Digital Control of a Power Inverter Fabio Celani† , Michele Macellari‡ , Alfiero Schiaratura‡ and Luigi Schirone‡ † Department of Computer and Systems Science Antonio Ruberti

Sapienza University of Rome Italy

‡ Department of Aerospace and Astronautical Engineering Sapienza University of Rome Italy

The Eleventh IASTED Conference on Control and Applications Cambridge, UK July 14th , 2009

1 / 14

Outline

I

background on digital control of power inverters

2 / 14

Outline

I

background on digital control of power inverters

I

novel approach based on robust linear control

2 / 14

Outline

I

background on digital control of power inverters

I

novel approach based on robust linear control

I

experimental results

2 / 14

Power Inverters

I

(static) power inverter DC power supply → AC power supply

I

strict specifications on total harmonic distorsion I I

over wide range of DC input voltages in presence of severe load variations

3 / 14

Pulse Witdth Modulation (PWM) Power Inverter



TON + TOFF = TS constant

duty cycle d =

TON TOFF

Vr (t) biased sinusoidal reference voltage Controller enforces Vo (t) ' Vr (t)

4 / 14

Pulse Witdth Modulation (PWM) Power Inverter



TON + TOFF = TS constant

duty cycle d =

TON TOFF

Vr (t) biased sinusoidal reference voltage Controller enforces Vo (t) ' Vr (t) Vo (s) = G (s)Vin (s)

G (s) =

1 LCs 2 + RL s+1

4 / 14

Pulse Witdth Modulation (PWM) Power Inverter



TON + TOFF = TS constant

duty cycle d =

TON TOFF

Vr (t) biased sinusoidal reference voltage Controller enforces Vo (t) ' Vr (t) Vo (s) = G (s)Vin (s)

G (s) =

1 LCs 2 + RL s+1

Vin (t) = Vcc d(t)

4 / 14

Pulse Witdth Modulation (PWM) Power Inverter



TON + TOFF = TS constant

duty cycle d =

TON TOFF

Vr (t) biased sinusoidal reference voltage Controller enforces Vo (t) ' Vr (t) Vo (s) = G (s)Vin (s)

Vr (t) +



G (s) =

Controller

1 LCs 2 + RL s+1

d(t)

Vin (t) = Vcc d(t)

VccG(s)

Vo(t)

circuit

4 / 14

Digital Control

Vr∗(k)

Vr (t) Ts

+

e∗(k) digital d(t) d∗(k) VccG(s) ZOH controller −

Vo(t)

Vo∗(k) Ts

digital controller enforces Vo (t) ' Vr (t)

5 / 14

Digital Control

Vr∗(k)

Vr (t) Ts

+

e∗(k) digital d(t) d∗(k) VccG(s) ZOH controller −

Vo(t)

Vo∗(k) Ts

digital controller enforces Vo (t) ' Vr (t) previous designs 1. sliding-mode control (Jezernik et al., Biel et al., Ramos et al.) I I

pros: robustness w.r.t. parametric uncertainties and external disturbances cons: chattering

5 / 14

Digital Control

Vr∗(k)

Vr (t) Ts

+

e∗(k) digital d(t) d∗(k) VccG(s) ZOH controller −

Vo(t)

Vo∗(k) Ts

digital controller enforces Vo (t) ' Vr (t) previous designs 1. sliding-mode control (Jezernik et al., Biel et al., Ramos et al.) I I

pros: robustness w.r.t. parametric uncertainties and external disturbances cons: chattering

2. dead-beat control (Kawabata et el, Kojima et al.) I I

pros: fast transient response cons: sensitivity to parametric uncertainties and external disturbances

5 / 14

Digital Control

Vr∗(k)

Vr (t) Ts

+

e∗(k) digital d(t) d∗(k) VccG(s) ZOH controller −

Vo(t)

Vo∗(k) Ts

digital controller enforces Vo (t) ' Vr (t) previous designs 1. sliding-mode control (Jezernik et al., Biel et al., Ramos et al.) I I

pros: robustness w.r.t. parametric uncertainties and external disturbances cons: chattering

2. dead-beat control (Kawabata et el, Kojima et al.) I I

pros: fast transient response cons: sensitivity to parametric uncertainties and external disturbances

novel design: robust linear control

5 / 14

Robust Linear Control w(t) Vr (t) Ts

Vr∗(k)



e (k) +



R∗(z)



d (k)

ZOH

d(t)

VccG(s)

+ V (t) o +

Vo∗(k) Ts

Vr (t) = Vdc + Vac cos(2πf0 t)

w (t) = step(t)

uncertain Vcc

objective Vo (t) − Vr (t) → 0

6 / 14

Robust Linear Control w(t) Vr∗(k)

Vr (t) Ts



e (k) +



R∗(z)



d (k)

ZOH

d(t)

+ V (t) o

VccG(s)

+

Vo∗(k) Ts

Vr (t) = Vdc + Vac cos(2πf0 t)

w (t) = step(t)

uncertain Vcc

objective Vo (t) − Vr (t) → 0

Discrete-time Equivalent Vr∗(k)

e∗(k) +



R∗(z)

Vr∗ (k) = Vdc + Vac cos(θk) G ∗ (z)

d∗(k)

VccG∗(z)

θ = 2πf0 TS

w∗(k) + +

Vo∗(k)

w ∗ (k) = step∗ (k)

zero-order hold equivalent of G (s)

objective Vo∗ (k) − Vr∗ (k) → 0 6 / 14

Robust Linear Control (cont’d) w∗(k) Vr∗(k)

e∗(k) +



R∗(z)

d∗(k)

VccG∗(z)

Vr∗ (k) = Vdc + Vac cos(θk) θ = 2πf0 TS

+ +

Vo∗(k)

w ∗ (k) = step∗ (k)

objective Vo∗ (k) − Vr∗ (k) → 0

7 / 14

Robust Linear Control (cont’d) w∗(k) Vr∗(k)

e∗(k) +



R∗(z)

d∗(k)

VccG∗(z)

Vr∗ (k) = Vdc + Vac cos(θk) θ = 2πf0 TS

+ +

Vo∗(k)

w ∗ (k) = step∗ (k)

objective Vo∗ (k) − Vr∗ (k) → 0 ˜ R ∗ (z) = R(z)

z2 (z − 1)(z − e jθ )(z − e −jθ )

poles in z = 1, z = e ±jθ → asymptotic tracking and disturbance rejection

7 / 14

Robust Linear Control (cont’d) w∗(k) Vr∗(k)

e∗(k) +



R∗(z)

d∗(k)

VccG∗(z)

Vr∗ (k) = Vdc + Vac cos(θk) θ = 2πf0 TS

+ +

Vo∗(k)

w ∗ (k) = step∗ (k)

objective Vo∗ (k) − Vr∗ (k) → 0 ˜ R ∗ (z) = R(z)

z2 (z − 1)(z − e jθ )(z − e −jθ )

poles in z = 1, z = e ±jθ → asymptotic tracking and disturbance rejection term z 2 at the numerator

I

latency time reduced

I

strictly proper R ∗ (z)

7 / 14

Robust Linear Control (cont’d) w∗(k) Vr∗(k)

e∗(k) +



R∗(z)

d∗(k)

VccG∗(z)

Vr∗ (k) = Vdc + Vac cos(θk) θ = 2πf0 TS

+ +

Vo∗(k)

w ∗ (k) = step∗ (k)

objective Vo∗ (k) − Vr∗ (k) → 0 ˜ R ∗ (z) = R(z)

z2 (z − 1)(z − e jθ )(z − e −jθ )

poles in z = 1, z = e ±jθ → asymptotic tracking and disturbance rejection term z 2 at the numerator



˜ R(z)

I

latency time reduced

I

strictly proper R ∗ (z) z2 V G∗(z) (z−1)(z−ejθ )(z−e−jθ ) cc

˜ R(z) stabilizer robust over a wide range of Vcc ’s 7 / 14

Robust Stabilization −

f0 =400 Hz

Ts =20 µs

˜ R(z)

z2 V G∗(z) (z−1)(z−ejθ )(z−e−jθ ) cc

0 =50 V V 0 L=20µH C =50 µF R=4 Ω Vcc cc = Vcc ±30%

0 G ∗ (z) z 2 9.36(z + 0.97) z 2 Vcc = jθ −jθ j0.05 (z − 1)(z − e )(z − e ) (z − 1)(z − e )(z − e −j0.05 )(z 2 − 1.54z + 0.90)

8 / 14

Robust Stabilization −

f0 =400 Hz

Ts =20 µs

˜ R(z)

z2 V G∗(z) (z−1)(z−ejθ )(z−e−jθ ) cc

0 =50 V V 0 L=20µH C =50 µF R=4 Ω Vcc cc = Vcc ±30%

0 G ∗ (z) z 2 9.36(z + 0.97) z 2 Vcc = jθ −jθ j0.05 (z − 1)(z − e )(z − e ) (z − 1)(z − e )(z − e −j0.05 )(z 2 − 1.54z + 0.90)

Root Locus

1 0.8 0.6

Imaginary Axis

0.4 0.2 0 −0.2 −0.4 −0.6 −0.8 −1 −1

−0.5

0 Real Axis

0.5

1

8 / 14

Robust Stabilization ˜ R(z)



z2 V G∗(z) (z−1)(z−ejθ )(z−e−jθ ) cc

35 ≤ Vcc ≤ 65

3.84 10−10 (z + 1)2 ˜ R(z) = (z − 0.9608)2 Root Locus

Root Locus 0.06

1.5

0.05

Imaginary Axis

0.04 0.03

1

0.02 0.01

Imaginary Axis

0

0.5

−0.01 −0.02 0.94

0.96

0.98 Real Axis1

1.02

1.04

0

−0.5

−1

−1.5

−1.5

−1

−0.5

0 Real Axis

0.5

1

1.5

9 / 14

Digital Regulator

w(t) Vr (t) Ts

Vr∗(k)

e∗(k) +



R∗(z)

d∗(k)

ZOH

d(t)

VccG(s)

+ V (t) o +

Vo∗(k) Ts

˜ R ∗ (z) = R(z)

=

z2 (z − 1)(z − e jθ )(z − e −jθ )

3.845 10−10 z 4 + 7.689 10−10 z 3 + 3.845 10−10 z 2 z 5 − 4.919z 4 + 9.68z 3 − 9.527z 2 + 4.689z − 0.9231

10 / 14

Experimental Results - Nominal Conditions

0 = 50 V Vcc = Vcc

Output voltage in steady-state

no load variations

FFT of output voltage in steady-state

11 / 14

Experimental Results - Nonlinear Load 0 = 50 V Vcc = Vcc


 390 Ω R = 4 Ω C = 30 µF R= L

12 / 14

Experimental Results - Nonlinear Load 0 = 50 V Vcc = Vcc


 390 Ω R = 4 Ω C = 30 µF R= L

Output voltage and current

FFT of output voltage in steady-state

transient ends within hundreds of µs’s

12 / 14

Experimental Results - Variations in Vcc

0 = 50 V Vcc

Output voltage corresponding to a +20% step variation of Vcc

Output voltage corresponding to a -20% step variation of Vcc

transient ends within tens of ms’s

13 / 14

Conclusions

I

digital control system for a power inverter effective in presence of fast load variations and over a wide range of DC input voltages

14 / 14

Conclusions

I

digital control system for a power inverter effective in presence of fast load variations and over a wide range of DC input voltages

I

the control algorithm is computationally complex

14 / 14

Digital Control of a Power Inverter

Jul 14, 2009 - Digital Control. V ∗ r (k). +. −. ZOH. VccG(s). V ∗ o (k) d∗(k) d(t). Vo(t). Vr(t) digital controller e∗(k). Ts. Ts digital controller enforces Vo (t) ≃ Vr (t).

341KB Sizes 3 Downloads 230 Views

Recommend Documents

HQ power inverter INV2500.pdf
There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. Main menu.

HQ power inverter INV2500.pdf
Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. HQ power inverter INV2500.pdf. HQ power inverter INV2500.pdf.

Digital control switching power-supply device and information ...
Feb 17, 2012 - (58) Field of Classi?cation Search. 323/283 parallel With normal digital signal processing means that. 323. 223 272' outputs a PWM pulse ...

VTdrive V5-H High Performance Vector Control Inverter User Manual.pdf
Retrying... VTdrive V5-H High Performance Vector Control Inverter User Manual.pdf. VTdrive V5-H High Performance Vector Control Inverter User Manual.pdf.

dynamic-simulation-and-control-of-a-supercritical-co2-power ...
... the apps below to open or edit this item. dynamic-simulation-and-control-of-a-supercritical-co2-p ... n-system-for-small-light-water-reactor-applications.pdf.

dynamic-simulation-and-control-of-a-supercritical-co2-power ...
... parameters provide the. Page 3 of 25. dynamic-simulation-and-control-of-a-supercritical-co2-p ... n-system-for-small-light-water-reactor-applications.pdf.

Implementation of a three-phase inverter with ... - Workrooms Journal
Abstract— In the context of power loads a wind turbine based on a BLDC motor will be programmed ... will simulate the behaviour of a wind turbine using the given input data. ... control strategies on smart grids powered by renewable energies.

DIGITAL CONTROL SYSTEMS.pdf
Page 1 of 3. JE – 1082. II Semester M.E. (Power Electronics) Degree Examination,. July/August 2013. 2K8 PE 214 : DIGITAL CONTROL SYSTEMS. Time : 3 ...

DIGITAL CONTROL SYSTEMS.pdf
1 e z. 1. 1 z. 1. x z 1 aT 1 > − − − = − − − . 12. c) Find the transfer function of zero order hold circuit. 4. 2. a) Find the discrete time output C(z) of a negative ...

Nodel: A digital media control system for museums and ... - GitHub
Apr 2, 2014 - Development of MVMS ended in 2010 and the company ... makes them increasingly attractive venues for hosting commercial ... Museum Victoria staff to access it from any web-enabled device such as a computer, .... Museum Victoria was choos

A Game theoretic Power Control algorithm with Pricing ...
Distance d; Mr -Transmitting antenna; ... mean path gain at a reference distance d = 1 km, s is a log- .... his Masters degree in Communication system.

A Scalable Hierarchical Power Control Architecture for ...
1. SHIP: A Scalable Hierarchical Power Control. Architecture for Large-Scale Data Centers. Xiaorui Wang ... Power consumed by computer servers has become a serious concern in the ... years as more data centers reach their power limits. Therefore, ...

Digital Automatic Sliding Door With a Room Light Control System.pdf
School of Electrical and Electronic Engineering, University of Nottingham, ... door is an automated movable barrier installed in the entry of a room or building to restrict ... Our contributions to the society are times fueled by personal experience 

Digital Automatic Sliding Door With a Room Light Control System.pdf
Digital Automatic Sliding Door With a Room Light Control System.pdf. Digital Automatic Sliding Door With a Room Light Control System.pdf. Open. Extract.

A Simple Distributed Power Control Algorithm for ...
the following advantages: 1) the operations of each SU are simple and ... It is proved that, the CR network with this simple algorithm ...... Wireless Commun., vol.

control of a unified power flow controller (upfc) œa ...
Fig 2.4 Two machine system with Unified Power Flow Controller. 12. Fig 2.5 Attainable sending-end reactive power vs. transmitted power. 14 and receiving-end reactive power vs. transmitted power values with the UPFC at δ=0o, δ=30o,δ=60o,δ=90o. Fig

Human Rights Implications of Crime Control in the Digital Age
Keywords: Internet; Terrorist; social learning theory; Differential Association; .... and websites were reviewed and then limited by numerous duplications and reprints, ..... media. Journal of Aggression, Maltreatment, & Trauma, 9(3/4), 379-390.

Human Rights Implications of Crime Control in the Digital Age
free availability of literature on the public internet, permitting any users to read, .... authored by Stephen Shute, Roger Hood and Florence Seemungal is ...

Human Rights Implications of Crime Control in the Digital Age
2007 International Journal of Criminal Justice Sciences. All rights ..... requirements, especially in case of news gathering and reporting regarding children, and.