b

Forum Geometricorum Volume 3 (2003) 181–186.

b

b

FORUM GEOM ISSN 1534-1178

A Tetrahedral Arrangement of Triangle Centers Lawrence S. Evans

Abstract. We present a graphic scheme for indexing 25 collinearities of 17 triangle centers three at a time. The centers are used to label vertices and edges of nested polyhedra. Two new triangle centers are introduced to make this possible.

1. Introduction Collinearities of triangle centers which are defined in apparently different ways has been of interest to geometers since it was first noticed that the orthocenter, centroid, and circumcenter are collinear, lying on Euler’s line. Kimberling [3] lists a great many collinearites, including many more points on Euler’s line. The object of this note is to present a three-dimensional graphical summary of 25 threecenter collinearities involving 17 centers, in which the centers are represented as vertices and edge midpoints of nested polyhedra: a tetrahedron circumscribing an octahedron which then circumscribes a cubo-octahedron. Such a symmetric collection of collinearities may be a useful mnemonic. Probably the reason why this has not been recognized before is that two of the vertices of the tetrahedron represent previously undescribed centers. First we describe two new centers, which Kimberling lists as X1276 and X1277 in his Encyclopedia of Triangle Centers [3]. Then we describe the tetrahedron and work inward to the cubo-octahedron. 2. Perspectors and the excentral triangle The excentral triangle, Tx , of a triangle T is the triangle whose vertices are the excenters of T. Let T+ be the triangle whose vertices are the apices of equilateral triangles erected outward on the sides of T. Similarly let T− be the triangle whose vertices are the apices of equilateral triangles erected inward on the sides of T. It happens that Tx is in perspective from T+ from a point V+ , a previously undescribed triangle center now listed as X1276 in [3], and that Tx is also in perspective from T− from another new center V− listed as X1277 in [3]. See Figure 1. For ε = ±1, the homogeneous trilinear coordinates of Vε are 1 − va + vb + vc : 1 + va − vb + vc : 1 + va + vb − vc , where va = − √23 sin(A + ε · 60◦ ) etc. It is well known that Tx and T are in perspective from the incenter I. Define T∗ as the triangle whose vertices are the reflections of the vertices of T in the opposite sides. Then Tx and T∗ are in perspective from a point W listed as X484 in [3]. See Figure 2. The five triangles T, Tx , T+ , T− , and T∗ are pairwise in perspective, giving 10 perspectors. Denote the perspector of two triangles by enclosing the two triangles in brackets, so, for example [Tx , T] = I. Publication Date: September 19, 2003. Communicating Editor: Paul Yiu.

182

L. S. Evans

B

A C

Ib

A

Ic

V−

V+ V+

C  C

B

B 

A

V+

Ia

Figure 1 Ib A Ic

C

B

W Ia

Figure 2

Here is a list of the 10 perspectors with their names and ETC numbers: [T, T+ ] [T, T− ] [T, T∗ ] [T, Tx ] [T+ , T− ] [T+ , T∗ ] [T− , T∗ ] [Tx , T∗ ] [Tx , T+ ] [Tx , T− ]

F+ F− H I O J− J+ W V+ V−

First Fermat point Second Fermat point Orthocenter Incenter Circumcenter Second isodynamic point First isodynamic point First Evans perspector Second Evans perspector Third Evans perspector

X13 X14 X4 X1 X3 X16 X15 X484 X1276 X1277

A tetrahedral arrangement of triangle centers

183

3. Collinearities among the ten perspectors As in [2], we shall write L(X, Y, Z, . . . ) to denote the line containing X, Y , Z, . . . . The following collinearities may be easily verified: L(I, O, W ), L(I, J− , V− ), L(I, J+ , V+ ), L(V+ , H, V− ), L(W, F+ , V− ), L(W, F −, V+ ). What is remarkable is that all five triangles are involved in each collinearity, with Tx used twice. For example, rewrite L(I, O, W ) as L([T, Tx ], [T+ , T− ], [Tx , T∗ ]) to see this. The six collinearites have been stated so that the first and third perspectors involve Tx , with the perspector of the remaining two triangles listed second. This lends itself to a graphical representation as a tetrahedron with vertices labelled with I, V+ , V− , and W , and the edges labelled with the perspectors collinear with the vertices. See Figure 3. When these centers are actually constructed, they may not be in the order listed in these collinearities. For example, O is not necessarily between I and W . There is another collinearity which we do not use, however, namely, L(O, J+ , J− ), which is the Brocard axis. Triangle Tx is not involved in any of the perspectors in this collinearity. W = [Tx , T∗ ]

F+ = [T, T+ ] F− = [Tx , T] O = [T+ , T− ] V− = [Tx , T− ]

E = [Tx , Tx ] ∗

H = [T, T ]

J− = [T+ , T∗ ]

V+ = [Tx , T+ ] J+ = [T− , T∗ ] I = [Tx , T]

Figure 3

If we label each edge of the tetrahedron at its midpoint by the middle center listed in each of the collinearities above, then opposite edge midpoints are pairs of isogonal conjugates: H and O, J+ and F+ , and J− and F− . Also the lines L(O, H), L(F+ , J+ ), and L(F− , J− ) are parallel to the Euler line, and may be

184

L. S. Evans

interpreted as intersecting at the Euler infinity point E, listed as X30 in [3]. This adds three more collinearities to the tetrahedral scheme: L(O, E, H), L(F+ , E, J+ ), L(F− , E, J− ). The five triangles T, T+ , T− , T∗ , and Tx are all inscribed in Neuberg’s cubic curve. Now consider a triangle Tx in perspective with Tx and inscribed in the cubic with vertices very close to those of Tx (the excenters of T). The lines of perspective of Tx and Tx approach the tangents to Neuberg’s cubic at the vertices of Tx as Tx approaches Tx . These tangents are known to be parallel to the Euler line and may be thought of as converging at the Euler point at infinity, E = X30 . So we can write E = [Tx , Tx ], interpreting this to mean that Tx is in perspective from itself from E. I propose the term “ipseperspector” for such a point, from the Latin “ipse” for self. Note that the notion of ipseperspector is dependent on the curve circumscribing the triangle T. A well-known example of an ipseperspector for a triangle curcumscribed in Neuberg’s cubic is X74 , this being the point where the tangents to the curve at the vertices of T intersect. 4. Further nested polyhedra We shall encounter other named centers, which are listed here for reference: G K N+ N− N+∗ N−∗

Centroid Symmedian (Lemoine) point First Napoleon point Second Napoleon point Isogonal conjugate of N+ Isogonal conjugate of N−

X2 X6 X17 X18 X61 X62

The six midpoints of the edges of the tetrahedron may be considered as the vertices of an inscribed octahedron. This leads to indexing more collinearities in the following way: label the midpoint of each edge of the octahedron by the point where the lines indexed by opposite edges meet. For example, opposite edges of the octahedron L(F+ , J− ) and L(F− , J+ ) meet at the centroid G. We can then write two 3-point collinearities as L(F+ , G, J− ) and L(F− , G, J+ ). Now the edges adjacent to both of these edges index the lines L(F+ , F− ) and L(J+ , J− ), which meet at the symmedian point K. This gives two more 3-point collinearities, L(F+ , K, F− ) and L(J+ , K, J− ). Note that G and K are isogonal conjugates. This pattern persists with the other pairs of opposite edges of the octahedron. The intersections of other lines represented as opposite edges intersect at the Napoleon points and their isogonal conjugates. When we consider the four vertices O, F− , H, and J− of the octahedron, four more 3-point collinearities are indexed in the same manner: L(O, N−∗ , J− ), L(H, N−∗ , F− ), L(O, N− , F− ), and L(H, N− , J− ). Similarly, from vertices O, F+ , H, and J+ , four more 3-point collinearites arise in the same indexing process: L(O, N+∗ , J+ ), L(H, N+∗ , F+ ), L(O, N+ , F+ ), and L(H, N+ , J+ ). So each of the twelve edges of the octahedron indexes a different 3-point collinearity.

A tetrahedral arrangement of triangle centers

185

Let us carry this indexing scheme further. Now consider the midpoints of the edges of the octahedron to be the vertices of a polyhedron inscribed in the octahedron. This third nested polyhedron is a cubo-octahedron: it has eight triangular faces, each of which is coplanar with a face of the octahedron, and six square faces. Yet again more 3-point collinearities are indexed, but this time by the triangular faces of the cubo-octahedron. It happens that the three vertices of each triangular face of the cubo-octahedron, which inherit their labels as edges of the octahedron, are collinear in the plane of the basic triangle T. Opposite edges of the octahedron have the same point labelling their midpoints, so opposite triangular faces of the cubo-octahedron are labelled by the same three centers. This means that there are four instead of eight collinearities indexed by the triangular faces: L(G, N+ , N−∗ ),L(G, N− , N+∗ ), L(K, N+ , N− ), and L(K, N−∗ , N+∗ ). See Figure 4.

W

F+

K F−

N+ ∗ N+

N− ∗ N−

O G

E G

V− ∗ N−

H ∗ N+

N−

N+

V+

J− K

J+

I

Figure 4

So we have 6 collinearites indexed by edges of the tetrahedron, 3 more by its diagonals, 12 by the inscribed octahedron, and 4 more by the further inscribed cubo-octahedron, for a total of 25.

186

L. S. Evans

5. Concluding remarks In a sense, the location of each center entering into this graphical scheme places it in equal importance to the other centers in similar locations. So the four centers I, U , V , and W , which arose as perspectors with the excentral triangle are on one level. On the next level we may place the six centers O, H, J+ , J− , F+ , and F− which index the edges of the tetrahedron and the vertices of the inscribed octahedron. It is interesting that these six centers are the first to appear in the construction given by the author [1], and that the subsequent centers indexed by the midpoints of the edges of the octahedron arise as intersections of lines they determine. The Euler infinity point, E, is the only point at the third level of construction. Centers I, V+ , V− , W , O, H, F+ , J+ , F− , J− , and E all lie on Neuberg’s cubic curve. The Euler line appears as the collinearity L(O, E, H), with no indication that G lies on the line. The Brocard axis appears four times as L(J+ , K, J− ), L(K, N−∗ , N+∗ ), L(O, N+∗ , J+ ), and L(O, N−∗ , J−), but the betterknown collinearity L(O, J+ , J− ) does not. References [1] L. S. Evans, A rapid construction of some triangle centers, Forum Geom., 2 (2002) 67–70. [2] L. S. Evans, Some configurations of triangle centers, Forum Geom., 3 (2003) 49–56. [3] C. Kimberling, Encyclopedia of Triangle Centers, August 16, 2003 edition available at http://faculty.evansville.edu/ck6/encyclopedia/ETC.html. [4] D. Wells, The Penguin Dictionary of Curious and Interesting Geometry, Penguin, London, 1991. Lawrence S. Evans: 910 W. 57th Street, La Grange, Illinois 60525, USA E-mail address: [email protected]

A Tetrahedral Arrangement of Triangle Centers - Forum Geometricorum

Sep 19, 2003 - Here is a list of the 10 perspectors with their names and ETC ... L(O, H), L(F+,J+), and L(F−,J−) are parallel to the Euler line, and may be ...

61KB Sizes 7 Downloads 294 Views

Recommend Documents

Rectangles Attached to Sides of a Triangle - Forum Geometricorum
Aug 25, 2003 - This means that the lines from the vertices of AB C to the corresponding sides of ABC are concurrent as well. The point of concurrency is.

On an Erd˝os Inscribed Triangle Inequality - Forum Geometricorum
Sep 28, 2005 - A proof of (1) first appeared in A. Bager [2] and later in A. Bager [3] and P. H. Diananda ... area(ABC)−1 where s is the semi-perimeter of ABC.

On an Erd˝os Inscribed Triangle Inequality - Forum Geometricorum
Sep 28, 2005 - =2(s − a)(s − b)(s − c)+2. ( α − 1 α + 1. )2 s3. = 2 s. [area (ABC)]2 + 2. ( α − 1 α + 1. )2 s3. Hence abc · s. 2. ·area(A1B1C1)=[area(ABC)]3 +s4 ·.

Some Configurations of Triangle Centers - Semantic Scholar
Feb 24, 2003 - In fact the nine points A+, A−, A∗. , . . . themselves form the ..... La Grange, Illinois 60525, USA. E-mail address: [email protected].

Some Configurations of Triangle Centers - Semantic Scholar
Feb 24, 2003 - Some configurations inscriptable in a cubic. First let us set the notation for several triangles. Given a triangle T with vertices. A, B, and C, let A∗.

FORUM GEOMETRICORUM - Florida Atlantic University
Feb 24, 2003 - G, every orthopivotal cubic in the pencil Fl passes through its infinite point and .... We present a pair of interesting higher degree curves associated with the ortho- ...... [1] N. Altshiller-Court, College geometry, An introduction

On the Schiffler center - Forum Geometricorum
Jun 28, 2004 - B(A1,A2,A3,A4), and assume that l is a line not through Ai, i = 1,...,4. Put ...... http://faculty.evansville.edu/ck6/encyclopedia/ETC.html.

FG2014volume14 (Forum Geometricorum Volume 14 2014).pdf ...
Man Keung Siu Hong Kong, China. Peter Woo La Mirada, California, ... Bryan Brzycki, On a geometric locus in taxicab geometry, 117. Dao Thanh Oai, A simple ...

On the Schiffler center - Forum Geometricorum
Jun 28, 2004 - M A, and CA ∩ l = M B and determine the points MC, MA, and MB by ...... [7] D. Pedoe, A Course of Geometry for Colleges and Universities, ...

FG2005volume5 (Forum Geometricorum Volume 5 2005).pdf ...
Chris Fisher Regina, Saskatchewan, Canada. Rudolf Fritsch Munich, Germany. Bernard Gibert St Etiene, France. Antreas P. Hatzipolakis Athens, Greece.

Volume 3 - Forum Geometricorum - Florida Atlantic University
Feb 24, 2003 - Lawrence Evans, Some configurations of triangle centers, 49 ... respectively at Pa, Pb, Pc, which we call the orthotraces of P. These orthotraces.

FG2008volume8 (Forum Geometricorum Volume 8 2008).pdf ...
Peter Woo La Mirada, California, USA. Li Zhou Winter Haven, Florida, USA. Technical Editors: Yuandan Lin Boca Raton, Florida, USA. Aaron Meyerowitz Boca ...

The Kiepert Pencil of Kiepert Hyperbolas - Forum Geometricorum
Sep 11, 2001 - E-mail address: [email protected]. Paul Yiu: Department of Mathematical Sciences, Florida Atlantic University, Boca Raton, Florida,.

On Some Theorems of Poncelet and Carnot - Forum Geometricorum
Sep 25, 2006 - [5] P. Yiu, Euclidean Geometry, (1998), available at http://www.math.fau.edu/yiu/Geometry.html. ... E-mail address: [email protected].

On Some Theorems of Poncelet and Carnot - Forum Geometricorum
Sep 25, 2006 - analysis we will follow as much as possible the purist/synthetic ... ABCD in which AB + CD = BC + DA, so that it is circumscriptable (Figure. 2).

FGvolume12 (Forum Geometricorum Volume 12 2012).pdf ...
Frederick Hoffman Boca Raton, Floirda, USA. Stephen Locke Boca Raton, Florida, USA. Heinrich Niederhausen Boca Raton, Florida, USA. Page 2 of 310 ...

FG2005volume5 (Forum Geometricorum Volume 5 2005).pdf ...
FG2005volume5 (Forum Geometricorum Volume 5 2005).pdf. FG2005volume5 (Forum Geometricorum Volume 5 2005).pdf. Open. Extract. Open with. Sign In.

FGvolume1 (Forum Geometricorum Volume 1 2001).pdf
There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. FGvolume1 ...Missing:

FG2004volume4 (Forum Geometricorum Volume 4 2004).pdf ...
Whoops! There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. FG2004volume4 (Forum Geometricorum Volume 4 2004).pdf. FG2004volume4 (Forum Geometricorum Volume 4 2

Pedal Triangles and Their Shadows - Forum Geometricorum - Florida ...
May 25, 2001 - center of similitude of the circumcircle and the incircle of triangle ABC or the external ... call the segment BaCa the shadow of B C on BC. The shadows of ..... is easy to see that P is the same symmedian point. Proposition 5.

Triangle Centers with Linear Intercepts and Linear Subangles ...
Mar 10, 2005 - centers for which ξ, η, and ζ are linear forms in A, B, and C. Let ABC be a ... This work is supported by a research grant from Yarmouk University.

FGvolume11 (Forum Geometricorum Volume 11 2011).pdf ...
There was a problem loading more pages. Whoops! There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. FGvolume11 (Forum Geometricorum Volume 11 2011).pdf. FGvolum

FGvolume7 (Forum Geometricorum Volume 7 2007).pdf ...
Table of Contents. Joseph Stern, Euler's triangle determination problem, 1. Christopher Bradley, David Monk, and Geoff Smith, On a porism associated with.