.

.

.

...

.

Curvatures of Tangent Hyperquadric Bundles Takamichi Satoh Tohoku University

August 31, 2010 Joint work with Masami Sekizawa Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

1 / 24

Introducton

Introduction

Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

2 / 24

Introducton

THB

(M, g): pseudo-Riemannian manifold g¯: Sasaki metric on the tangent bundle T M over M Let r > 0,  = ±1. The tangent hyperquadric bundle (THB) of radius r over (M, g) is { } Tr M := (x, u) ∈ T M | gx (u, u) = r2 . We induce a pseudo-Riemannian metric g˜r on Tr M from the Sasaki metric g¯. e g r )(x,u) : scalar curvature of THB at (x, u) ∈ T  M. Sc(˜ r

Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

3 / 24

Introducton

THB

(M, g): pseudo-Riemannian manifold g¯: Sasaki metric on the tangent bundle T M over M Let r > 0,  = ±1. The tangent hyperquadric bundle (THB) of radius r over (M, g) is { } Tr M := (x, u) ∈ T M | gx (u, u) = r2 . We induce a pseudo-Riemannian metric g˜r on Tr M from the Sasaki metric g¯. e g r )(x,u) : scalar curvature of THB at (x, u) ∈ T  M. Sc(˜ r

Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

3 / 24

Introducton

THB

(M, g): pseudo-Riemannian manifold g¯: Sasaki metric on the tangent bundle T M over M Let r > 0,  = ±1. The tangent hyperquadric bundle (THB) of radius r over (M, g) is { } Tr M := (x, u) ∈ T M | gx (u, u) = r2 . We induce a pseudo-Riemannian metric g˜r on Tr M from the Sasaki metric g¯. e g r )(x,u) : scalar curvature of THB at (x, u) ∈ T  M. Sc(˜ r

Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

3 / 24

Introducton

THB

(M, g): pseudo-Riemannian manifold g¯: Sasaki metric on the tangent bundle T M over M Let r > 0,  = ±1. The tangent hyperquadric bundle (THB) of radius r over (M, g) is { } Tr M := (x, u) ∈ T M | gx (u, u) = r2 . We induce a pseudo-Riemannian metric g˜r on Tr M from the Sasaki metric g¯. e g r )(x,u) : scalar curvature of THB at (x, u) ∈ T  M. Sc(˜ r

Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

3 / 24

Introducton

theorem 1

e g r )(x,u) > 0 if  = 1, Sc(˜ e g r )(x,u) < 0 if  = −1. ... Sc(˜ . e g r )(x,u) : scalar curvature of THB at (x, u) ∈ Tr M. Sc(˜

Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

.

. . 1 .Theorem . (M, g), dim M ≥ 3 be a pseudo-Riemannian manifold with bounded sectional curvature. =⇒ For each sufficiently small r > 0,

4 / 24

Introducton

Theorem 2

e g r )(x,u) < 0 if  = 1, Sc(˜ e g r )(x,u) > 0 if  = −1. ... Sc(˜ . e g r )(x,u) : scalar curvature of THB at (x, u) ∈ T  M. Sc(˜

.

. . 2 .Theorem . (M, g), dim M ≥ 2 be a pseudo-Riemannian manifold of constant sectional curvature c 6= 0. =⇒ For each sufficiently large r > 0,

r

Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

5 / 24

Introducton

Corollary

.

Combining above results, we obtain the following. . . Corollary .. (M, g), dim M ≥ 3 be a pseudo-Riemannian manifold of constant sectional curvature c 6= 0. e g r ) ≡ c˜. ∀˜ c ∈ R, ∃r > 0 s.t. Sc(˜ ..=⇒ . . e g r )(x,u) : scalar curvature of THB at (x, u) ∈ Tr M. Sc(˜

Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

6 / 24

Definition of THB

Definition of THB

Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

7 / 24

Definition of THB

THB

where ...

Tr−1 M = ∅ Tr+1 M = ∅

if g is positive definite, if g is negative definite.

.

.

(M, g) : pseudo-Riemannian manifold . . .Definition . Let r > 0. The tangent hyperquadric bundle (THB) of radius r over (M, g) is defined by } { Tr M := (x, u) ∈ T M | gx (u, u) = r2

g is positive definite =⇒ Tr M = Tr M. Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

8 / 24

Definition of THB

THB

where ...

Tr−1 M = ∅ Tr+1 M = ∅

if g is positive definite, if g is negative definite.

.

.

(M, g) : pseudo-Riemannian manifold . . .Definition . Let r > 0. The tangent hyperquadric bundle (THB) of radius r over (M, g) is defined by } { Tr M := (x, u) ∈ T M | gx (u, u) = r2

g is positive definite =⇒ Tr M = Tr M. Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

8 / 24

Sasaki metric

Sasaki metric

Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

9 / 24

Sasaki metric

Splitting subspaces

p : (x, u) ∈ T M 7−→ x ∈ M : projection ∇ : Levi–Civita connection of (M, g) The tangent space (T M )(x,u) at (x, u) ∈ T M splits into the horizontal subspace H(x,u) and the vertical subspace V(x,u) with respect to ∇ : (T M )(x,u) = H(x,u) ⊕ V(x,u) .

Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

10 / 24

Sasaki metric

Splitting subspaces

p : (x, u) ∈ T M 7−→ x ∈ M : projection ∇ : Levi–Civita connection of (M, g) The tangent space (T M )(x,u) at (x, u) ∈ T M splits into the horizontal subspace H(x,u) and the vertical subspace V(x,u) with respect to ∇ : (T M )(x,u) = H(x,u) ⊕ V(x,u) .

Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

10 / 24

Sasaki metric

Lift

Let X be a vector in a tangent space Mx at x ∈ M. The horizontal lift of X to (x, u) ∈ T M is a vector X h ∈ H(x,u) s.t. p∗ X h = X. The vertical lift of X to (x, u) ∈ T M is a vector X v ∈ V(x,u) s.t. X v ( df ) = Xf for all smooth functions f on M. (Here we consider a 1-form df on M as a function on T M.)

Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

11 / 24

Sasaki metric

Lift

Let X be a vector in a tangent space Mx at x ∈ M. The horizontal lift of X to (x, u) ∈ T M is a vector X h ∈ H(x,u) s.t. p∗ X h = X. The vertical lift of X to (x, u) ∈ T M is a vector X v ∈ V(x,u) s.t. X v ( df ) = Xf for all smooth functions f on M. (Here we consider a 1-form df on M as a function on T M.)

Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

11 / 24

Sasaki metric

On tangent bundle

. . .Definition . The Sasaki metric g¯ on T M is defined at each fixed point (x, u) ∈ T M by g¯(x,u) (X h , Y h ) = gx (X, Y ), g¯(x,u) (X h , Y v ) = 0,

for ... ∀X, Y ∈ Mx .

.

.

g¯(x,u) (X v , Y v ) = gx (X, Y )

(T M )(x,u) = H(x,u) ⊕ V(x,u) , X h , Y h ∈ H(x,u) , X v , Y v ∈ V(x,u) . Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

12 / 24

Sasaki metric

Tangent or not

.

. . .Lemma . v The canonical vertical vector field U (x,u) := u(x,u) is perpendicular to Tr M ⊂ (T M, g¯) at each point u) ∈ T M. ..(x, . . g¯(x,u) (X h , U ) = 0,

g¯(x,u) (X v , U ) = gx (X, u).

=⇒ The horizontal lift X h is always tangent to Tr M. However, in general, the vertical lift X v is not tangent to Tr M.

Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

13 / 24

Sasaki metric

Tangent or not

.

. . .Lemma . v The canonical vertical vector field U (x,u) := u(x,u) is perpendicular to Tr M ⊂ (T M, g¯) at each point u) ∈ T M. ..(x, . . g¯(x,u) (X h , U ) = 0,

g¯(x,u) (X v , U ) = gx (X, u).

=⇒ The horizontal lift X h is always tangent to Tr M. However, in general, the vertical lift X v is not tangent to Tr M.

Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

13 / 24

Sasaki metric

Tangential lift

. .Definition . The tangential lift X t of a smooth vector field X on M is a vector field on Tr M defined by X t := X v − 

1 g¯(X v , U )U . 2 r

.

.

.

... . . . .Remark . ut = 0 for ∀(x, u) ∈ Tr M. { h }  t ⊥ (T M ) = X + Y | X ∈ M , Y ∈ {u} (⊂ M ) . x x (x,u) ... r . Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

14 / 24

Sasaki metric

Tangential lift

. .Definition . The tangential lift X t of a smooth vector field X on M is a vector field on Tr M defined by X t := X v − 

1 g¯(X v , U )U . 2 r

.

.

.

... . . . .Remark . ut = 0 for ∀(x, u) ∈ Tr M. { h }  t ⊥ (T M ) = X + Y | X ∈ M , Y ∈ {u} (⊂ M ) . x x (x,u) ... r . Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

14 / 24

Sasaki metric

On THB

=⇒ We endow the hypersurface Tr M ⊂ (T M, g¯) with the induced pseudo-Riemannian metric g˜r , which is uniquely determined by the following formulae r g˜(x,u) (X h , Y h ) = gx (X, Y ), r g˜(x,u) (X h , Y t ) = 0, r g˜(x,u) (X t , Y t ) = gx (X, Y ) − 

1 gx (X, u)gx (Y, u) r2

for ∀X, Y ∈ Mx . Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

15 / 24

Sasaki metric

On tangent bundle

. . .Definition . The Sasaki metric g¯ on T M is defined at each fixed point (x, u) ∈ T M by g¯(x,u) (X h , Y h ) = gx (X, Y ), g¯(x,u) (X h , Y v ) = 0,

for ... ∀X, Y ∈ Mx .

Takamichi Satoh (Tohoku Univ.)

.

Tangent Hyperquadric Bundles

August 31, 2010

.

g¯(x,u) (X v , Y v ) = gx (X, Y )

16 / 24

Proof of Theorems

Proof of Theorems

Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

17 / 24

Theorem 1

. 1 .Theorem . (M, g), n = dim M ≥ 3 be a pseudo-Riemannian manifold with bounded sectional curvature. =⇒ For each sufficiently small r > 0,

.

e g r )(x,u) > 0 if  = 1, Sc(˜ e g r )(x,u) < 0 if  = −1. ... Sc(˜ . e g r )(x,u) : scalar curvature of THB at (x, u) ∈ Tr M. Sc(˜

Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

.

Proof of Theorems

18 / 24

Proof of Theorems

positive definite

Proof of theorem 1

.

Case (i). g is positive definite. . . Theorem (Kowalski–Sekizawa, 2000) .. (M, g), dim M ≥ 3, be a Riemannian manifold with bounded sectional curvature. e g r )(x,u) > 0. =⇒ ... For each sufficiently small r > 0, Sc(˜ . The theorem 1 is the same as the theorem of Kowalski–Sekizawa.

Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

19 / 24

Proof of Theorems

positive definite

Proof of theorem 1

.

Case (i). g is positive definite. . . Theorem (Kowalski–Sekizawa, 2000) .. (M, g), dim M ≥ 3, be a Riemannian manifold with bounded sectional curvature. e g r )(x,u) > 0. =⇒ ... For each sufficiently small r > 0, Sc(˜ . The theorem 1 is the same as the theorem of Kowalski–Sekizawa.

Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

19 / 24

negative definite

Case (ii). g is negative definite. . .Lemma . Vp,q : vector space of signature (p, q)

...

.

∃φ : (x1 , . . . , xp , xp+1 , . . . , xp+q ) ∈ Vp,q 7−→ (xp+1 , . . . , xp+q , x1 , . . . , xp ) ∈ Vq,p :anti-isometry

.

.

Proof of Theorems

The theorem 1 can be proved from the lemma and the theorem of Kowalski–Sekizawa. Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

20 / 24

negative definite

Case (ii). g is negative definite. . .Lemma . Vp,q : vector space of signature (p, q)

...

.

∃φ : (x1 , . . . , xp , xp+1 , . . . , xp+q ) ∈ Vp,q 7−→ (xp+1 , . . . , xp+q , x1 , . . . , xp ) ∈ Vq,p :anti-isometry

.

.

Proof of Theorems

The theorem 1 can be proved from the lemma and the theorem of Kowalski–Sekizawa. Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

20 / 24

Proof of Theorems

indefinite

.

Case (iii). g is indefinite. . . Lemma (Kulkarni, 1979) .. (M, g) be a non-Riemannian manifold with bounded sectional curvature. =⇒ ... The sectional curvature of (M, g) is constant. . e g r ) of THB is constant. =⇒ The scalar curvature Sc(˜ e g r ) = n(n − 1)c −  n − 1 c2 r2 + (n − 1)(n − 2) 1 . Sc(˜ 2 r2 where c is the constant sectional curvature of (M, g). We proved the theorem 1. Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

21 / 24

Proof of Theorems

indefinite

.

Case (iii). g is indefinite. . . Lemma (Kulkarni, 1979) .. (M, g) be a non-Riemannian manifold with bounded sectional curvature. =⇒ ... The sectional curvature of (M, g) is constant. . e g r ) of THB is constant. =⇒ The scalar curvature Sc(˜ e g r ) = n(n − 1)c −  n − 1 c2 r2 + (n − 1)(n − 2) 1 . Sc(˜ 2 r2 where c is the constant sectional curvature of (M, g). We proved the theorem 1. Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

21 / 24

Proof of Theorems

indefinite

.

Case (iii). g is indefinite. . . Lemma (Kulkarni, 1979) .. (M, g) be a non-Riemannian manifold with bounded sectional curvature. =⇒ ... The sectional curvature of (M, g) is constant. . e g r ) of THB is constant. =⇒ The scalar curvature Sc(˜ e g r ) = n(n − 1)c −  n − 1 c2 r2 + (n − 1)(n − 2) 1 . Sc(˜ 2 r2 where c is the constant sectional curvature of (M, g). We proved the theorem 1. Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

21 / 24

Proof of Theorems

indefinite

.

Case (iii). g is indefinite. . . Lemma (Kulkarni, 1979) .. (M, g) be a non-Riemannian manifold with bounded sectional curvature. =⇒ ... The sectional curvature of (M, g) is constant. . e g r ) of THB is constant. =⇒ The scalar curvature Sc(˜ e g r ) = n(n − 1)c −  n − 1 c2 r2 + (n − 1)(n − 2) 1 . Sc(˜ 2 r2 where c is the constant sectional curvature of (M, g). We proved the theorem 1. Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

21 / 24

Proof of Theorems

indefinite

.

Case (iii). g is indefinite. . . Lemma (Kulkarni, 1979) .. (M, g) be a non-Riemannian manifold with bounded sectional curvature. =⇒ ... The sectional curvature of (M, g) is constant. . e g r ) of THB is constant. =⇒ The scalar curvature Sc(˜ e g r ) = n(n − 1)c −  n − 1 c2 r2 + (n − 1)(n − 2) 1 . Sc(˜ 2 r2 where c is the constant sectional curvature of (M, g). We proved the theorem 1. Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

21 / 24

Theorem 2

. 2 .Theorem . (M, g), n = dim M ≥ 2 be a pseudo-Riemannian manifold of constant sectional curvature c 6= 0. =⇒ For each sufficiently large r > 0, e g r )(x,u) < 0 if  = 1, ... Sc(˜

.

e g r )(x,u) > 0 if  = −1. Sc(˜

.

.

Proof of Theorems

Proof. e g r ) = n(n − 1)c −  n − 1 c2 r2 + (n − 1)(n − 2) 1 . Sc(˜ 2 r2

Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

22 / 24

Theorem 2

. 2 .Theorem . (M, g), n = dim M ≥ 2 be a pseudo-Riemannian manifold of constant sectional curvature c 6= 0. =⇒ For each sufficiently large r > 0, e g r )(x,u) < 0 if  = 1, ... Sc(˜

.

e g r )(x,u) > 0 if  = −1. Sc(˜

.

.

Proof of Theorems

Proof. e g r ) = n(n − 1)c −  n − 1 c2 r2 + (n − 1)(n − 2) 1 . Sc(˜ 2 r2

Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

22 / 24

Combining the thorems

. Corollary .. (M, g), n = dim M ≥ 3 be a pseudo-Riemannian manifold of constant sectional curvature c 6= 0. e g r ) = c˜. =⇒ c ∈ R, ∃r > 0 s.t. Sc(˜ ... ∀˜

.

.

.

Proof of Theorems

Proof. e g r ) = c˜. In the previous equation, we put r2 = R, Sc(˜ Then (n − 1)c2 R2 + 2(˜ c − n(n − 1)c)R − 2(n − 1)(n − 2) = 0 has a positive root. Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

23 / 24

Last

Thank You

Thank you for your attention ˇ ´ Dekuji vam

Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

24 / 24

Last

Thank You

Thank you for your attention ˇ ´ Dekuji vam

Takamichi Satoh (Tohoku Univ.)

Tangent Hyperquadric Bundles

August 31, 2010

24 / 24

Curvatures of Tangent Hyperquadric Bundles

Aug 31, 2010 - of constant sectional curvature c = 0. ... ∀˜c ∈ R, ∃r > 0 s.t. ˜Sc(˜gr) ≡ ˜c. ˜Sc(˜gr)(x,u) : scalar ..... Vp,q : vector space of signature (p, q). ∃φ : (x.

121KB Sizes 2 Downloads 84 Views

Recommend Documents

10.1 Tangent Ratios.pdf
building does the ladder reach? HOMEWORK: pages 635-636 #13-33 odd. Page 2 of 2. 10.1 Tangent Ratios.pdf. 10.1 Tangent Ratios.pdf. Open. Extract.

Lean manufacturing context, practice bundles, and performance.pdf ...
Page 3 of 21. Lean manufacturing context, practice bundles, and performance.pdf. Lean manufacturing context, practice bundles, and performance.pdf. Open.

Bundles of Joy Ultimate First Birthday Party Planne Checklist.pdf ...
There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. Bundles of Joy Ultimate First Birthday Party Planne Checklist.pdf. Bundles of Joy Ultimate First Birthday Pa

Introduction to graded bundles
Graded bundles of degree n are particular examples of graded ... be studied. If time will allow, we will end up with some applications to geometrical mechanics.

geometry 6.2 Tangent Properties practice problems ANSWER KEY.pdf ...
geometry 6.2 Tangent Properties practice problems ANSWER KEY.pdf. geometry 6.2 Tangent Properties practice problems ANSWER KEY.pdf. Open. Extract.

Newton's Method and Tangent Line Approx wksht.pdf
Newton's Method and Tangent Line Approx wksht.pdf. Newton's Method and Tangent Line Approx wksht.pdf. Open. Extract. Open with. Sign In. Main menu.

pdf-09101\provincetown-dreamspinner-press-bundles-by-jacob-z ...
pdf-09101\provincetown-dreamspinner-press-bundles-by-jacob-z-flores.pdf. pdf-09101\provincetown-dreamspinner-press-bundles-by-jacob-z-flores.pdf. Open.

Saleforce Implementation Bundles (Updated on 4.12.16).pdf ...
Apr 12, 2016 - There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item.Missing:

pdf-1415\crow-indian-medicine-bundles-by-william-wildschut.pdf ...
pdf-1415\crow-indian-medicine-bundles-by-william-wildschut.pdf. pdf-1415\crow-indian-medicine-bundles-by-william-wildschut.pdf. Open. Extract. Open with.