Chapter 4 ONTOLOGY REASONING WITH LARGE DATA REPOSITORIES Stijn Heymans1, Li Ma2, Darko Anicic1, Zhilei Ma3, Nathalie Steinmetz1, Yue Pan2, Jing Mei2, Achille Fokoue4, Aditya Kalyanpur4, Aaron Kershenbaum4, Edith Schonberg4, Kavitha Srinivas4, Cristina Feier1, Graham Hench1, Branimir Wetzstein3, Uwe Keller1 1

Digital Enterprise Research Institute (DERI), University of Innsbruck, Technikerstrasse 21a, 6020 Innsbruck, {stijn.heymans|darko.anicic|nathalie.steinmetz|cristina.feier|graham.hench| uwe.keller}@deri.at; 2IBM China Research Lab, Building 19 Zhongguancun Software Park, Beijing 100094, China, {malli| panyue|meijing}@cn.ibm.com; 3Institute of Architecture of Application Systems (IAAS), University of Stuttgart, {zhilei.ma| branimir.wetzstein}@iaas.unistuttgart.de; 4IBM Watson Research Center, P.O.Box 704, Yorktown Heights, NY 10598, USA, {achille|adityakal|aaronk|ediths| ksrinivs}@us.ibm.com

Abstract:

Reasoning with large amounts of data together with ontological knowledge is becoming a pertinent issue. In this chapter, we will give an overviewof wellknown ontology repositories, including native stores and database based stores, and highlight strengths and limitations of each store. We take Minerva as an example to analyze ontology storage in databases in depth, as well as to discuss efficient indexes for scaling up ontology repositories. We then discuss a scalable reasoning method for handling expressive ontologies, as well as summarize other similar approaches. We will subsequently delve into the details of one particular ontology language based on Description Logics called WSML-DL and show that reasoning with this language can be done by a transformation from WSML-DL to OWL DL and support all main DL-specific reasoning tasks. Finally, we illustrate reasoning and its relevance by showing a reasoning example in a practical business context by presenting the Semantic Business Process Repository (SBPR) for systemical management of semantic business process models. As part of this, we analyze the main requirements on a such a repository. We then compare different approaches for storage mechanisms for this purpose and show how a RDBMS in combination with the IRIS inference engine provides a suitable solution that deals well with the expressiveness of the query language and the required reasoning capabilities even for large amounts of instance data.

Keywords:

business repository; IRIS; OWL DL; reasoning with large datasets; Semantic Business Process Management; WSML DL

Chapter 4 ONTOLOGY REASONING WITH LARGE DATA ...

LARGE DATA REPOSITORIES. Stijn Heymans1, Li Ma2, ... We take Minerva as an example to analyze ontology storage in databases in depth, as well as to.

73KB Sizes 2 Downloads 191 Views

Recommend Documents

Reasoning with Large Data Sets
Framework consisting of a collection of components which cover various aspects of ..... IRIS is an open source project developed under LGPL and available at:.

Chapter 4
In this chapter we will show that data mining and classifier induction can lead to ..... Such background knowledge may encourage an analyst to apply dis-.

Chapter 4
For example, based on historical data, an insurance company could apply ..... ios we explicitly assume that the only goal of data mining is to optimize accuracy.

Chapter 4 Rational Numbers
students a solid foundation, one that prepares them for college and careers in the 21st century. Send all inquiries to: McGraw-Hill Education. 8787 Orion Place.

Chapter 4 Notepacket Key
s XTA-ex -\ ic O. Writing Equations from Roots: esser 2. C-X A- \\ (K A- \\ - O. A root of an equation is a value that makes the equation true. 0. 7 O X A-\ s O X A \ rt O. Use the Zero Product Property to write a quadratic equation with each pair of

chapter 4.pdf
ENG-207: Electrical Engineering, Academic year 2/2555. Computer Engineering Program, Faculty of Engineering, Thai-Nichi Institute of Technology. Objectives.

Chapter 4.pdf
There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. Chapter 4.pdf.

Chapter 4.pdf
Air, which is a gas, also flows. Both gases and liquids are fluids. Fluids flow because some sort of force is ... How do deposits. on artery walls affect the flow of blood? How is an airplane affected by. different kinds of airflow? ... Flow tests ar

Chapter 4 B.pdf
formation of the solar system. Vocabulary. solar system. The solar system is your neighbor- hood in space. Jupiter. Mercury Venus Earth Mars. Astronomical Units. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19. 104 CHAPTER 4 The Solar System. Page 3

Chapter 4 Review.notebook
October 27, 2016. Oct 262:45 PM. 1. There were 920 people who attended a Winter Carnival. Festival on a Saturday. The number of children (c) was triple the number of adults. (a). Given a ... A video game store sold 96 games. The store sold 3 times mo