lift curves

pred = prediction(phatBest[,1], td_test$purchase) perf = performance(pred, measure = "lift", x.measure = "rpp") plot(perf, col=1, ylim=c(0,5)) abline(h=1, lty=2)

5

for(i in 2:ncol(phatBest)) { pred = prediction(phatBest[,i], td_test$purchase) perf = performance(pred, measure = "lift", x.measure = "rpp") lines([email protected][[1]], [email protected][[1]],col=i) } legend("topright",legend=names(phatL),col=1:nmethod,lty=rep(1,nmethod))

0

1

2

Lift value

3

4

logit rf boost

0.0

0.2

0.4

0.6

Rate of positive predictions

18

0.8

1.0

5.6

Cummulative response

0.6 0.4 0.2

logit rf boost

0.0

True positive rate

0.8

1.0

pred = prediction(phatBest[,1], td_test$purchase) perf = performance(pred, measure = "tpr", x.measure = "rpp") plot(perf, col=1, ylim=c(0,1)) abline(h=1, lty=2) abline(0,1,lty=2) for(i in 2:ncol(phatBest)) { pred = prediction(phatBest[,i], td_test$purchase) perf = performance(pred, measure = "tpr", x.measure = "rpp") lines([email protected][[1]], [email protected][[1]],col=i) } legend("bottomright",legend=names(phatL),col=1:nmethod,lty=rep(1,nmethod))

0.0

0.2

0.4

0.6

Rate of positive predictions

19

0.8

1.0

Tabloid data set - GitHub

The Predictive Analytics team builds a model for the probability the customer responds given ... 3 Summary statistics .... Predictions are stored for later analysis.

1MB Sizes 3 Downloads 369 Views

Recommend Documents

2016.03.27 Famine Ad_LunchEntertainment Poster Tabloid ...
crises at the organization's highest level of emergency — the ongo- ing war in ... 2016.03.27 Famine Ad_LunchEntertainment Poster Tabloid Size_English.pdf.

Javascript Data Exploration - GitHub
Apr 20, 2016 - Designers. I'm a sort of. « social data scientist ». Paris. Sciences Po médialab. I just received a CSV. Let me grab my laptop ... Page 9 ...

RStudio Data Import - GitHub
“A data model in which the data is organized into a tree-like structure” - Wikipedia. Page 10. WHAT IS XML, HTML AND JSON? XML: Extensible Markup ...

Data Science - GitHub
Exploratory Data Analysis ... The Data Science Specialization covers the concepts and tools for ... a degree or official status at the Johns Hopkins University.

My precious data - GitHub
Open Science Course 2016 ... It's part of my contribution to science community ... Exports several formats (pdf, docx, csv, text, json, html, xml) ... http://dataverse.org/blog/scientific-data-now-recommends-harvard-dataverse-all-areas-s · cience ...

Open Data Canvas - GitHub
Top need for accessing data online. What data is most needed? Solution. How would you solve this problem? ... How big is the universe of users? Format/Use.

data tables - GitHub
fwrite - parallel file writer. SOURCE: http://blog.h2o.ai/2016/04/fast-csv-writing-for-r/ ... SOURCE: https://www.r-project.org/dsc/2016/slides/ParallelSort.pdf length.

Reading in data - GitHub
... handles import from SPSS. Once installed, the package contents can be loaded into R (made available to the R system) with the function call. > library(Hmisc) ...

meteor's data layer - GitHub
Full-stack JavaScript Framework for both Web and. Mobile. □. Built on top of the NodeJs. □. Open Source. □ ... Meteor doesn't send HTML over the network. The server sends data ... All layers, from database to template, update themselves ...

Tabloid Steelindonesia Edisi 07_edit.pdf
Retrying... Whoops! There was a problem loading this page. Retrying... Tabloid Steelindonesia Edisi 07_edit.pdf. Tabloid Steelindonesia Edisi 07_edit.pdf. Open.

Research Data Management Training - GitHub
Overview. Research Data management Training Working Group: Approach and. Methodology ... CC Australia ported licence) licence. ... http://www.griffith.edu.au/__data/assets/pdf_file/0009/528993/Best_Practice_Guidelines.pdf. University of ...

RN-171 Data Sheet - GitHub
Jan 27, 2012 - 171 is perfect for mobile wireless applications such as asset monitoring ... development of your application. ... sensor data to a web server.

CS3123 DATA COMMUNICATIONS SET-1
4.a] Describe datagram and virtual circuit switching methods of packet switching networks. b] Describe the features, specifications and methods of ...

3.1 Annex II - data set
DATA. FORMULATION. PERIOD. SEQUENCE. logDATA. 1. 2285.96. R. 1. BABA. 7.734541. 1. 1955.82. T. 2. BABA. 7.578565. 1. 1345.94. R. 3. BABA. 7.204848.

3.1 Annex II - data set
DATA. FORMULATION. PERIOD. SEQUENCE. logDATA. 1. 2285.96. R. 1. BABA. 7.734541. 1. 1955.82. T. 2. BABA. 7.578565. 1. 1345.94. R. 3. BABA. 7.204848.

Tabloid Steelindonesia Edisi 14_R.pdf
Sign in. Page. 1. /. 20. Loading… Page 1 of 20. Page 1 of 20. Page 2 of 20. Page 2 of 20. Page 3 of 20. Page 3 of 20. Tabloid Steelindonesia Edisi 14_R.pdf.

Processing Big Data with Azure Data Lake - GitHub
Processing Big Data with Azure Data Lake. Lab 3 – Using C# in U-SQL. Overview. U-SQL is designed to blend the declarative nature of SQL with the procedural ...

Processing Big Data with Azure Data Lake - GitHub
Processing Big Data with Azure Data Lake. Lab 4 – Monitoring U-SQL Execution. Overview. U-SQL jobs are executed in parallel. You can use the job graph, and ...

ALOJA: Cost-effective Big Data deployments - GitHub
Cost-effective Big Data deployments. SEVERO .... Guide the future development and deployment of Big Data ... Analytical models of Hadoop cost-effectiveness.

Funded Research Projects in Data Science - GitHub
logs, social media posts and blogs, satellites ... Due to the proliferation of social media, sensors, and the Internet of. Things .... “troll” on an Internet Web site simply ..... levels of “bad” cholesterol that sometimes kills adults in the

Processing Big Data with Hive - GitHub
Processing Big Data with Hive ... Defines schema metadata to be projected onto data in a folder when ... STORED AS TEXTFILE LOCATION '/data/table2';.