Introduction

Slice reconciliation

High bit rate CVQKD

Summary

High Bit Rate Continuous-Variable Quantum Key Distribution Paul Jouguet, David Elkouss, S´ebastien Kunz-Jacques arXiv:1406.1050

Slide 1/13

Introduction

Slice reconciliation

High bit rate CVQKD

Summary

Quantum Key Distribution

Quantum Channel

Exchange of quantum states

arXiv:1406.1050

Slide 2/13

Introduction

Slice reconciliation

High bit rate CVQKD

Summary

Quantum Key Distribution IBE

IAE Quantum Channel

IAB Exchange of quantum states Induced correlations

arXiv:1406.1050

Slide 2/13

Introduction

Slice reconciliation

High bit rate CVQKD

Summary

Quantum Key Distribution IBE

IAE Public Classical Channel Quantum Channel

IAB Exchange of quantum states Induced correlations Public discussion: reconciliation + privacy amplification arXiv:1406.1050

Slide 2/13

Introduction

Slice reconciliation

High bit rate CVQKD

Summary

Secret Key Rate Theory: For any tripartite state ρABE Devetak-Winter formula: K = IAB − min{IAE , IBE }

arXiv:1406.1050

Slide 3/13

Introduction

Slice reconciliation

High bit rate CVQKD

Summary

Secret Key Rate Theory: For any tripartite state ρABE Devetak-Winter formula: K = IAB − min{IAE , IBE } Practice: Distillable key depends on:

arXiv:1406.1050

Slide 3/13

Introduction

Slice reconciliation

High bit rate CVQKD

Summary

Secret Key Rate Theory: For any tripartite state ρABE Devetak-Winter formula: K = IAB − min{IAE , IBE } Practice: Distillable key depends on: estimate on IAE (IBE ).

arXiv:1406.1050

Slide 3/13

Introduction

Slice reconciliation

High bit rate CVQKD

Summary

Secret Key Rate Theory: For any tripartite state ρABE Devetak-Winter formula: K = IAB − min{IAE , IBE } Practice: Distillable key depends on: estimate on IAE (IBE ). information revealed during reconciliation

arXiv:1406.1050

Slide 3/13

Introduction

Slice reconciliation

High bit rate CVQKD

Summary

Secret Key Rate Theory: For any tripartite state ρABE Devetak-Winter formula: K = IAB − min{IAE , IBE } Practice: Distillable key depends on: estimate on IAE (IBE ). information revealed during reconciliation K = βIAB − min{IAE , IBE }

arXiv:1406.1050

Slide 3/13

Introduction

Slice reconciliation

High bit rate CVQKD

Summary

Secret Key Rate Theory: For any tripartite state ρABE Devetak-Winter formula: K = IAB − min{IAE , IBE } Practice: Distillable key depends on: estimate on IAE (IBE ). information revealed during reconciliation K = βIAB − min{IAE , IBE } with β < 1. arXiv:1406.1050

Slide 3/13

Introduction

Slice reconciliation

High bit rate CVQKD

Summary

The promise of CVQKD DVQKD Most protocols use binary variables IAB − min{IAE , IBE }

arXiv:1406.1050

Slide 4/13

Introduction

Slice reconciliation

High bit rate CVQKD

Summary

The promise of CVQKD DVQKD Most protocols use binary variables IAB − min{IAE , IBE } 6 IAB 6 H(A) 6 1

arXiv:1406.1050

Slide 4/13

Introduction

Slice reconciliation

High bit rate CVQKD

Summary

The promise of CVQKD DVQKD Most protocols use binary variables IAB − min{IAE , IBE } 6 IAB 6 H(A) 6 1 Gaussian protocol CVQKD

arXiv:1406.1050

Slide 4/13

Introduction

Slice reconciliation

High bit rate CVQKD

Summary

The promise of CVQKD DVQKD Most protocols use binary variables IAB − min{IAE , IBE } 6 IAB 6 H(A) 6 1 Gaussian protocol CVQKD Induced Gaussian channel: IAB = 12 log(1 + SNR). Potentially K > 1,

arXiv:1406.1050

Slide 4/13

Introduction

Slice reconciliation

High bit rate CVQKD

Summary

The promise of CVQKD DVQKD Most protocols use binary variables IAB − min{IAE , IBE } 6 IAB 6 H(A) 6 1 Gaussian protocol CVQKD Induced Gaussian channel: IAB = 12 log(1 + SNR). Potentially K > 1, if we have good codes

arXiv:1406.1050

Slide 4/13

Introduction

Slice reconciliation

High bit rate CVQKD

Summary

The promise of CVQKD DVQKD Most protocols use binary variables IAB − min{IAE , IBE } 6 IAB 6 H(A) 6 1 Gaussian protocol CVQKD Induced Gaussian channel: IAB = 12 log(1 + SNR). Potentially K > 1, if we have good codes Goal: good reconciliation efficiency for low and medium distances. Optimize slice reconciliation. arXiv:1406.1050

Slide 4/13

Introduction

Slice reconciliation

High bit rate CVQKD

Summary

The promise of CVQKD DVQKD Most protocols use binary variables IAB − min{IAE , IBE } 6 IAB 6 H(A) 6 1 Gaussian protocol CVQKD Induced Gaussian channel: IAB = 12 log(1 + SNR). Potentially K > 1, if we have good codes Goal: good reconciliation efficiency for low and medium distances. Optimize slice reconciliation. Gehring et al, arXiv:1406.6174 arXiv:1406.1050

Slide 4/13

Introduction

Slice reconciliation

High bit rate CVQKD

Summary

Slice reconciliation

Proposed by G. Van Assche, J. Cardinal, and N. J. Cerf, IEEE TIT, 2004.

arXiv:1406.1050

Slide 5/13

Introduction

Slice reconciliation

High bit rate CVQKD

Summary

Slice reconciliation

Proposed by G. Van Assche, J. Cardinal, and N. J. Cerf, IEEE TIT, 2004. Reconciliation method for non-binary sources

arXiv:1406.1050

Slide 5/13

Introduction

Slice reconciliation

High bit rate CVQKD

Summary

Slice reconciliation

Proposed by G. Van Assche, J. Cardinal, and N. J. Cerf, IEEE TIT, 2004. Reconciliation method for non-binary sources Binary source codes

arXiv:1406.1050

Slide 5/13

Introduction

Slice reconciliation

High bit rate CVQKD

Summary

Slice reconciliation

Proposed by G. Van Assche, J. Cardinal, and N. J. Cerf, IEEE TIT, 2004. Reconciliation method for non-binary sources Binary source codes Two steps: quantization and encoding

arXiv:1406.1050

Slide 5/13

Introduction

Slice reconciliation

High bit rate CVQKD

Summary

Quantization m qm 1 , . . . , qn

x1 , . . . , xn

Q

q21 , . . . , q2n q11 , . . . , q1n

Alice

Choose a quantizer Q : R → {0, 1}m

arXiv:1406.1050

Slide 6/13

Introduction

Slice reconciliation

High bit rate CVQKD

Summary

Quantization Uniform

m qm 1 , . . . , qn

x1 , . . . , xn

Q

−∞ q21 , . . . , q2n

0



q11 , . . . , q1n

Alice

Non-uniform

Choose a quantizer Q : R → {0, 1}m Constant vs optimized steps

arXiv:1406.1050

Slide 6/13

Introduction

Slice reconciliation

High bit rate CVQKD

Summary

Quantization Uniform

m qm 1 , . . . , qn

x1 , . . . , xn

Q

−∞ q21 , . . . , q2n

0



q11 , . . . , q1n

Alice

Non-uniform

Choose a quantizer Q : R → {0, 1}m Constant vs optimized steps I(X; Y) > I(Q(X); Y) arXiv:1406.1050

Slide 6/13

Introduction

Slice reconciliation

High bit rate CVQKD

Summary

Quantization Uniform

m qm 1 , . . . , qn

x1 , . . . , xn

Q

−∞ q21 , . . . , q2n

0



q11 , . . . , q1n

Alice

Non-uniform

Choose a quantizer Q : R → {0, 1}m Constant vs optimized steps I(X; Y) > I(Q(X); Y) Increase the number of slices arXiv:1406.1050

Slide 6/13

Introduction

Slice reconciliation

High bit rate CVQKD

Summary

Quantization optimization uniform m=3 non-uniform m=3

uniform m=4 non-uniform m=4

uniform m=5 non-uniform m=5

100

I(Q(X);Y)/I(X;Y) (%)

95 90 85 80 75 70

arXiv:1406.1050

1

10 SNR

100

Slide 7/13

Introduction

Slice reconciliation

High bit rate CVQKD

Summary

Source Coding m qm 1 , . . . , qn

x1 , . . . , xn

Q

q21 , . . . , q2n

ENCm ENC2

m sm 1 , . . . , sn(1−Rm )

s21 , . . . , s2n(1−R ) 2

DECm DEC2

q11 , . . . , q1n

m qˆ m 1 , . . . , qˆ n

qˆ 21 , . . . , qˆ 2n qˆ 11 , . . . , qˆ 1n

Alice y1 , . . . , yn

Bob

Each slice of the m-bit source is independently encoded

arXiv:1406.1050

Slide 8/13

Introduction

Slice reconciliation

High bit rate CVQKD

Summary

Source Coding m qm 1 , . . . , qn

x1 , . . . , xn

Q

q21 , . . . , q2n

ENCm ENC2

m sm 1 , . . . , sn(1−Rm )

s21 , . . . , s2n(1−R ) 2

DECm DEC2

q11 , . . . , q1n

m qˆ m 1 , . . . , qˆ n

qˆ 21 , . . . , qˆ 2n qˆ 11 , . . . , qˆ 1n

Alice Bob

y1 , . . . , yn

Each slice of the m-bit source is independently encoded A different binary code of the appropriate rate is used for each layer arXiv:1406.1050

Slide 8/13

Introduction

Slice reconciliation

High bit rate CVQKD

Summary

Source Coding m qm 1 , . . . , qn

x1 , . . . , xn

Q

q21 , . . . , q2n

ENCm ENC2

m sm 1 , . . . , sn(1−Rm )

s21 , . . . , s2n(1−R ) 2

DECm DEC2

q11 , . . . , q1n

m qˆ m 1 , . . . , qˆ n

qˆ 21 , . . . , qˆ 2n qˆ 11 , . . . , qˆ 1n

Alice Bob

y1 , . . . , yn

Each slice of the m-bit source is independently encoded A different binary code of the appropriate rate is used for each layer Very noisy slices are transmitted unencoded arXiv:1406.1050

Slide 8/13

Introduction

Slice reconciliation

High bit rate CVQKD

Summary

Effect of imperfect codes on reconciliation efficiency Perfect codes βdisc

arXiv:1406.1050

H(Q(X)) − m + = I(X; Y)

Pm

i=1 Ci

Slide 9/13

Introduction

Slice reconciliation

High bit rate CVQKD

Summary

Effect of imperfect codes on reconciliation efficiency Perfect codes βdisc

H(Q(X)) − m + = I(X; Y)

Pm

i=1 Ci

Ri < Ci :

P H(Q(X)) − m + m i=1 βci Ri β= I(X; Y)

with βci = Ri /Ci

arXiv:1406.1050

Slide 9/13

Introduction

Slice reconciliation

High bit rate CVQKD

Summary

Effect of imperfect codes on reconciliation efficiency Perfect codes βdisc

H(Q(X)) − m + = I(X; Y)

Pm

i=1 Ci

Ri < Ci :

P H(Q(X)) − m + m i=1 βci Ri β= I(X; Y)

with βci = Ri /Ci Equilibrium between number of slices m and βc arXiv:1406.1050

Slide 9/13

Introduction

Slice reconciliation

High bit rate CVQKD

Summary

Slice number optimization m=3

m=4

m=5

1

0.95

β

0.9

0.85

0.8

0.75

0.7 1

10 SNR

arXiv:1406.1050

Slide 10/13

Introduction

Slice reconciliation

High bit rate CVQKD

Summary

Reconciliation Efficiency

Good efficiencies in the SNR range [1, 60]

arXiv:1406.1050

SNR Efficiency 0.55 93.4% 93.7% 0.86 1 94.2% 3 94.1% 5.12 94.4% 14.57 95.8% 94.8% 66.10

Slide 11/13

Introduction

Slice reconciliation

High bit rate CVQKD

Summary

Reconciliation Efficiency

Good efficiencies in the SNR range [1, 60] New LDPC codes with βc > 0.95

arXiv:1406.1050

SNR Efficiency 0.55 93.4% 93.7% 0.86 1 94.2% 3 94.1% 5.12 94.4% 14.57 95.8% 94.8% 66.10

Slide 11/13

Introduction

Slice reconciliation

High bit rate CVQKD

Summary

Reconciliation Efficiency

Good efficiencies in the SNR range [1, 60] New LDPC codes with βc > 0.95 Constant step

arXiv:1406.1050

SNR Efficiency 0.55 93.4% 93.7% 0.86 1 94.2% 3 94.1% 5.12 94.4% 14.57 95.8% 94.8% 66.10

Slide 11/13

Introduction

Slice reconciliation

High bit rate CVQKD

Summary

Reconciliation Efficiency

Good efficiencies in the SNR range [1, 60] New LDPC codes with βc > 0.95 Constant step 3/5 Slices

arXiv:1406.1050

SNR Efficiency 0.55 93.4% 93.7% 0.86 1 94.2% 3 94.1% 5.12 94.4% 14.57 95.8% 94.8% 66.10

Slide 11/13

Introduction

Slice reconciliation

High bit rate CVQKD

Summary

Reconciliation Efficiency

Good efficiencies in the SNR range [1, 60] New LDPC codes with βc > 0.95 Constant step 3/5 Slices For SNR< 1 (Jouguet et al, NP 2013) arXiv:1406.1050

SNR Efficiency 0.0075 95.9% 96.6% 0.0145 0.029 96.9% 0.075 95.8% 0.161 93.1% 1.097 93.6%

Slide 11/13

Introduction

Slice reconciliation

High bit rate CVQKD

Summary

Application to state of the art CVQKD Coherent states with homodyne measurement

arXiv:1406.1050

Slide 12/13

Introduction

Slice reconciliation

High bit rate CVQKD

Summary

Application to state of the art CVQKD Coherent states with homodyne measurement Asymptotic key rate / collective attacks

arXiv:1406.1050

Slide 12/13

Introduction

Slice reconciliation

High bit rate CVQKD

Summary

Application to state of the art CVQKD Coherent states with homodyne measurement Asymptotic key rate / collective attacks ξ = 0.0015VA , α = 0.2, η = 0.6, velec = 0.01, sifting = 10%, clock = 1MHz arXiv:1406.1050

Slide 12/13

Introduction

Slice reconciliation

Distance 0.1 35 50 65 70

High bit rate CVQKD

Summary

1 MHz 1.04 × 106 1.4 × 104 5.4 × 103 2.5 × 103 1.9 × 103

Application to state of the art CVQKD Coherent states with homodyne measurement Asymptotic key rate / collective attacks ξ = 0.0015VA , α = 0.2, η = 0.6, velec = 0.01, sifting = 10%, clock = 1MHz arXiv:1406.1050

Slide 12/13

Introduction

Slice reconciliation

Distance 0.1 35 50 65 70

1 MHz 1.04 × 106 1.4 × 104 5.4 × 103 2.5 × 103 1.9 × 103

High bit rate CVQKD

Summary

50 MHz 5.2 × 107 6.8 × 105 2.7 × 105 1.2 × 105 9.6 × 104

Application to state of the art CVQKD Coherent states with homodyne measurement Asymptotic key rate / collective attacks ξ = 0.0015VA , α = 0.2, η = 0.6, velec = 0.01, sifting = 10% arXiv:1406.1050

Slide 12/13

Introduction

Slice reconciliation

Distance 0.1 35 50 65 70

1 MHz 1.04 × 106 1.4 × 104 5.4 × 103 2.5 × 103 1.9 × 103

High bit rate CVQKD

50 MHz 5.2 × 107 6.8 × 105 2.7 × 105 1.2 × 105 9.6 × 104

Summary

DVQKD (1 GHz) 2.4 × 106 1.2 × 106 1.8 × 105 5.2 × 104

Comparison with DVQKD Experiment with highest throughput (Patel et al, APL 2014.)

arXiv:1406.1050

Slide 12/13

Introduction

Slice reconciliation

Distance 0.1 35 50 65 70

1 MHz 1.04 × 106 1.4 × 104 5.4 × 103 2.5 × 103 1.9 × 103

High bit rate CVQKD

50 MHz 5.2 × 107 6.8 × 105 2.7 × 105 1.2 × 105 9.6 × 104

Summary

DVQKD (1 GHz) 2.4 × 106 1.2 × 106 1.8 × 105 5.2 × 104

Comparison with DVQKD Experiment with highest throughput (Patel et al, APL 2014.) Multiplexed signals

arXiv:1406.1050

Slide 12/13

Introduction

Slice reconciliation

Distance 0.1 35 50 65 70

1 MHz 1.04 × 106 1.4 × 104 5.4 × 103 2.5 × 103 1.9 × 103

High bit rate CVQKD

50 MHz 5.2 × 107 6.8 × 105 2.7 × 105 1.2 × 105 9.6 × 104

Summary

DVQKD (1 GHz) 2.4 × 106 1.2 × 106 1.8 × 105 5.2 × 104

Comparison with DVQKD Experiment with highest throughput (Patel et al, APL 2014.) Multiplexed signals Comparable throughput arXiv:1406.1050

Slide 12/13

Introduction

Slice reconciliation

High bit rate CVQKD

Summary

Summary β > 0.93 for all practical SNRs

arXiv:1406.1050

Slide 13/13

Introduction

Slice reconciliation

High bit rate CVQKD

Summary

Summary β > 0.93 for all practical SNRs Applied to state of the art CVQKD (1 MHz)

arXiv:1406.1050

Slide 13/13

Introduction

Slice reconciliation

High bit rate CVQKD

Summary

Summary β > 0.93 for all practical SNRs Applied to state of the art CVQKD (1 MHz) d < 100 m, more than 1 bit per symbol can be distilled

arXiv:1406.1050

Slide 13/13

Introduction

Slice reconciliation

High bit rate CVQKD

Summary

Summary β > 0.93 for all practical SNRs Applied to state of the art CVQKD (1 MHz) d < 100 m, more than 1 bit per symbol can be distilled Projections for improved clock rate (50 MHz) would render throughputs comparable to DVQKD

arXiv:1406.1050

Slide 13/13

High Bit Rate Continuous-Variable Quantum Key ...

Introduction. Slice reconciliation. High bit rate CVQKD. Summary. Quantum Key Distribution. Quantum Channel. IAB. IAE. IBE. Exchange of quantum states. Induced correlations. arXiv:1406.1050. Slide 2/13 ...

1002KB Sizes 0 Downloads 239 Views

Recommend Documents

High-bit-rate continuous-variable quantum key ...
Oct 22, 2014 - High-bit-rate continuous-variable quantum key distribution. Paul Jouguet,1 David ..... is the loss coefficient of the optical fiber. For distances ...

Evaluation of Watermarking Low Bit-rate MPEG-4 Bit ... - CiteSeerX
other digital networks are means for freely and widely distributing high fidelity duplicates of digital media, which is a boon for authorized content distribution but ...

Evaluation of Watermarking Low Bit-rate MPEG-4 Bit ... - CiteSeerX
using a spatial-domain or transform-domain watermarking technique, and then ..... Average subjective test scores of each watermarked bit-stream and bit-rate.

Bit Error Rate Performance of Multiple-Channel OTDM ...
APIDLY GROWING Internet traffic volume is the major driving force for the deployment of low cost ultrahigh capacity optically-transparent photonic ... MUX) an optical fiber link, a CSMZ demultiplexer, an optical. R. 1930-529X/07/$25.00 © 2007 ...

Bit Error Rate Performance Comparison of Equal ...
Channel Spacing and Repeated Unequal Spacing in. Reducing the ... Email:[email protected]. †. Department of ... (DSFs) in optical WDM systems enable a very high bit rate by keeping ..... dispersion schemes,” Opt. Eng., vol. 42, pp.

Bit Error Rate Performance Comparison of Equal ...
Abstract—The bit error rate (BER) performance comparison of a wavelength ... decreases due to a number of fiber nonlinearity effects, like. FWM, self and cross ...

Digital watermarking of low bit-rate advanced simple ...
THE INTERNET and other digital networks offer free and wide distribution of ... providers track, monitor, and enforce usage rights in both digital and analog form. ... 12 Mb/s, which are more suitable for DVD and digital TV broadcast than for low ...

Jointly optimized bit-rate/delay control policy for ...
Wireless Packet Networks With Fading Channels. Javad Razavilar ... K. J. R. Liu and S. I. Marcus are with the Electrical and Computer Engineering. Department and Institute ...... B.S. degree from the National Taiwan University,. Taiwan, R.O.C. ...

Digital watermarking of low bit-rate advanced simple ...
providers track, monitor, and enforce usage rights in both digital and ..... of the spread-spectrum message signal for coping with host signal interference and sub-.

quantum key distribution pdf
quantum key distribution pdf. quantum key distribution pdf. Open. Extract. Open with. Sign In. Main menu. Displaying quantum key distribution pdf. Page 1 of 1.

KEY Program Overview.pages - SET High
Report cards every 9 weeks. UC a-g Courses. • These are the required courses for ... One-to-one laptop program. PROGRAMS. EXPLANATION. Coleman Tech ...

Transforms for High-Rate Distributed Source Coding
As for quantization for distributed source coding, optimal design of ... expected Lagrangian cost J = D+λ R, with λ a nonnegative real number, for high rate R.

A Wavelet-Based 128-bit Key Generator Using ...
using ECG signals from MIT-BIH database. ... importance due to the actual security concerns in .... complement Hamming distance and the security factor.

Enhancing practical security of quantum key distribution ...
Feb 28, 2005 - Similarly, for each µj, Bob's detection data yields a 1−ϵ confidence interval for ... ice can fire any number of her lasers simultaneously. In the following .... ometry Center's Qhull program [18] to compute halfspace intersections

Floodlight quantum key distribution: Demonstrating a ...
Jan 26, 2017 - 2Department of Physics, Massachusetts Institute of Technology, ... pad, they can then communicate with information-theoretic ...... BA(fE) + 1. 0.

B Tech Project Quantum Composite-Key Lock
The raw key thus obtained has a 25 % error rate (without any assumed ..... bank account, or access on a vault, or an industrial secret or to launch a missile with.

Enhancing practical security of quantum key distribution ...
Feb 28, 2005 - block all of Alice's single-photon signals and learn the en- tire key. However, decoy .... ice can fire any number of her lasers simultaneously. In.

High-Rate Quantization and Transform Coding ... - Semantic Scholar
Keywords: high-rate quantization, transform coding, side information, Wyner-Ziv coding, distributed source cod- ing, noisy ...... ¯ΣX|Y is the covariance of the error of the best estimate of X ...... bank of turbo decoders reconstruct the quantized

Implementation of Viterbi decoder for a High Rate ...
Code Using Pre-computational Logic for TCM Systems .... the same number of states and all the states in the same cluster will be extended by the same BMs.

The growth rate of significant regressors for high ...
journal homepage: www.elsevier.com/locate/stapro. The growth ... However, we wonder if we can have a faster growth rate for quantile regression so that the.

High-Rate Quantization and Transform Coding ... - Semantic Scholar
We implement a transform-domain Wyner-Ziv video coder that encodes frames independently but decodes ... parity-check codes, which are approaching the.

PISA reveals high failure rate among Spanish-speaking children.pdf ...
SUMMARY OF THE PRESS RELEASE. PISA reveals a worrying high academic. failure rate among Spanish-speaking. children in Catalonia. Page 1 of 2 ...