Chapter 2 DJM 30 January 2018 What is this chapter about? Problems with regression, and in particular, linear regression A quick overview: 1. 2. 3. 4. 5.

The truth is almost never linear. Collinearity can cause difficulties for numerics and interpretation. The estimator depends strongly on the marginal distribution of X. Leaving out important variables is bad. Noisy measurements of variables can be bad, but it may not matter.

Asymptotic notation • The Taylor series expansion of the mean function µ(x) at some point u ∂µ(x) |x=u + O(kx − uk2 ) ∂x • The notation f (x) = O(g(x)) means that for any x there exists a constant C such that f (x)/g(x) < C. µ(x) = µ(u) + (x − u)>

• More intuitively, this notation means that the remainder (all the higher order terms) are about the size of the distance between x and u or smaller. • So as long as we are looking at points u near by x, a linear approximation to µ(x) = E [Y | X = x] is reasonably accurate.

What is bias? • We need to be more specific about what we mean when we say bias. • Bias is neither good nor bad in and of itself. • A very simple example: let Z1 , . . . , Zn ∼ N (µ, 1). • We don’t know µ, so we try to use the data (the Zi ’s) to estimate it. • I propose 3 estimators: 1. µ b1 = 12, 2. µ b2 = Z6 , 3. µ b3 = Z. • The bias (by definition) of my estimator is E [b µ] − µ. • Calculate the bias and variance of each estimator.

1

Regression in general • If I want to predict Y from X, it is almost always the case that µ(x) = E [Y | X = x] 6= x> β • There are always those errors O(kx − uk)2 , so the bias is not zero. • We can include as many predictors as we like, but this doesn’t change the fact that the world is non-linear.

Covariance between the prediction error and the predictors • In theory, we have (if we know things about the state of nature)   −1 β ∗ = arg min E kY − Xβk2 = Cov [X, X] Cov [X, Y ] β

−1

• Define v −1 = Cov [X, X]

.



• Using this optimal value β , what is Cov [Y − Xβ ∗ , X]? Cov [Y − Xβ ∗ , X] = Cov [Y, X] − Cov [Xβ ∗ , X]   = Cov [Y, X] − Cov X(v −1 Cov [X, Y ]), X = Cov [Y, X] − Cov [X, X] v −1 Cov [X, Y ]

(Cov is linear) (substitute the def. of β ∗ ) (Cov is linear in the first arg)

= Cov [Y, X] − Cov [X, Y ] = 0.

Bias and Collinearity • • • • •

Adding or dropping variables may impact the bias of a model Suppose µ(x) = β0 + β1 x1 . It is linear. What is our estimator of β0 ? If we instead estimate the model yi = β0 , our estimator of β0 will be biased. How biased? But now suppose that x1 = 12 always. Then we don’t need to include x1 in the model. Why not? Form the matrix [1 x1 ]. Are the columns collinear? What does this actually mean?

When two variables are collinear, a few things happen. 1. We cannot numerically calculate (X> X)−1 . It is rank deficient. 2. We cannot intellectually separate the contributions of the two variables. 3. We can (and should) drop one of them. This will not change the bias of our estimator, but it will alter our interpretations. 4. Collinearity appears most frequently with many categorical variables. 5. In these cases, software automatically drops one of the levels resulting in the baseline case being in the intercept. Alternately, we could drop the intercept! 6. High-dimensional problems (where we have more predictors than observations) also lead to rank deficiencies. 7. There are methods (regularizing) which attempt to handle this issue (both the numerics and the interpretability). We may have time to cover them slightly.

2

White noise White noise is a stronger assumption than Gaussian. Consider a random vector . 1.  ∼ N(0, Σ). 2. i ∼ N(0, σ 2 (xi )). 3.  ∼ N(0, σ 2 I). The third is white noise. The  are normal, their variance is constant for all i and independent of xi , and they are independent.

Asymptotic efficiency This and MLE are covered in 420. There are many properties one can ask of estimators θb of parameters θ h i 1. Unbiased: E θb − θ = 0 n→∞ 2. Consistent: hθb − i−−−→ θ b 3. Efficient: V θ is the smallest of all unbiased estimators 4. Asymptotically efficient: Maybe not efficient for every n, but in the limit, the variance is the smallest of all unbiased estimators. 5. Minimax: over all possible estimators in some class, this one has the smallest MSE for the worst problem. 6. . . .

Problems with R-squared SSE =1− 2 i=1 (Yi − Y )

R2 = 1 − Pn

1 n

M SE SSE =1− 2 SST (Y − Y ) i=1 i

Pn

• • • •

This gets spit out by software X and Y are both normal with (empirical) correlation r, then R2 = r2 In this nice case, it measures how tightly grouped the data are about the regression line Data that are tightly grouped about the regression line can be predicted accurately by the regression line. • Unfortunately, the implication does not go both ways. • High R2 can be achieved in many ways, same with low R2 • You should just ignore it completely (and the adjusted version), and encourage your friends to do the same

High R-squared with non-linear relationship genY <- function(X, sig) Y = sqrt(X)+sig*rnorm(length(X)) sig=0.05; n=100 X1 = runif(n,0,1) X2 = runif(n,1,2) X3 = runif(n,10,11) df = data.frame(x=c(X1,X2,X3), grp = rep(letters[1:3],each=n)) df$y = genY(df$x,sig) ggplot(df, aes(x,y,color=grp)) + geom_point() +

3

geom_smooth(method = 'lm', fullrange=TRUE,se = FALSE) + ylim(0,4) + stat_function(fun=sqrt,color='black')

4

3

grp y

a 2

b c

1

0 0

3

6

x df %>% group_by(grp) %>% summarise(rsq = summary(lm(y~x))$r.sq) ## ## ## ## ## ##

# A tibble: 3 x 2 grp rsq 1 a 0.924 2 b 0.845 3 c 0.424

4

9

Chapter 2 - GitHub

Jan 30, 2018 - More intuitively, this notation means that the remainder (all the higher order terms) are about the size of the distance between ... We don't know µ, so we try to use the data (the Zi's) to estimate it. • I propose 3 ... Asymptotically efficient: Maybe not efficient for every n, but in the limit, the variance is the smallest.

255KB Sizes 0 Downloads 89 Views

Recommend Documents

HW 2: Chapter 1. Data Exploration - GitHub
OI 1.8: Smoking habits of UK Residents: A survey was conducted to study the smoking habits ... create the scatterplot here. You can use ... Go to the Spurious Correlations website: http://tylervigen.com/discover and use the drop down menu to.

AIFFD Chapter 12 - Bioenergetics - GitHub
The authors fit a power function to the maximum consumption versus weight variables for the 22.4 and ... The linear model for the 6.9 group is then fit with lm() using a formula of the form ..... PhD thesis, University of Maryland, College Park. 10.

Chapter 2
degree-of-disorder in cell nanoarchitecture parallels genetic events in the ... I thank the staff at Evanston Northwestern Healthcare: Jameel Mohammed, Nahla.

AIFFD Chapter 13 - Fish Population Bioassessment - GitHub
13.4 Stock-Recruitment Analysis . ...... 13.4.3 Modeling with Stock-Recruitment Curve. In this example, the ..... System: Windows, i386-w64-mingw32/i386 (32-bit).

AIFFD Chapter 5 - Age and Growth - GitHub
May 13, 2015 - The following additional packages are required to complete all of the examples (with ... R must be set to where these files are located on your computer. ...... If older or younger age-classes are not well represented in the ... as the

Chapter 2; Section 2 China's Military Modernization.pdf
fight protracted wars to a smaller, well-trained, and technology-en- abled force. ...... explore new modes of military-civilian joint education,'' according to. Chinese ...... do so.171. Maritime ISR: China is fielding increasingly sophisticated spac

Chapter 2: Data
Suppose a basketball player has an 80% free throw success rate. How can we use random numbers to simulate whether or not she makes a foul shot?

chapter 2.pdf
Purpose: This guide is not only a place to record notes as you read, but also to provide a place and ... reading guide questions, but to consider questions in order to critically understand ... in number, size, and power during this Colonial Era, the

Chapter 2-OpenSource.pdf
Open Source Software can be freely used, changed,. improved, copied and Redistributed but it may have. some cost for the media and support for further.