advertisement

A Robust 10MHz Reference Clock Input Protection Circuit and Distributor for RF Systems – Design Note 514 Michel Azarian Introduction Designing the reference input circuit for an RF system can prove tricky. One challenge is maintaining the phase noise performance of the input clock while meeting the protection, buffering and distribution requirements for the clock. This article shows how to design a 10MHz reference input circuit and optimize its performance. Design Requirements RF instruments and wireless transceivers often feature an input for an external reference clock, such as the ubiquitous 10MHz reference input port found on RF instruments. Many of these same systems include a provision to distribute the reference clock through the system. Figure 1 shows a common scheme, where the reference clock supplies the reference input to two distinct phase-locked loops (PLLs). A well-designed, robust input would accept both sine and square wave signals over a wide range of amplitudes. It would maintain a constant signal level drive to the destination PLL inputs inside the system, even in the face of varied inputs. The exposed-to-the-world reference input port should have overvoltage/overpower protection. Most importantly, the inevitable degradation in the phase noise performance of the clock signal should be minimized. Design Implementation The LTC ®6957 is a very low additive phase noise (or jitter) dual-output clock buffer and logic translator. The input of the LTC6957 accepts a sine or a square wave over a wide range of amplitudes and drives loads at constant amplitude. 10MHz PLL1 PLL1 REF 10MHz REF IN

LO1

PROTECTION 10MHz PLL2 LO2 OR PLL2 REF ADC/DAC CLOCK DN4MA F01

Figure 1. Block Diagram of a Common Reference Input and Reference Distribution for an RF System 05/13/514

The LTC6957 offers various output logic signal options: PECL, LVDS and CMOS (in-phase and complementary), allowing it to drive a wide range of loads. Figure 2 shows a 10MHz reference input circuit using the LTC6957-3, which produces two in-phase CMOS outputs. The transformer shown in Figure 2 serves several functions. First, in conjunction with the Schottky diodes following it, it offers input overpower/overvoltage protection. The diodes limit the AC voltage seen by the LTC6957-3. The WBC16-1T can handle up to 0.25W power (3.5VRMS into 50Ω). The transformer also isolates the connector ground— which is usually tied to the chassis of the RF system— from the internal analog ground of the system. Furthermore, the transformer applies a voltage gain to the incoming signal, thus steepening the edges seen by the LTC6957-3. This helps reduce AM-to-PM noise conversion, which in turn limits phase noise degradation, especially with small input signals. The WBC16‑1T has a voltage gain of four. It is possible to rely on the transformer’s voltage gain of four, as opposed to its maximum and ideal power gain of one, because the LTC6957-3 presents a high impedance load to the transformer. R1 and R2 can be adjusted in combination to match the input port to 50Ω. For small input signals, the diodes are off and the transformer sees a load of 804Ω in Figure 2. That load is reflected to the input as approximately 50Ω because of the transformer’s primary-to-secondary impedance ratio of 16. For larger input signals, the Schottky diodes turn on, reducing the 604Ω resistance to nearly a short circuit. This degrades the reference input return loss—a problem that can be avoided by adjusting the values of R1 and R2, but there are tradeoffs to doing so. For large input signals, the input return loss can be improved by increasing R1’s value, and reducing R2’s L, LT, LTC, LTM, Linear Technology, and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

3.3V

3.3V 0.1µF 0.1µF 10MHz REF IN –10dBm to 24dBm

R1 100Ω

WBC16-1T

0.1µF R1 100Ω

HSMS-281C R2 604Ω

0.1µF FILTA

PHASE NOISE FLOOR = –169dBc/Hz AT 100kHz OFFSET

2 3

0.1µF

4 5 FILTB

WENZEL 501-04608A

1

10MHz TEST TONE –10dBm to 10dBm PHASE NOISE FLOOR = –163dBc/Hz AT100kHz OFFSET AND –10dBm PHASE NOISE FLOOR = –169dBc/Hz AT100kHz OFFSET AND 10dBm

6

LTC6957HMS-3 12 SD1 FILTA 11 + + VOUT V 10 IN+ OUT1 9 OUT2 IN– 8 GNDOUT GND 7 SD2 FILTB

0.1µF

0.1µF

CMOS OUT1, 10MHz CMOS OUT2, 10MHz

AGILENT E5052A 100Ω

PHASE NOISE FLOOR READING

100Ω

DN514 F02

Figure 2. 10MHz Reference Input Circuit Employing the LTC6957-3 with Front-End Protection, Shown with Test Signal and Phase Noise Measurement Set-Up

The AC-coupling capacitor separating the connector from the transformer in Figure 2 offers input protection from DC sources. The LTC6957-3 has internal lowpass filters that can be selected via the FILTA and FILTB pins. This option strategically limits the bandwidth of the LTC6957’s first amplifier stage, and hence, the additive phase noise of the circuit, especially when the input signal is weak as shown below. Performance A 10MHz OCXO is connected to the input of the circuit via a step attenuator as shown in Figure 2. The reference input signal is varied between –10dBm and 10dBm while measuring the phase noise floor at the output of the LTC6957-3 with different input filter settings using the Agilent E5052A signal source analyzer. Figure 3 shows the phase noise floor of the 10MHz CMOS clock output of the LTC6957-3 measured at a 100kHz offset. If the amplitude of the externally applied 10MHz reference signal is not known, pulling FILTA low and FILTB high yields good overall phase noise performance as Data Sheet Download

www.linear.com/LTC6957

Linear Technology Corporation

shown in Figure 3. Nevertheless, performance can be optimized if the applied signal level at the input is measured and appropriate filter settings are applied. The R1 and R2 values chosen in Figure 2 result in an input return loss of –9dB when the reference input’s power is 0dBm into 50Ω. The return loss is better at lower input powers and worse at higher powers. PHASE NOISE FLOOR AT 100kHz OFFSET (dBc/Hz)

value, such that their combined series resistance remains around 800Ω. However, since R1 appears in series with the signal, it adds noise to it. A larger R1 comes in combination with a smaller R2, resulting in a smaller portion of the signal appearing at the LTC6957-3’s input, further degrading the phase noise performance. In other words, the designer can trade off phase noise performance for input return loss by playing with the values of R1 and R2. The values shown in Figure 2 strike an overall balance of these two performance metrics.

–140 –145 –150

FILTA, FILTB = L, L FILTA, FILTB = L, H FILTA, FILTB = H, L FILTA, FILTB = H, H OPTIMUM FILT SETTINGS

–155 –160 –165 –170 –10

–5 0 5 10MHz REFERENCE INPUT POWER WITH REFERENCE TO 50Ω (dBm)

10 DN514 F03

Figure 3. 100kHz Offset Phase Noise Floor at the Output of the LTC6957-3 vs 10MHz Reference Input Power Level for Various LTC6957 Filter Settings

Conclusion A robust, high performance 10MHz reference input circuit is built around the LTC6957-3. Features include a wide range of input signal type and level compatibility, protection and clock distribution with limited phase noise degradation. The circuit’s phase noise and input return loss are evaluated and optimized. The LTC6957-3 simplifies the design process while achieving excellent overall performance. For applications help, call (408) 432-1900 dn514f LT/AP 0513 196K • PRINTED IN THE USA

1630 McCarthy Blvd., Milpitas, CA 95035-7417 (408) 432-1900



FAX: (408) 434-0507 ● www.linear.com

 LINEAR TECHNOLOGY CORPORATION 2013

DN514 - A Robust 10MHz Reference Clock Input ... - Linear Technology

of Linear Technology Corporation. All other trademarks are the ... RF instruments and wireless transceivers often feature an input for an external reference clock, ...

410KB Sizes 0 Downloads 235 Views

Recommend Documents

AN165 - Multi-Part Clock Synchronization ... - Linear Technology
EZSync is a simple way to generate synchronized clock outputs from multiple ... AN165-3 an165f. Figure 2. Sync Methods and Block Diagrams. RDIV. R = 1. OUT1. + ..... For the EZSync protocol we call this “conductor” part the CONTROLLER.

AN165 - Multi-Part Clock Synchronization ... - Linear Technology
Individual appendices follow providing a de- tailed description .... the best phase noise performance and hence the lowest jitter. ...... All of Linear Tech- nology's ...

DN351 - Versatile Micropower Voltage Reference ... - Linear Technology
age divider programs the buffer op amp to provide gain. Figure 2 shows ... This configuration provides program- mable reference ... The LT6650 often finds use in single supply data acqui- ... that software algorithms can accurately “auto-zero”.

DN1040 - 60V Input Monolithic Converter Powers ... - Linear Technology
important housekeeping tasks, such as data reten- ... is lost. Typical hold-up solutions employ dedicated controllers and large storage capacitors [1, 2] thus.

DN1040 - 60V Input Monolithic Converter Powers ... - Linear Technology
tion, for a short period before all available energy ... registered trademarks of Linear Technology Corporation. ... But if the required hold-up energy is relatively.

Wide Input Voltage Range Boost/Inverting/SEPIC ... - Linear Technology
of Linear Technology Corporation. All other trademarks are the property ... lithium-ion powered systems to automotive, industrial and telecommunications power ...

Bootstrap Biasing of High Input Voltage Step ... - Linear Technology
Introduction. High voltage buck DC/DC controllers such as the LTC3890. (dual output) and LTC3891 (single output) are popular in automotive applications due ...

RF Input Impedance Matching Data for the ... - Linear Technology
In a real world application, a. DC block function must be included as part of the matching network design. The measured LTC5564 input impedance is shown in ...

DN540 - 36V Input, 8.5A Buck-Boost µModule ... - Linear Technology
call (408) 432-1900, Ext. 3568. Figure 2. The Efficiency for the Figure 1 Circuit Is as High as 93% at 24V Input. The Output Current. Is Derated at Input Voltages ...

Robust High Voltage Over-The-Top Op Amps ... - Linear Technology
Design Note 533. Glen Brisebois .... considerations necessary when designing robustness into high ... the industrial system designer a precision solution for high ...

Robust High Voltage Over-The-Top Op Amps ... - Linear Technology
drive the output stage. As the ... Over-The-Top Input Stage on LT6015 Can Common Mode to 76V, Independent of Positive Supply Voltage. Q12. NPN ... the FET can turn hard on. This is ... down to 0.2V. Circuit gain is recovered in the second.

DN568 Reference Filter Increases 32-Bit ADC ... - Linear Technology
While reference noise has no effect at zero-scale, at full-scale any noise on the reference will be visible in the output code. This is why dynamic range ... voltage, produces a maximum error of 6µV which is relatively insignificant compared to the

Don't Be Fooled by Voltage Reference Long ... - Linear Technology
Long-term drift cannot be extrapolated from accelerated high temperature testing. The only way long-term drift can be determined is to measure it over the time ...

Robust Multivariable Linear Parameter Varying ...
A. Zin, 2005 (active suspension control toward global chassis control). Investigations on: ▷ Vehicle dynamics modeling & analysis. ▷ (Semi-)active suspensions modeling & control. ▷ Global Chassis Control (GCC) involving suspensions, steering &

Robust Bayesian general linear models
Available online on ScienceDirect (www.sciencedirect.com). ... This allows for Bayesian model comparison and ..... Proceedings of the 12th Annual meeting of.

Crocs: Cross-Technology Clock Synchronizationfor ...
(a) WiFi beacon sensed in the ZigBee device (b) WiFi packets with different energy sensed in the ZigBee device. (c) WiFi packets with ... terval or the transmission power of transmitting packets, the. RSS sensed by ZigBee will ...... Application-laye

High Input IP3 Mixer Enables Robust VHF Receivers, Design Note ...
Introduction. An increasing number of applications occupy the. 30MHz to 300MHz very high frequency (VHF) band. Television and radio broadcasting, navigation controls and amateur radios are a few examples. Modern RF component development is aimed at m

LTC1560-1 - Linear Technology
Gain vs Frequency of the 1MHz and 500kHz. Figure 1. A Typical ... 6. 5. GND. VIN. GND. V–. VOUT. SHDN. V+. 0.5fC/fC. 5V. 3. 1k. 2. 4. VOUT. 7. LT®1360. 5V. – 5V. 8 ... DC offset of the 1/2 LT1364 plus its offset current times the 10k resistor ..

DN172 - Linear Technology
response is excellent, with less than 5μs recovery time from a ±400mA ... Data Sheet Download ... LTC1504 is the best solution where efficiency, especially.

DN518 - Linear Technology
possible to produce a low noise supply in this way, it requires careful ... typical switching regulator, and (3) the LTM8028 low ... call (408) 432-1900, Ext. 3747.

DN375 - Linear Technology
call (408) 432-1900. RF FREQUENCY (GHz) ... For ACPR/AltCPR, center the measurement band 5MHz/10MHz above the center of the highest carrier. To find ...

DN531 - Linear Technology
SiR664DP. M2. SiR664DP. L1. 5.6µH. WÜRTH 7443556560. M3. SiR422DP. M5. SiR422DP. D6. B360A. C19. 0.22µF. 25V. 0603. C20. 0.22µF. 25V. 0603. C21.

eterna1 - Linear Technology
Dec 16, 2015 - ... If testing encompasses measuring ETERNA1's output power or PSD, ..... go to: http://csrc.nist.gov/groups/STM/cavp/documents/aes/aesval.html.